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The leaf chlorophyll content (LCC) of vegetation is closely related to

photosynthetic efficiency and biological activity. Jujube (Ziziphus jujuba Mill.) is

a traditional economic forest tree species. Non-destructive monitoring of LCC of

jujube is of great significance for guiding agroforestry production and promoting

ecological environment protection in arid and semi-arid lands. Hyperspectral

data is an important data source for LCC detection. However, hyperspectral data

consists of a multitude of bands and contains extensive information. As a result,

certain bands may exhibit high correlation, leading to redundant spectral

information. This redundancy can distort LCC prediction results and reduce

accuracy. Therefore, it is crucial to select appropriate preprocessing methods

and employ effective data mining techniques when analyzing hyperspectral data.

This study aims to evaluate the performance of hyperspectral data for estimating

LCC of jujube trees by integrating different derivative processing techniques with

different dimensionality reduction algorithms. Hyperspectral reflectance data

were obtained through simulations using an invertible forest reflectance model

(INFORM) and measurements from jujube tree canopies. The least absolute

shrinkage and selection operator (LASSO) and elastic net (EN) were employed to

identify the important bands in the original spectra (OS), first derivative spectra

(FD), and second derivative spectra (SD). Support vector regression (SVR) was

used to establish the estimation model. The results show that compared with

full-spectrum modeling, LASSO and EN algorithms are effective methods for

preventing overfitting in LCC machine learning estimation models for different

spectral derivatives. The LASSO/EN-based estimation models constructed using

FD and SD exhibited superior R2 compared to the OS. The important band of SD

can best reveal the relevant information of jujube LCC, and SD-EN-SVR is the
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most ideal model in both the simulated dataset (R2 = 0.99, RMSE=0.61) and

measured dataset (R2 = 0.89, RMSE=0.91). Our results provided a reference for

rapid and non-destructive estimation of the LCC of agroforestry vegetation using

canopy hyperspectral data.
KEYWORDS

hyperspectral data, elastic net, LASSO, support vector regression, invertible forest
reflectance model, derivative processing
1 Introduction

The leaf chlorophyll content (LCC) of vegetation is closely related

to the absorption of carbon dioxide in the atmosphere and the process

of photosynthesis, which is an indicator of the photosynthetic efficiency

and biological activity of vegetation (Darvishzadeh et al., 2008).

Conducting quantitative and real-time monitoring of chlorophyll

content variations in forest could provide crucial information to

understand the responses of ecosystems to changes in environmental,

meteorological, and ecological factors (Zhen et al., 2021).

Jujube (Ziziphus jujuba Mill.) is a traditional economic forest tree

species. Its fruit is sweet and juicy and is suitable for fresh food and dry

processing. Jujube trees are known for their strong resistance to drought

and wind, as well as their high yield and stability (Liu et al., 2020). As a

result, they are becoming increasingly important in arid and semi-arid

lands (Liu et al., 2020). Xinjiang produces half of the jujubes in China,

and they are of higher quality compared to those planted in other regions

(Bai et al., 2019). Non-destructive monitoring of LCC of jujube is of great

significance for guiding agroforestry production and promoting

ecological environment protection in arid and semi-arid lands.

Traditional laboratory LCC determinations are destructive and

time consuming (Li et al., 2020). The development of remote sensing

technology enables the acquisition of physical and chemical

information of vegetation in a non-contact manner. Hyperspectral

remote sensing technology is very effective for monitoring LCC due to

its rapid and non-destructive capabilities (Shi et al., 2022). Compared

with multispectral sensors, hyperspectral data, with its narrower

bandwidth, provides distinct advantages for monitoring vegetation

health by capturing different physical and chemical reactions in

vegetation at various wavelengths (Jingguo et al., 2015; Ali and

Imran, 2020). However, hyperspectral data contain much

information and many bands; hence, some bands are highly

correlated, which increases the redundancy of spectral information,

leading to a distortion in prediction results and a reduction in

prediction accuracy (Cheng et al., 2022). To address these issues, Sun

et al. (2021) selected the first order derivative (FD) spectral data and

using the correlation coefficient method to predict the LCC of maize.

Lu and Peng (2015) calculated the correlation coefficient between

vegetation index and chlorophyll concentration, finding that D715/

D705 (D: first derivative), EBFR (simple ratios of the amplitude

between the red and blue regions), D705/D722, and BND

(normalized difference derivative at 722 and 700 nm) had a better

estimation effect on chlorophyll concentration at the cherry leaf scale.
02
Although the above methods have achieved better results, some

limitations still exist. For instance, the method of setting the

threshold based on the correlation between the band and chlorophyll

content may ignore the collinearity of adjacent spectral data (Sun et al.,

2021). The vegetation index method utilizes only one to four bands of

information, which fails to fully capture the important information

present in hyperspectral data (Lu and Peng, 2015). Studies have shown

that the selection of important bands for modeling through

dimensionality reduction algorithms typically yields equal or superior

model prediction performance compared to full-spectrum models

(Wang et al., 2022a; Zhu et al., 2022). The least absolute shrinkage

and selection operator (LASSO) (Tibshirani, 1996) and elastic net (EN)

(Zou and Hastie, 2005) are regularization methods that effectively

reduce high-dimensional data by adjusting model parameters. These

algorithms have demonstrated successful outcomes in various

applications, including crop yield estimation (Cao et al., 2021b), leaf

nitrogen estimation (Cao et al., 2021a) and forest biomass estimation

(Takayama and Iwasaki, 2016). However, the potential of these two

algorithms in estimating the LCC of agroforestry vegetation using

hyperspectral data, such as jujube trees, remains unclear. FD and/or the

second derivatives (SD) are commonly used spectral data preprocessing

techniques (Wang et al., 2018b; Wang et al., 2021; Wang et al., 2022b).

They are widely employed to mitigate noise, baseline effects, overlap

problems, enhance spectral features, capture subtle details of spectral

curves, and improve the accuracy of land surface parameter extractions

(Li et al., 1993; Cui et al., 2022; Jin and Wang, 2022). However, to the

best of our knowledge, there has been no research combining these two

derivative processing techniques with LASSO and EN dimensionality

reduction algorithms for predicting hyperspectral vegetation LCC.

Support vector regression (SVR), introduced by Cortes and

Vapnik (Cortes and Vapnik, 1995) in 1995, is a versatile machine

learning regression model. It has proven to enhance the efficiency of

modeling vegetation physiological parameters while demonstrating

improved stability in parameter estimation compared to other

methods (Navarro et al., 2019; Liu et al., 2022). Therefore, this study

aims to achieve the following objectives: (1) Propose a method for

estimating LCC of agroforestry vegetation by integrating derivative

processing techniques and dimensionality reduction algorithms,

specifically utilizing FD and SD derivative processing along with

LASSO and EN algorithms. (2) Compare the prediction

performance of LCC using important spectral bands of different

derivative orders (original spectra (OS), FD, SD) selected by LASSO

and EN algorithms with the prediction performance of LCC based on
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modeling using full-spectrum data by establish SVR. (3) Evaluate the

effectiveness of the proposed method using measured data and a

substantial dataset of canopy reflectance data generated by the

Invertible Forest Reflectance Model (INFORM), which accurately

represents the annual growth stages of jujube trees. This analysis will

help assess the practicality and applicability of the proposed approach.
2 Materials and methods

2.1 Study area

Ruoqiang County is located in southeastern Xinjiang, the

southeastern margin of the Taklimakan Desert, and the eastern

Tarim Basin. It is located between 86°45’-93°45’ E and 36°05’-41°23’

N, with an altitude of 846-4500 m and a total area of 202,300 square

kilometers. Ruoqiang County is the largest county in China. It has a

warm temperate continental desert arid climate, providing unique

natural conditions for the development of the agroforestry

vegetation (Cui, 2019). Among them, the ‘Huizao’ variety of Z.

jujuba Mill. is a well-known product in Xinjiang.

A total of 69 samples were collected in the study area. The

minimum interval of sample points is more than 15m.The location

of study area is shown in Figure 1.
2.2 Data collection and preprocessing

2.2.1 Measurement of hyperspectral reflectance
A portable spectroradiometer, the PSR-3500 manufactured by

Spectral Evolution, USA, was used to measure the canopy spectra of
Frontiers in Plant Science 03
69 sample points (trees). The spectral reflectance data were obtained

from May 19th to June 1st, 2020, during the flowering stage of

jujube trees, between 11:00 and 17:00 Beijing time, under clear,

windless, and cloudless conditions (Cui et al., 2022). The spectral

range covered 350-2500 nm with a 1 nm interval, resulting in 2150

wavebands. The spectrometer probe was vertically downward

during each measurement. This measurement process was

repeated 5 times, and the average of the spectral curve from these

repetitions was taken as the reflectance of the sample. A total of 345

spectral data were measured. To account for any variations in the

ambient radiation, we employed the white reference panel to

calibrate the instrument prior to each reflectance measurement.

To reduce noise interference caused by atmospheric scattering and

other reasons (Badola et al., 2022), only the 350-1050 nm band

range is retained, and savitzky-golay smoothing with a second-

order polynomial and window size of 5 (Cai et al., 2019) was applied

to smooth and denoise the spectral data.
2.2.2 Measurement of leaf relative
chlorophyll content

The soil–plant analyzer development (SPAD)-502 Plus portable

chlorophyll meter(Konica Minolta, Japan) measures the

transmittance in the red region (650 nm) and infrared region

(940 nm) through the leaf, providing a correspondence value of

chlorophyll content in three significant digit values (leaf relative

chlorophyll content), thereby characterizing the chlorophyll

content in leaves (Yang et al., 2021). The measurement of SPAD

values was carried out concurrently with canopy spectral

measurements, two leaves were taken from each jujube tree in the

east, west, south, and north, as well as vertical ground directions,
FIGURE 1

Study area locations: (A) sampling plots (SPAD value refers to leaf relative chlorophyll content); (B) jujube orchard; (C) mature state of the ‘Huizao’
variety of Z. jujuba Mill; (D) research team collecting jujube leaves.
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resulting in a total of 10 leaves per tree. During the measurements,

the leaf veins were avoided, and the SPAD value was recorded five

times at different positions along the leaf, from the base to the tip.

The average of the SPAD measurements for the 10 leaves was

considered as the SPAD value for the sampled tree. The

measurement processes of canopy spectral and SPAD value are

illustrated in the data acquisition section of Figure 2.

Existing research (Zhang et al., 2022) has established and

validated the formula (LCC(μg/cm2))= 0.709 * SPAD – 1.576) for

a robust conversion (R2 = 0.52) of SPAD values to LCC. In this

paper, SPAD values are utilized to characterize the LCC in the

measurement dataset.

2.2.3 Simulation of hyperspectral reflectance in
jujube tree canopies

A simulated hyperspectral dataset of the jujube canopy was

generated using the Invertible Forest Reflectance Model (INFORM)

(Atzberger, 2000), which combines the Forest Light Interaction Model

(FLIM), Scattering by Arbitrary Inclined Leaves (SAILH), and

PROSPECT model. The dataset was simulated using a range of

input parameters listed in Table 1. Based on previous studies (Lu

et al., 2022; Wu et al., 2023) on SPAD estimation of jujube trees at

different growth stages and the existing conversion relationship

between LCC and SPAD values, the Cab value was set to be 25-50

ug/cm2 to represent the total growth stage of jujube. N represents the

leaf structure parameter, and N is the number of compact layers

specifying the average number of air/cell walls interfaces within the

mesophyll (Jacquemoud et al., 2009). Usually, the N values of trees fall

within the range of 0.63-3, and most studies use a fixed N value

(Hernandez-Clemente et al., 2014; Yuan et al., 2015; Brown et al., 2019;

Shi et al., 2022). As trees age, N values tend to increase. To ensure

diversity in leaf sample types and statuses, this study has set the range

for N values between 1 and 1.5. Scale factor for soil reflectance is the
Frontiers in Plant Science 04
spectral reflectance of the underlying (uncovered) soil (Atzberger,

2000). Based on the empirical knowledge from our research team’s

field investigations, we have observed that the soil conditions in jujube

orchards are quite complex. Typically, the soil in jujube orchards is not

entirely covered by trees and other vegetation. On poorly managed

land, there may even be situations where the soil is completely exposed.

Drawing from previous studies (Hernandez-Clemente et al., 2014;

Darvishzadeh et al., 2019; Zarco-Tejada et al., 2019) on other tree

species, we have decided to set the scale factor for soil reflectance range

between 0.6 and 1. This range represents variations in soil parameters

during the growth of jujube trees. This parameter helps us more

accurately simulate and describe the soil conditions in jujube orchards,

enhancing the effectiveness of our simulation data. Other parameters

(Single trees LAI (m2·m−2) and Average leaf angle of tree canopy) were

set within a reasonable range according to the field investigation of the

research team. Ultimately, a total of 2100 spectra were generated,

covering all possible combinations of the input parameters.
2.3 Modeling process

In this study, estimation models were established by integrating

OS, FD, and SD spectra, dimensionality reduction algorithms

(LASSO, EN) and SVR. The modeling process was as follows:

first, the SVR was used to model the OS, FD, and SD spectra for

the full-spectrum prediction of LCC. Second, the LASSO and EN

were employed to reduce the dimensions of the OS, FD and SD

spectral data and SVR was performed on the important bands after

dimension reduction. A total of nine estimation models were

established. The hyperspectral simulated dataset obtained from

the radiative transfer model INFORM and the measured dataset

were used to test the validity of the proposed integration method.

Modeling process of this research is shown in Figure 2.
FIGURE 2

The diagram of the study.
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2.4 Derivative processing

The utilization of derivative techniques has become prevalent in

mitigating noise, baseline effects, overlap problems, enhancing spectral

features, capturing subtle details of spectral curves, and improving the

accuracy of land surface parameter extractions(Wang et al., 2018b).

Not only is the derivative technique a potent tool for spectral analysis,

it can also tackle collinearity concerns (Wang et al., 2021). In the

present study, FD and SD were employed to process the hyperspectral

data with the aid of Origin 2021 (OriginLab).
2.5 Dimensionality reduction algorithms

2.5.1 LASSO
LASSO, proposed by Robert Tibshirani in 1996 (Tibshirani, 1996),

is a biased estimation method for compressing model coefficients and

variable selection. LASSO adds the L1 norm penalty term on the basis

of the least squares method to compress the estimated parameters.

When the sum of the absolute values of the regression coefficients is

less than a constant, the sum of squared residuals is minimized to

obtain regression coefficients equal to 0; thus, the effects of

independent variables with little or no influence are compressed to

zero. The multiple linear model can be expressed as follows:

  y = Xb + ϵ (1)

where b is the linear variable, X is the independent variable

(that is, the hyperspectral data), y is the dependent variable (that is,

the jujube SPAD value), and ϵ is the error.

From Equation (1), the estimation of parameter b can be

expressed as follows:

J(b) =o(y − Xb)2 (2)

Compared to linear regression, in LASSO, an L1 penalty term is

added as follows:

J(b) =o(y − Xb)2 + l ∥ b ∥1 =o(y − Xb)2 +ol bj j (3)

where l   is a regularization parameter and l ≥ 0. The penalty

strength of the model is related to the regulation parameter l.
Frontiers in Plant Science 05
Variable screening can be achieved by controlling the adjustment

parameter l

2.5.2 Elastic net
Zou and Hastie proposed the EN technique (Zou and Hastie,

2005), which integrates the characteristics of ridge and LASSO, and

the penalty term has both an L1 norm term and an L2 norm term.

The EN includes a mixture parameter a, which is selected based on

the criterion of minimizing the MSE of the training samples and the

MSE of the prediction bias. a is a number between 0 and 1 that acts

in conjunction with l to regulate the size of the penalty term. The

estimation of parameter b can be expressed as follows:

J(b) =o (y − Xb)2 + al ∥ b ∥1 + 1−a
2 l ∥ b ∥22

=o (y − Xb)2 + lo (a bj j + (1 − a)b2)
(4)

It has been proven that the LASSO and EN models are more

interpretable when using the value of l with the minimum MSE

than when using the value of l with the minimum SE (Cao et al.,

2021a). Therefore, the value of l with the minimum MSE is chosen

in this paper.
2.6 SVR

The support vector machine (SVM) theory proposed by Vapnik

was initially used for supervised classification processes(Cortes and

Vapnik, 1995). SVR is the regression method of SVM, the idea of

SVR has been described by Smola and Schölkopf (Smola and

Schölkopf, 2004). In SVR, the mapping of input data in higher-

order feature space is accomplished by several types of kernel

functions (Li et al., 2021), such as linear, nonlinear, sigmoid,

polynomial, and radial basis functions (RBFs). Among various

kernel functions, the RBF kernel can achieve good results.

Therefore, we adopted the RBF kernel of SVR, where the

hyperparameters (C and gamma) were used for cross-validated

grid search, parameter tuning and model training in R software.
2.7 Model evaluation method

The determination coefficient (R2), root mean square error

(RMSE) are compared to evaluate and optimize the model

accuracy. The higher the R2 value is, the stronger the prediction

ability of the model. The smaller the calculated values of RMSE, the

higher the prediction accuracy of the model. The calculation

formula is as follows:

R2 = on
i=1(yi − �y)(fi − �f )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(yi − �y)2(fi − �f )2

q
2
64

3
75
2

(5)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(yi − fi)

2

r
(6)
TABLE 1 INFORM model parameters that were used in this study to
simulate the canopy reflectance spectra.

Parameter Minimum Maximum Step

Cab(ug/cm2) 25 50 5

The leaf structure parameter(N) 1 1.5 0.5

Single trees LAI (m2·m−2) 1 7 1

Scale factor for soil reflectance 0.6 1 0.1

Average leaf angle of tree canopy
(degree)

0 60 15
(Other ten fixed parameters are: solar zenith angle = 30°; Observer zenith Angle = 0°; azimuth
angle = 0°; fraction of diffuse incident radiation is 0.1; Equivalent water thickness is 0.03
g·cm−2; Dry matter content is 0.012 g.cm-2; Stem density is 500 ha−1; Tree height is 2.5m;
Crown diameter is 2m; LAI understory is 0.1 m2·m−2).
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where n is the number of samples, yi(i = 1,… :, n) is the

measured value, fi(i = 1,… :, n) represents the predicted value,  �y

represents the average observed value, and �f represents the average

predicted value.
3 Results

3.1 Statistical description of measured and
simulated dataset

The statistical analysis of measured dataset and simulated

dataset are presented in Table 2. A total of 69 samples were

collected in measured dataset; the mean SPAD value was 36.00,

the range was 29.50 to 42, the median was 35.70, the interquartile

range (Q3-Q1) was 3.1, the standard deviation was 2.69, and the

coefficient of variation was 0.07. The 69 samples were randomly

split into a training set and a validation set at a ratio of 75%:25%.

The training set consisted of 52 samples, while the validation set

comprised 17 samples.

A total of 2100 samples were collected in simulated dataset; the

mean LCC was 37.5 ug/cm2, the range was 25 ug/cm2to 50 ug/cm2, the

median was 37.5 ug/cm2, the interquartile range (Q3-Q1) was 15 ug/

cm2, the standard deviation was 8.54 ug/cm2, and the coefficient of

variation was 22.5 ug/cm2. The coefficient of variation was calculated to

be 0.07. The simulated dataset of 2100 hyperspectral data were randomly

divided into validation set and training set in the same proportion.
3.2 Results of spectral
dimensionality reduction

Figures 3A-C show the important band distribution of the OS,

FD and SD spectra after dimension reduction by LASSO and EN.

For the measurement data: There were 10 important bands selected

in OS-LASSO, 7 important bands were selected in FD-LASSO, and

13 important bands were selected in SD-LASSO. The optimization

function J(b) of the EN contains coefficients a (0<a<1). In this

paper, the range of a (0-1) is divided into 100 parts: the larger a is,

the fewer variables are selected, and the smaller a is, the more

variables are selected. The a values calculated for the OS, FD and

SD spectra were 0.21, 0.94 and 0.52, respectively. Thus, 80, 11, and

30 bands were selected when using EN. The results of the simulated
Frontiers in Plant Science 06
dataset show that 97 important bands are selected by the OS-LASSO

method, 161 important bands are selected by FD-LASSO, and 31

important bands are selected by SD-LASSO. The a values calculated

for the OS, FD and SD spectra were 0.50, 0.20 and 0.91, respectively.

Thus, 172, 208, and 40 bands were selected when using EN.
3.3 Model building and evaluation

Table 3 outlines the detailed outcomes of measured dataset and

simulated dataset generated by the SVR. The nine SVR results

indicated that the SVR model based on SD-EN-SVR achieved the

best quantitative prediction accuracy in both the measured (R2 = 0.89,

RMSE=0.91) and simulated datasets (R2 = 0.99, RMSE=0.61). In

addition, the model fitting effect based on SD and FD was better than

the model fitting effect based on OS, indicating that the FD and SD

processing is more effective than directly modeling with the OS. The

scatter plot (Figure 4) of the measured versus predicted SPAD values

demonstrates that SD-EN-SVR achieved the best estimation results

with a fitting line close to the 1:1 line; therefore, this model has strong

stability and high predictive ability. In contrast, the validation SPAD

estimation deviated from the 1:1 line in the SVR model based on full

spectra of OS, FD, and SD. It can be concluded that the SVR model

was not suitable for processing high-dimensional data, and the result

was overfitting. The combination of LASSO and EN with SVR

significantly improved the overfitting phenomenon, and the R2 of

the validation set was no longer less than 0.1.
4 Discussion

4.1 Effect of important bands on SPAD
values estimation

Hyperspectral data provide ground object reflection

information in thousands of bands. Directly using machine

learning method such as SVR to process the full-spectrum

information may lead to overfitting of the model (Table 2;

Figure 4). Improving the accuracy of prediction models while

maintaining effective spectral information is a challenging

problem. In this paper, LASSO, and EN were adopted to reduce

the complexity of the model and prevent overfitting. The LASSO

compresses the bands to a greater extent compared to EN, and the
TABLE 2 Statistical analysis of measured dataset and simulated dataset.

Dataset N Min Q1 Median Q3 Max Mean SD CV

Measured dataset (SPAD) 69 29.50 34.60 35.70 37.70 42.00 36.00 2.69 0.07

Measured training dataset 52 29.50 34.10 35.30 37.30 42.00 35.60 2.80 0.08

Measured validation dataset 17 34.70 35.6 37.00 38.40 41.20 37.30 1.89 0.05

Simulated dataset (LCC) 2100 25.00 30.00 37.50 45.00 50.00 37.50 8.54 22.8

Simulated training dataset 1569 25.00 30.00 40.00 45.00 50.00 37.50 8.52 22.7

Simulated validation dataset 531 25 30.00 35.00 45.00 50.00 37.49 8.62 23.0
frontiers
N represents the size of the dataset; SD indicates the standard deviation; CV stands for the coefficient of variation.
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EN is more moderate than the LASSO, and the selected bands are

more uniform (Figure 3). It is worth noting that the model

established by the bands selected by the EN is more stable and

accurate than LASSO in LCC estimation. This may be because the

EN combines the characteristics of ridge regression and LASSO,

and the penalty term has both L1-norm and L2-norm terms.

Furthermore, important bands selected based on the EN method

were concentrated in the red-edge region (670-760 nm), defined as

the boundary between chlorophyll absorption in the red and the

onset of leaf scattering in the near-infrared light (Curran et al.,

1990). Studies have proved that the red-edge bands are closely

related with vegetation LCC and is more sensitive for detecting

slight changes in LCC than that in the green region (500-560 nm) of

the spectrum (Ju et al., 2010; Delegido et al., 2011; Li et al., 2016).
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Figure 3 illustrates that the important bands obtained through

LASSO and EN from the measurement dataset closely resemble

those from the simulation dataset. Bands around 700 nm are

selected in both datasets in the original spectrum. In the First

Derivative (FD) spectrum, both datasets primarily select bands in

the 500-550 nm and 600-700 nm ranges. In the FD spectrum, both

datasets select most of the bands in the 500-550 nm and 600-700

nm ranges. In the SD spectrum, the spectra obtained from the

measurement dataset and the simulation dataset are mainly

distributed at 425 nm, 700 nm, and 900-975 nm. The method

proposed in this study is relatively stable in the important bands

selection of different datasets and the results of these important

bands can provide a reference for wavelength selection in

developing LCC detection equipment in the future.
A B C

FIGURE 3

Distribution of important bands screened by the LASSO and EN: (A) selection based on OS; (B) selection based on FD; (C) selection based on SD.
TABLE 3 The evaluation of nine models (T=training set, V=validation set).

Model Measured dataset Simulated dataset

R2
T R2

V RMSET RMSEv R2
T R2

V RMSET RMSEv

OS-SVR 0.83 0.00 1.84 2.53 0.77 0.02 8.67 8.76

FD-SVR 0.69 0.07 2.72 2.65 0.77 0.06 8.67 8.77

SD-SVR 0.74 0.06 2.28 2.58 0.98 0.01 2.39 8.61

OS-LASSO-SVR 0.48 0.41 2.03 1.95 0.79 0.78 4.94 5.14

FD-LASSO-SVR 0.70 0.64 1.52 1.65 0.94 0.93 2.22 2.47

SD-LASSO-SVR 0.72 0.66 1.56 1.56 0.95 0.94 1.90 2.20

OS-EN-SVR 0.74 0.45 1.44 2.10 0.88 0.87 3.26 3.47

FD-EN-SVR 0.72 0.70 1.47 1.60 0.97 0.97 1.43 1.60

SD-EN-SVR 0.89 0.71 0.91 1.53 0.99 0.97 0.61 1.07
fron
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4.2 Effect of derivative treatment

In previous studies, various methods, such as enhancement

transform, curve smoothing, continuous curve removal, wavelet-

based noise removal, have been commonly used to optimize

hyperspectral data to improve the estimation accuracy of

vegetation parameters (Wang et al., 2018a). Among them,

derivative transformation was used as a robust mathematical

analysis tool for processing data such as hyperspectral and remote

sensing images because of its advantages of reducing noise and

enhancing the details of data (Jin and Wang, 2016; Qu and Liu,

2017). This study proved that the combination of derivative spectral

processing and dimensionality reduction algorithms effectively

improved the estimation performance of LCC compared with the

original spectral data modeling. In this study, FD and SD spectra

were more robust than OS during modeling. Compared with OS

modeling using the same combination of “EN/LASSO-SVR”, the

modeling accuracy after derivative processing is greatly improved

(Figure 4). However, the FD spectra did not perform well compared

to the SD spectra. This pattern occurs because the SD spectra

enhance the peaks and valleys in the OS, distinguishing them from

noise and enabling more accurate isolation and quantification of the

vegetation signal than with the FD (Xiao-chen et al., 2008; Zhang

et al., 2018). Additionally, the SD removes more of the soil

background effects than the FD (Thorp et al., 2004), which can

further improve the accuracy of LCC value estimation.
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In Section 3.3, we presented the results of model building and

evaluation, where the combination of LASSO and EN with SVR

demonstrated relatively favorable performance. However, one

notable issue that emerged was the consistent underestimation

of accuracy on the validation set. From the model fitting results of

the measured dataset presented in Figure 4, it can be observed

that the LASSO/EN+SVR models built on FD and SD spectra

exhibit a relat ively better performance in mitigating

underestimation of validation set compared to those built on

OS spectra. This phenomenon may be attributed to the lower data

quality of the OS spectral dataset, whereas FD and SD spectra are

more reliable. This highlights the significance of employing FD

and SD spectral preprocessing when utilizing LASSO/EN+SVR

models. It can be seen from Table 3 that the problem of low

accuracy in the validation set is greatly improved on the

simulated data set. For instance, the difference in R2
T and R2

V

between OS-LASSO-SVR, FD-LASSO-SVR, SD-LASSO-SVR,

and OS-EN-SVR is only 0.1, while FD-EN-SVR achieves R2
T

and R2
V values of 0.97. These findings suggest that the canopy

information from the measured data is more intricate, potentially

contain more information on soil and environmental factors.

Consequently, the accuracy of the validation set may need to be

moderately sacrificed to counteract the influence of complex

environmental factors. This phenomenon emphasizes the

importance of FD and SD derivative preprocessing in future

research based on measured data.
FIGURE 4

Scatterplots of the measured SPAD values vs. predicted SPAD values using SVR (T=training set, V=validation set).
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4.3 Model uncertainty analysis

This paper presents an integration of derivative processing and

dimensionality reduction algorithms method for estimating

chlorophyll content in jujube leaves based on hyperspectral data

and achieves good results in both measured and simulated datasets.

The measured dataset in this study was collected during the

flowering stage of jujube trees, during which the canopy

reflectance of jujube trees was greatly affected by soil background

and canopy structure (Yu et al., 2014). Despite these influences, the

proposed combination method of derivative processing and

dimensionality reduction algorithms in this paper still achieved

favorable results during the flowering stage of jujube trees.

The chlorophyll content, leaf area index and other parameters

(scale factor for soil reflectance and average leaf angle of tree canopy) of

the simulated data have a wide range, which could represent the growth

state of jujube during the whole growth stage. Therefore, the simulated

dataset proves the validity of the integration method proposed in the

study and generalizes the obtained results. This paper has contributed

to the establishment of a prediction model of chlorophyll content in

jujube leaves, but there are still the following limitations: (1) This study

was based on hyperspectral data collected on the ground and simulated

using the INFORM model, not combined with image data. Therefore,

the effect of the results on the UAV and satellite scale needs to be

verified. (2) The derivative processing method used in this study can be

further optimized. The fractional derivative spectral data processing

method has achieved good results in hyperspectral estimation of soil

salinization (Wang et al., 2018b) and soil total nitrogen content (Yang

et al., 2022), However, the effect of improving the estimation accuracy

of chlorophyll content in combination with dimensionality reduction

algorithms needs to be further explored in the future. (3) In this study,

we did not conduct year-round destructive experiments to directly

establish the conversion relationship between LCC and SPAD values.

However, future research efforts will focus on conducting such

experiments at various growth stages to improve the precision of

LCC estimation. (4) In future research, we plan to collect data

throughout the entire growth stage of jujube trees, taking into

account variations in soil background and canopy structure at

different stages.
5 Conclusion

In this study, we combined the derivative processing techniques

and dimensionality reduction algorithms to improve the

hyperspectral estimation of jujube LCC. The main results were as

follows: (1) LASSO and EN algorithms are effective methods for

preventing overfitting in LCC machine learning estimation models

for different spectral derivatives. (2) The LASSO/EN-based

estimation models constructed using FD and SD exhibited

superior R2 compared to the OS. (3) The important bands of the

SD can effectively reveal the relevant information of LCC. In both

the dataset simulated by the radiative transfer model INFORM,
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which represents the canopy reflectance of jujube trees throughout

the entire growth stage (R2 = 0.99, RMSE=0.61), and the measured

dataset collected during the flowering stage of jujube with the

interference from soil background and canopy structure

(R2 = 0.89, RMSE=0.91), the SD-EN-SVR model demonstrates

the highest performance and is considered the most optimal

model. This study provides a convenient method to estimate

agroforestry vegetation parameters from canopy hyperspectral

data and can provide a scale conversion reference for the LCC

estimation of UAV and satellite remote sensing.
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