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Communication et Adaptation des Micro-organismes, UMR 7245, Paris, France, 3Sorbonne Université,
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Seed germination is a major determinant of plant development and final yield

establishment but strongly reliant on the plant’s abiotic and biotic environment.

In the context of global climate change, classical approaches to improve seed

germination under challenging environments through selection and use of

synthetic pesticides reached their limits. A currently underexplored way is to

exploit the beneficial impact of the microorganisms associated with plants.

Among plant microbiota, endophytes, which are micro-organisms living inside

host plant tissues without causing any visible symptoms, are promising

candidates for improving plant fitness. They possibly establish a mutualistic

relationship with their host, leading to enhanced plant yield and improved

tolerance to abiotic threats and pathogen attacks. The current view is that

such beneficial association relies on chemical mediations using the large

variety of molecules produced by endophytes. In contrast to leaf and root

endophytes, seed-borne fungal endophytes have been poorly studied

although they constitute the early-life plant microbiota. Moreover, seed-borne

fungal microbiota and its metabolites appear as a pertinent lever for seed quality

improvement. This review summarizes the recent advances in the identification

of seed fungal endophytes and metabolites and their benefits for seed biology,

especially under stress. It also addresses the mechanisms underlying fungal

effects on seed physiology and their potential use to improve crop

seed performance.’
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Introduction

Endophytic microorganisms are part of the plant microbiome

and reside transiently or permanently within plant tissues without

causing disease symptoms (Wilson, 1995). Endophytic fungi mainly

belong to the Ascomycota or Basidiomycota (Rashmi, 2019) and,

together with bacteria, constitute the most abundant, diverse and

ubiquitous group of endophytes. Their association with plants is

attested since Devonian (Krings et al., 2007) and they have been

detected in most plants studied so far and in a variety of plant

organs including leaves, stems, roots, flowers, fruits and seeds

(Stone et al., 2004). The classification of endophytic fungi

integrates their phylogeny, their host range, extent of tissue

colonization and transmission mode (Rodriguez et al., 2009).

Their transmission is particularly important for the building of

endophytic communities and their maintenance over space and

time. Indeed, horizontal transmission assures constant supply of

endophytes for (re)inoculation from plant environment whereas

vertical transmission allows the transfer of endophytic populations

from mother plants to their progeny via the seeds and possibly the

maintenance of endophytic microbiome composition across

generations (Bright and Bulgheresi, 2010; Abdelfattah et al., 2022).

A particular attention has been paid to endophytic fungi

considering the numerous services they can provide to plants and

their high potential for application in agriculture. Indeed abundant

literature reports the capacity of fungal endophytes to promote

plant growth and to improve their tolerance towards abiotic and

biotic stresses, in exchange of nutriment supply and shelter (Baron

and Rigobelo, 2022; Verma et al., 2022). As for seed-borne

endophytic fungi, evidence also points to their ability to promote

seed germination and early seedling growth, and possibly impact

the whole plant development and response to environmental cues

(Li et al., 2019). Interestingly, the positive effects of fungal

endophytes largely rely on bioactive molecules they produce and

that stimulate plant growth, and participate in adaptive responses or

immunity (Prado et al., 2012; Lugtenberg et al., 2016). Indeed, the

chemical repertoire of fungal endophytes is not only exceptionally

diverse in itself, but also shaped by their environment within the

plant, which makes these fungi a unique reservoir of

bioactive molecules.

Seeds are unique structures found in Gymnosperms and

Angiosperms that ensure their sustainability and dissemination,

which is critical for species survival and spreading in ecosystems.

They also constitute the income and outcome of major crop

productions, and seed performance, including high germination

rate, vigor or longevity, is crucial for plantlet establishment and final

yield (Ellis, 1992). Due to their sensitivity towards environmental

stresses, seed germination and possibly other seed traits are strongly

jeopardized by ongoing climate change (Finch-Savage and Bassel,

2016). Moreover, global warming will enhance plant diseases,

lowering yields and impairing food safety (Raza and Bebber,

2022). Because of on-going environmental policies and increasing

concern for sustainable development, environmental-safe strategies

to improve seed performance and resistance to pathogens are

urgently required. In this view, the valorization of bio-sourced
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molecules as biostimulants, i.e. to promote plant growth and

plant stress tolerance, or for the biocontrol of pathogens, is a

promising strategy. Fungal endophytes, especially those naturally

hosted in seeds, therefore appear as a valuable and original source of

bioactive molecules. This review will bring an update on seed-borne

fungal endophytes and their potential valorization to improve seed

traits, i.e. dormancy, germination, vigor and longevity, under

optimal or stress conditions, and seed tolerance towards

pathogens and pests.
Seed-borne endophytic fungi:
population diversity and dynamics

Embodying bridges between successive generations, seeds have

a central role in the conservation and transmission of the

endophytic microbiome to the next generation. Recent studies

have described the microbiome of crop and non-crop seeds using

metagenomics approaches (Wassermann et al., 2019; Bintarti et al.,

2022; Simonin et al., 2022). They highlight a high proportion of

fungi in seed microbiota compared to other tissues, possibly

reflecting the high capacity of fungal species to adapt to seed

environment (Simonin et al., 2022). They also point out a strong

diversity among plant species, between seeds of the same plant and

even within the same fruit (Bintarti et al., 2022; Simonin et al.,

2022). Indeed, seed endophytic fungal communities are not only

dependent on host genetics, but are further shaped by

environmental factors (Klaedtke et al., 2016; Wassermann et al.,

2019; Franić et al., 2020; Bintarti et al., 2022; Philpott et al., 2023).

Despite this variability, a handful of genera, e.g. Alternaria, Phoma,

Cladosporium, Fusarium, Xylaria, Penicillium or Aspergillus, that

are abundant and ubiquitously found in crops and wild species,

emerge as the core endophytic community of seeds (Samreen et al.,

2021; Simonin et al., 2022). In addition to these, Epichloe genus is

widely present among Poacea (grass) seeds (Stone et al., 2004).

Beside this core population, a diversity of additional endophytic

fungal species have also been detected in seeds, that represent a

minority and are highly flexible among plant species (Kluger et al.,

2008; Klaedtke et al., 2016; Billingsley Tobias et al., 2017; Hill et al.,

2021; Mertin et al., 2022; Simonin et al., 2022). Endophytic fungi

from both core and flexible populations can improve seed

performance (Table 1), which leaves open the relative

contribution and functions of these fungal subgroups.

As presented in Figure 1, seed endophytic communities are

partly inherited from the microbiota of the mother plant via vertical

transmission, through asexual (vascular tissues, intercellular spaces)

and possibly sexual (gametophytes) routes (Abdelfattah et al.,

2022). Endophytic fungi can also be acquired from seed

environment by horizontal transmission, from air and rain during

seed development and from soil after seed dispersal (U’Ren et al.,

2009; Nelson, 2018). In this last case, the seed coat that protects

seeds and prevents the penetration of pathogens represents a barrier

and a harsh environment for endophyte penetration and survival.

Moreover, the low diversity of endophytic fungi observed in seeds

compared to other plant tissues may result from interactions among
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TABLE 1 Seed fungal endophytes showing bio-stimulant and/or biocontrol properties towards seeds.

Seed endo-
phytic fungi

Host plant Effect on seed biology Possible mode of action Reference

Biostimulation

Epichloë sp. Achnatherum
inebrians

Improve seed dormancy release Unknown Chen et al.,
2021

Epichloë
bromicola

Hordeum
brevisubulatum

Improve seed germination rate under salt stress Unknown Wang et al.,
2020

Epichloë festucae Lolium
perenne

Improve seed germination rate Unknown Ma et al., 2015

Epichloe
gansuensis

Achnatherum
inebrians

Improve seed germination rate under salt, pH and temperature stress
and various conditions of light

Unknown Ahmad et al.,
2020

Epichloe
gansuensis

Achnatherum
inebrians

Improve seed longevity Higher peroxidase, superoxide
dismutase and catalase activity
Higher soluble sugar and proline

content

Li et al;, 2020

Epichloe
gansuensis

Achnatherum
inebrians

Improve seed germination rate under sub-optimal temperature Increased alkaloid biosynthesis,
Upregulation of fatty acid

biosynthesis,
Upregulation of stress response

molecules,
Regulation of protein content

Chen et al.,
2016

Epichloë
inebrians

Achnatherum
inebrians

Improve seed germination rate under wilder temperature range Unknown Bao et al., 2019

Epichloë
(Neotyphodium
sp.)

Elymus
dahuricus

Improve seed germination rate germination improvement under
cadmium stress

Higher peroxidase, ascorbate
peroxidase, superoxide dismutase

and catalase activity
Higher proline content

Zhang et al.,
2012

Neotyphodium
gansuense

Achnatherum
inebrians

Improve seed germination rate germination improvement under
cadmium stress

Higher peroxidase, ascorbate
peroxidase, superoxide dismutase

and catalase activity
Higher proline content

Zhang et al.,
2010

Acremonium
coenophialum

Festuca
arundinacea

Improve seed number and weight Unknown Rice et al., 1990

Acremonium
loliae
Acremonium
coenophialum

Lolium
perenne
Festuca
arundinacea

Improve seed germination rate Unknown Clay, 1987

Cladosporium
cladosporioides

Suaeda salsa Improve seed germination rate Unknown Qin et al., 2016

Epicoccum
nigrum

Dysphania
ambrosioides

Increase seed production under cadmium stress Auxin, gibberellin and jasmonic acid
production by the endophyte
Upregulation of the reduced

glutathione content

Parmar et al.,
2022

Fusarium
oxysporum
Fusarium solani
Fusarium sp.

Senna Alata Improve seed germination rate Unknown Pradhan et al.,
2023

Fusarium
verticillioides

Glycine max Improve seed germination rate under salt stress Higher protein content
Lower ABA content

Radhakrishnan
et al., 2013

Penicillium sp. Triticum
turgidum

Improve seed germination rate under heat and drought stress Unknown Hubbard et al.,
2012

Penicillium sp. Triticum
turgidum

Increase seed number and weight under heat and drought stress
during seed development and their germination

Unknown Hubbard et al.,
2014

Penicillium sp. Phragmites
australis

Improve seed germination rate Unknown Shearin et al.,
2018

(Continued)
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seed-transmitted microorganisms including endophytes so as plant

defense mechanisms (Newcombe et al., 2018). After dispersal,

endophytic fungal populations further evolve depending on seed

conservation. On the one hand, soil seed banks can be infected by

soil-borne microbes and an increased fungal diversity is observed

over time (Gallery et al., 2007; U’Ren et al., 2009). On the other

hand, the viability of fungal endophytes can be reduced during post-

harvest storage of dry seeds depending on the storage temperature

and humidity (Rolston et al., 1986; Gundel et al., 2009; Lane et al.,

2018). A recent study carried out on seeds from wild banana

relatives conserved in seed banks also suggests that loss of seed

viability correlates with specific modifications of the fungal

endophyte community (Hill et al., 2021). Moreover, post-harvest

treatments with fungicides (Hill and Brown, 2000; Leyronas et al.,

2006) but also insecticides (Nettles et al., 2016; Solanki et al., 2019)

reduce seed endophytic fungi populations. When germination

occurs, the growth of endophytes is reinitiated and they are

mobilized to colonize plantlets (Johnston-Monje et al., 2021). A

further reduction of seed-borne endophyte diversity is therefore

observed in the seedlings, due to differences in the growth rate

among endophytic fungi (Ganley and Newcombe, 2006; Barret

et al., 2015). As recently suggested, seed-borne endophytes may

subsequently colonize specific organs (root, stem) through selective

mechanisms currently unknown (Abdelfattah et al., 2022). Beside

their importance for seed biology, seed endophytes could therefore

also play critical functions in early plantlet establishment.
Frontiers in Plant Science 04
Seed-borne endophytic fungi:
a high potential to improve
seed performance

Numerous studies have reported beneficial effects of fungal

endophytes on different aspects of seed biology, i.e. seed

development, germination (including dormancy release) under

optimal or stress conditions and longevity (Table 1 and references

therein). These studies have been carried out on both crops, e.g.

tomato, wheat or soybean, and non-crop, e.g. Achnatherum

inebrians seeds, using core or flexible endophytic fungi. Although

fragmented, they provide elements to understand how endophytic

fungi can modify seed physiology and improve seed performance.

The best examples come from studies performed on Epichloe spp.

(anamorph genus Neotyphodium spp., family Clavicipitaceae),

which are obligate symbionts of cool-season grasses and strictly

seed transmitted (Zhang et al., 2010; Ma et al., 2015; Chen et al.,

2016; Bao et al., 2019; Ahmad et al., 2020; Chen et al., 2021). They

interact mutualistically with their hosts, promoting growth,

reproduction and resistance to pests, mainly by producing

alkaloids (Kuldau and Bacon, 2008). Epichloë infection enhances

Achnatherum inebrians germination rate under optimal and stress,

e.g. extreme temperature, salt stress, extreme pH or heavy metals,

conditions (Zhang et al., 2010; Chen et al., 2016; Bao et al., 2019;

Ahmad et al., 2020; Chen et al., 2021). It also promotes seed
TABLE 1 Continued

Seed endo-
phytic fungi

Host plant Effect on seed biology Possible mode of action Reference

Biostimulation

Penicillium sp. Triticum
durum

Improve seed dormancy release Up-regulation of seed gibberellin
signaling pathway

Vujanovic
et al., 2016

Biocontrol

Epichloë sp. Elymus
sibiricus

Improve seed germination rate under Alternaria alternata, Bipolaris
sorokiniana, Fusarium avenaceum, and Fusarium sp. infections

Unknown Li et al., 2017

Epichloë festucae Lolium
perenne

Improve seed germination rate under Alternaria alternata, Ascochyta
leptospora, Bipolaris sorokiniana, Curvularia lunata and Fusarium

avenaceum infections

Unknown Ma et al., 2015

Neotyphodium
gansuense

Achnatherum
inebrians

Seed-harvesting ant deterence Unknown Zhang et al.,
2011

Acremonium
ceoenophialum

Festuea
arundinaeea

Pogonomyrmex rugosus deterence Unknown Knoch et al.,
1993

Acremonium
coenophialum

Festuca
arundinacea

Junco hyernalis, Spizella arborea, Melospiza melodia and Passer
domesticus deterence

Unknown Madej and
Clay, 1991

Acremonium
loliae
Acremonium
coenophialum

Lolium
perenne
Festuca
arundinacea

Fall armyworm (Spodoptera frugiperda) and flour beetles (Tribolium
castaneum) deterence

Ergot alkaloïd production Cheplick and
Clay, 1988
When known, the underlying mechanisms are indicated.
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dormancy release (Chen et al., 2021). Dormancy is a critical

parameter for seed survival in nature, avoiding seed germination

under stress, and homogeneity and germination speed in

agriculture. A general mechanism through which Epichloë, and

other fungal endophytes such as Penicilium sp. (Hubbard et al.,

2012; Vujanovic et al., 2016; Shearin et al., 2018), Cladosporium

cladosporioides (Qin et al., 2016) or Fusarium verticillioides

(Radhakrishnan et al., 2013), promote seed germination and

dormancy release in these different contexts is likely the

modification of hormonal equilibrium. Indeed, higher and lower

content of hormones promoting [gibberellins (GA), auxin] or

inhibiting germination [Abscissic acid (ABA)], are respectively

measured in endophytic seeds upon imbibition (Radhakrishnan

et al., 2013; Vujanovic et al., 2016; Chen et al, 2021). The ABA/GA

balance is critical for seed germination and essentially regulated at

the transcriptional level (Carrera-Castaño et al., 2020). Endophytic

fungi might therefore modulate hormone-related gene expression in

seeds, as reported for Epichloë in Achnatherum inebrians plants

(Zhao et al., 2021). Alternatively, Epichloë endophytes could

interact with hormonal balance through loline alkaloids

production, which have been suggested to participate in

promoting growth either directly or indirectly via the modulation

of hormones, such as polyamines, with which they share precursor

amino acids (Schardl et al., 2007). However, no results demonstrate
Frontiers in Plant Science 05
the direct role of alkaloid on seed biology so far. Epichloë infection

also triggers important modifications of the seed metabolome

(Zhang et al, 2019; Liang et al, 2023). Beside the accumulation of

alkaloids, changes in the contents of purine and amino acid

derivatives, lipids and sugars have been reported (Zhang et al.,

2019; Chen et al., 2021; Liang et al., 2023). The comparison of

metabolomic and transcriptomic data suggest that Epichloë

infection affects seed metabolism at least partly through

transcriptional regulation (Chen et al., 2016; Rahnama et al.,

2023). As previously shown, metabolic resumption is critical for

efficient germination and fungal endophytes could participate in

this process (Rosental et al., 2014).

A major outcome of seed infection by endophytic fungi is the

improvement of seed germination under abiotic stress conditions

(Hubbard et al., 2012; Radhakrishnan et al., 2013). In this context,

metabolites accumulated in Epichloë-infected seeds could

participate in a better tolerance to stress at the germination stage,

as recently proposed in root and leaves (Hou et al., 2021; Liu et al.,

2021). For instance, Li et al. (2020) reported that seeds infected with

Epichloë accumulated higher contents of proline and soluble sugars

when conserved in sub-optimal conditions, leading to a prolonged

longevity. In addition, various seed species infected with endophytic

fungi present a higher level of antioxidant defense (Zhang et al.,

2010; Zhang et al., 2012; Ma et al., 2015; Li et al., 2020; Wang et al.,
FIGURE 1

Origins and biological functions of fungal endophytes during seed-to-seed cycle. Seed fungal endophytes can be inherited from the mother plant
(red labels) by vertical transmission during the early stages of seed development or acquired from air-borne (purple labels) and soil-borne (brown
labels) populations before, during or after seed dispersal. During germination and early seedling development, a portion of the seed-borne
endophytes migrate towards the emerging plantlets (vertical transmission). Major stages of endophytic community acquisition, maintenance and
dynamics are highlighted in blue. The benefits of endophytes and their bioactive molecules for seed and seedling performance are indicated in
green. Created with BioRender.com.
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2020). Reactive oxygen species (ROS) content in seeds is a key factor

for seed capacity to germinate (Bailly, 2019). As shown by Li et al.

(2020), under unfavorable conditions, seeds infected with Epichloë

exhibited a higher level of antioxidant activities, e.g. superoxide

dismutase, ascorbate peroxidase, correlated with a lower ROS

content and limited oxidative damages. Further evidence of ROS

scavenging by Epichloë is the correlation between loline produced

by the fungal endophyte and the production of the antioxidant

molecule tocochromanol in Lolium multiflorum seeds (Gundel

et al., 2018). From the numerous evidences obtained in vegetative

organs (reviewed by Chen et al, 2022), it is expected that endophytic

fungi modulate seed tolerance to stress through the modification of

gene expression. So far, transcriptomic analyses have only been

performed in cold-stressed Achnatherum inebrians seeds infected

with Epichloë (Chen et al., 2016). In this context, seed infection

impacts the expression of more than 150 genes, including stress

response genes involved in protein folding, ROS scavenging and

membrane lipid remodeling, that participate in cold tolerance

(Chen et al., 2016). A generalization of such approach to multiple

seed and endophyte species and stress conditions are now needed to

identify common and specific transcriptomic signatures and

associate them to stress tolerance at the germination stage.

Although less investigated, seed formation and yield are

stimulated by endophytic fungi (Rice et al., 1990). This might

reflect the improvement of nutrient translocation from the

mother plant to the developing seeds by endophytic fungi. The

positive effect of endophytes on seed number and weight is

particularly significant for plants exposed to abiotic stresses

(Hubbard et al., 2014; Parmar et al., 2022). Strikingly, the

infection during seed formation on the mother plant also

imprints seed tolerance to stress after release, at the germination

stage (Hubbard et al., 2014). The transgenerational transmission of

stress tolerance is associated with specific epigenetic regulations.

Forte et al., 2023 recently evidenced that Epichloë infection triggers

specific modifications of Lolium perenne DNA methylation.

Whether it participates to the maintenance of stress tolerance in

seeds over generation is currently unknown but provides a new

angle to tackle seed-borne endophytic fungi functions.

Pathogen and feeder attacks are major threats for seed

germination and seed endophytic fungi provide protection against

a wide range of bio-aggressors (Ma et al., 2015; Li et al., 2017).

Interestingly, protection by seed-borne endophytes frequently

extends to later development stages following plantlet emergence

(Ma et al., 2015). Protective mechanisms include the production of

antimicrobial compounds, e.g. alkaloids, terpenoids or cell wall-

degrading enzymes, by the endophytes, so as the activation of plant

defense mechanisms through the stimulation of plant salicylic or

jasmonic acid production (Schmid et al., 2017; Kou et al., 2021).

Epichloë endophytes have been highlighted for their antifungal

activity provided by the constitutive production of antifungal

molecules (Niones and Takemoto, 2014; Fernando et al., 2020).

Beside Epichloë, several seed-borne fungal endophytes, e.g.

Penicillium crustosum, Sarocladium zeae, Sarocladium strictum or

Lecanicillium lecanii have been reported to produce antimicrobial

compounds (Valente et al., 2013; Shen et al., 2014; Błaszczyk et al.,

2021; Kim et al., 2022). Nevertheless, their role in mitigating
Frontiers in Plant Science 06
pathogen attacks in seeds and their mode of action is still not

fully known. Molecules identified in seeds include loline (Justus

et al., 1997; Gundel et al., 2018) and ergot alkaloids (Ahimsa-Müller

et al., 2007), peramine (Ball et al., 1997a) and lolitrem B (Ball et al.,

1997b). Although unknown in seeds, their role can likely be

extrapolated from that in vegetative organs. They could

participate in plant defense against herbivores as reported for

Epichloë lolines and ergot alkaloids, indole diterpenoids

(lolitrems) and pyrrolopyrazines (peramine) (Bush et al., 1997).

The neurotropic activities of lolines, and the activity of peramine as

a feeding deterrent, can significantly enhance competitiveness of

grasses housing such alkaloid-producing endophytes (Bush et al.,

1997). However, loline alkaloids exhibit a broader range and more

overt toxicity to insects than peramine (Schardl et al., 2004). Apart

from Epichloë, the seed endophyte Undifilum oxytropsis produces

swainsonine, an alkaloid bioactive on neurological functions, and

that protects host plant from herbivores (Oldrup et al., 2010; Cook

et al., 2011). A major limitation for the use of such endophytes to

control feeder attacks is the anti-vertebrate activities of some of

their metabolites, i.e. indole diterpene and ergot alkaloids, that are

responsible for livestock intoxication (Bacon, 1995). Epichloë strains

altered in alkaloid production that retain protection potential, with

minimal negative effects on livestock, have therefore been selected.

These strains produce neither lolitrem B nor ergovaline and the sole

production of peramine provides a defense against major pest

insects. They are now commercially available and commonly used

by farmers to improve pasture performance in agrosystems

(Eady, 2021).
Future developments towards
endophyte-based solutions
in seed treatments

Recent progress based on metagenomics uncovered the huge

diversity of endophytic fungal communities in seeds. This

knowledge paves the way for engineering seed endophytic

microbiota to improve seed performance, in particular under

stress conditions. In this view, endophytic fungal strains selected

from tolerant seeds may be used to improve the germination of

sensitive seed varieties under stress, a strategy that has been

successful for promoting plant growth under stress (Sampangi-

Ramaiah et al., 2020). Beyond, endophytic populations from wild or

tolerant relatives of selected crops might represent a valuable source

to build synthetic communities (SynCom) for seed improvement.

Nevertheless, this strategy remains challenging (de Souza et al.,

2020). On the one hand, the design of efficient SynComs will require

a better understanding of the individual, synergistic and cumulative

effects of identified seed-borne endophytes on seed performance.

On the other hand, their stability following seed inoculation has to

be assessed.

An alternative strategy to the inoculation of seeds with endophytes

themselves is the application of bioactive molecules produced by fungal

endophytes. In this view, seed-borne endophytes are likely candidates

to produce biostimulants active on seed biology. So far, only a handful
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of seed-borne endophytic fungi have been studied in this respect, and

the potential value of their metabolites has essentially been considered

for pest and pathogen management. As the benefits of fungal

endophytes during seed cycle go far beyond the sole protection

against biotic stresses, much gain can be anticipated from the

discovery and use of the chemical mediators that underlie such

services. The extraction and purification of bioactive molecules

require the cultivation of fungal species and a major bottleneck of

this approach is the gap between the number of identified seed-borne

endophytic fungi and those cultivable. Moreover, culture conditions

differ from the natural seed environment and will modify fungal

metabolomes. Optimized approaches to isolate and cultivate seed-

borne endophytes, so as to purify and test the bioactivity of their

metabolic extracts, will therefore be required to identify new and robust

seed biostimulants. Aside from providing potential solutions for

agriculture, the study of the mode of action of these extracts will

bring important information on the regulation of seed development,

germination and/or longevity.
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Barret, M., Briand, M., Bonneau, S., Préveaux, A., Valière, S., Bouchez, O., et al.
(2015). Emergence shapes the structure of the seed microbiota. Appl. Environ.
Microbiol. 81, 1257–1266. doi: 10.1128/AEM.03722-14

Billingsley Tobias, T., Farrer, E. C., Rosales, A., Sinsabaugh, R. L., Suding, K. N., and
Porras-Alfaro, A. (2017). Seed-associated fungi in the alpine tundra: Both mutualists
and pathogens could impact plant recruitment. Fungal Ecol. 30, 10–18. doi: 10.1016/
j.funeco.2017.08.001
Bintarti, A. F., Sulesky-Grieb, A., Stopnisek, N., and Shade, A. (2022). Endophytic
microbiome variation among single plant seeds. Phytobiomes J. 6, 45–55. doi: 10.1094/
PBIOMES-04-21-0030-R
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