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Crop breeding is one of the main approaches to increase crop yield and improve

crop quality. However, the breeding process faces challenges such as complex

data, difficulties in data acquisition, and low prediction accuracy, resulting in low

breeding efficiency and long cycle. Deep learning-based crop breeding is a

strategy that applies deep learning techniques to improve and optimize the

breeding process, leading to accelerated crop improvement, enhanced breeding

efficiency, and the development of higher-yielding, more adaptive, and disease-

resistant varieties for agricultural production. This perspective briefly discusses

the mechanisms, key applications, and impact of deep learning in crop breeding.

We also highlight the current challenges associated with this topic and provide

insights into its future application prospects.
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Introduction

Crop quality has always been a focal point in human cultivation, and crop breeding, as

a primary approach to increasing crop yield and improving crop quality, is one of the oldest

agricultural activities, equivalent to human civilization (Shen et al., 2022). Emerging as the

times require, crop breeding is the process of artificially selecting and cultivating plant

varieties to improve their agronomic traits and economic benefits (Herath et al., 2021). In

the early days, farmers preserved and planted the seeds of the best-performing plants to

grow crops in the next season, a natural selection process that facilitated the accumulation

of favorable traits (Ibe, 2022). Over time, people gradually realized the importance of

specific traits for crop yield, quality, disease resistance, and adaptability, and began

consciously to select and breed plants with these characteristics. With the development

of technology and improvement of living standards, higher demands have been placed on

crop yield and quality, necessitating continuous innovation in breeding techniques,
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methods, and applications to provide strong support (Wallace et al.,

2018; Jiang et al., 2020). This has significant impacts and effects on

agriculture and the economy, promoting sustainable

agricultural development.

During the entire history of crop breeding technology, it has

roughly gone through three major stages, and it is now advancing

towards the fourth stage. The first stage is conventional breeding

(Breeding 1.0), which mainly relies on visual observation of crop

phenotypes and subjective selection of crops that meet

predetermined requirements. Generally, wild species are gradually

domesticated into cultivated varieties with improved qualities

through multiple rounds of artificial selection (Khoshbakht and

Hammer, 2008; Moose and Mumm, 2008). However, this stage

primarily relies on natural variation and the subjective experience of

breeders, resulting in slow progress, low efficiency, and high

uncertainty. In the late 19th century, with the rapid development

of genetics, genetic breeding (Breeding 2.0) emerged as the

mainstream, bringing breeding into the realm of science. During

this stage, significant success was achieved in crop breeding for

crops like wheat, rice, maize, greatly improving yields.

Unfortunately, there were still shortcomings such as long

breeding cycles, low efficiency in genetic improvement, and high

field costs (Zhang et al., 2014; Abdallah et al., 2015). At the end of

the 20th century, genetic engineering propelled the development of

modern molecular biology, ushering in the era of molecular

breeding (Breeding 3.0). The gradual application of technologies

such as transgenic techniques, molecular markers, genomic

selection, and gene editing provided more efficient, precise, and

targeted breeding methods. Nevertheless, high costs and complexity

remain limiting factors for the application of molecular breeding

(Jing et al., 2021). Breeding scientists sincerely hope that the

integration of new generation information technologies such as

big data and artificial intelligence with biotechnology will propel

crop breeding into the era of Breeding 4.0, which also terms as

Intelligent breeding (Wang et al., 2020) and is marked by Deep

Learning-Empowered Crop Breeding (Yang et al., 2020; Wang

et al., 2023).

With the push of large-scale datasets, powerful computing

capabilities, and algorithmic improvements, deep learning has

made breakthrough progress in multiple fields (Khan et al., 2019).

Deep learning is a machine learning method that revolves around

the idea of building multi-layer neural network models to simulate

the neural networks of the human brain, enabling the learning and

pattern recognition abilities of data, which can be further applied to

tasks such as classification, prediction, and generation (LeCun et al.,

2015). Depending on whether the training data has label

information, deep learning can be divided into two learning

modes (Cunningham et al., 2008): (1) Supervised Learning: It

relies on labeled training data, where labels correspond to the

expected outputs or categories for each input sample. In this

mode, explicit supervision signals are provided to the model,

enabling it to learn the mapping relationship between inputs and

outputs. The algorithms include Convolutional Neural Networks

(CNNs), Recurrent Neural Networks (RNNs), and Graph

Convolutional Neural Networks (GCNs) (Yan and Wang, 2022).

Neural networks are models used to capture nonlinear
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dependencies. They transform inputs through hidden layers,

mapping them to a space where classes can be linearly separated.

In the example of splice site classification, a singlelayer neural

network employs logistic regression for prediction but fails to

accurately differentiate spliced and unspliced data points.

Surprisingly, by utilizing neural networks with intermediate

layers, more complex nonlinear transformations can be

performed, enabling effective discrimination between spliced and

unspliced data points (Figure 1A). Deep neural networks, on the

other hand, are neural network architectures that consist of multiple

hidden layers (Miikkulainen et al., 2019). (2) Unsupervised

Learning: It utilizes unlabeled training data. In this case, no

explicit output or category information is given, and the goal is to

discover hidden structures, patterns, or features from the data

through the model’s own learning process (Hastie et al., 2009).

Unsupervised learning is commonly used for tasks such as

clustering, dimensionality reduction, anomaly detection, and

generative modeling (Fan et al., 2020). The algorithms include

Autoencoders, Generative Adversarial Networks (GANs) and

Variational AutoEncoders (VAEs). An autoencoder consists of an

encoder and a decoder, used for data compression and

reconstruction (Bank et al., 2020). The encoder compresses input

data into lower dimensions and stores it in the bottleneck layer,

while the decoder attempts to reconstruct the original input from

the compressed data in the bottleneck layer. A generative

adversarial network consists of a generator and a discriminator,

trained together to generate realistic samples and perform

discrimination (Creswell et al., 2018). The discriminator is

responsible for distinguishing between real and synthetic data,

while the generator aims to deceive the discriminator by

generating more realistic synthetic samples (Figure 1B).

Deep learning-empowered breeding is a method that applies

deep learning techniques to improve and optimize the breeding

process. It utilizes deep learning models to analyze and process

agricultural and genetic data, in order to predict and optimize the

agricultural characteristics and genetic traits of crops (Uzal et al.,

2018). Deep learning-assisted breeding can enhance breeding

efficiency, accelerate the improvement process of crops or

animals, and provide higher-yielding, more adaptive, and disease-

resistant varieties for agricultural production, through steps such as

data collection and preprocessing, model construction and training,

as well as genetic parameter optimization and selection (Liu and

Wang, 2017). The aim of this perspective is to provide an overview

of the latest developments in deep learning in the field of crop

breeding, analyze current challenges, and highlight its potential as a

promising technology for crop breeding.
Principles of deep learning-
empowered crop breeding

Deep learning solves complex problems by processing large-

scale data. Currently, images remain the main data format for

phenotypic selection in crop breeding (Araus and Cairns, 2014).

The application of deep learning in plant phenotyping image

processing is rapidly advancing, especially with the impressive
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performance of CNN in analyzing phenotype big data (Chang et al.,

2016). It possesses powerful feature extraction and modeling

capabilities, providing new approaches for overcoming challenges

in data analysis. The workflow for crop breeding based on deep

learning generally includes six steps: (1) Data collection: Gather

agricultural and genetic data relevant to the target crops, including

phenotypic traits, environmental factors, genetic markers, and other

related information (Crossa et al., 2010). (2) Data preprocessing:

Clean and preprocess the collected data, involving data

normalization, feature extraction, missing data handling, and data

augmentation techniques (SChadt et al., 2001). (3) Model
Frontiers in Plant Science 03
construction: Build a deep learning model suitable for the specific

breeding task, selecting appropriate neural network architectures

based on the data nature and breeding objectives. (4) Model

training: Train the deep learning model using preprocessed data,

optimizing model parameters to minimize differences between

predicted outputs and observed values. Training typically involves

techniques like backpropagation and gradient descent to update

model weights (Zhou, 2018). (5) Genetic parameter optimization

and selection: Utilize the trained deep learning model to predict and

evaluate agricultural characteristics and genetic traits of crops.

Optimize genetic parameters and select suitable individuals for
Variational Inference

Generative Adversarial

A

B

FIGURE 1

The modes in deep learning. (A) The figure shows an example of splice site classification using a single-layer neural network with sigmoid activation.
It predicts the probability of output being class 1 based on two RNA features. The goal is to distinguish spliced-out from non-spliced-out introns
based on intron length and branchpoint distance. If the length or distance is too short or too long, splicing doesn’t occur. Not surprisingly, it can’t
separate the spliced (red) and unspliced (green) data points. In a multilayer neural network, hidden layers in neural networks transform inputs with
nonlinear transformations, making classes linearly separable. (B) An autoencoder consists of an encoder and a decoder, used to compress input data
into a lower-dimensional bottleneck layer for reconstruction. The accuracy of reconstruction is measured using a loss function, enhancing the
clarity of the data structure. An autoencoder is endowed with the function of variational inference to form a variational autoencoder. A generative
adversarial network include a generator and a discriminator. The generator and discriminator of a generative adversarial network play games with
each other, and after the generator is replaced by a variational autoencoder, the generative adversarial network can generate more realistic data.
Thanks to the insights from Larsen et al. (2016); Eraslan et al. (2019), and Shete et al. (2020).
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further breeding based on the predictions. (6) Iterative improvement:

Repeat the training, evaluation, and selection steps, iteratively

improving the deep learning model and breeding process (Ni et al.,

2019). This establishes an effective breeding plan, enabling the offspring

of parental generations to approach the desired phenotypes.

Deep learning-empowered breeding is built upon important

identified genes, integrating multiomics, next-generation

biotechnologies, and novel information technologies such as

artificial intelligence and big data. The identification of important

genes using genetics and transgenic methods forms the foundation

of deep learning-based breeding. New technologies, including

multiomics, artificial intelligence, and big data, expedite the

breeding process through plant phenotypic analysis and high-

throughput phenotyping platforms, facilitate the evaluation of

plant materials, discovery of specific genes, and accelerated

breeding (Pan, 2015; Banerjee et al., 2020). Integration of

multiomics data, encompassing genomics, metabolomics,

phenomics, proteomics, and transcriptomics, aids in analyzing

biological changes and regulatory processes, identifying key genes
Frontiers in Plant Science 04
and regulatory elements, and driving plant breeding (Yang et al.,

2021). What’s even more exciting is that Telomere-to-Telomere

(T2T) complete genome and T2T whole-genome analysis serve as

representative markers for accurately identifying genetic diversity

and enhancing functional genomics and genetic improvement

(Deng et al., 2022). Additionally, gene editing techniques have

also contributed to breeding advancements (Li et al., 2018).

Intelligent breeding strategies driven by big data and artificial

intelligence, enable targeted breeding, such as through

comprehensive genomic and environmental prediction (iGEP)

based on genomics and population-environment interactions (Yin

et al., 2008). Deep learning frameworks support automatic

differentiation, enabling efficient implementation of these scores

with just a few lines of code. They will assist in handling extensive

multidimensional big data of genotype-phenotype-environment,

facilitating efficient selection and cultivation of high-quality,

disease-resistant new varieties (see Table 1). It should be pointed

out that extensive genetic experiments with correlated phenotypic

and environmental data are necessary (Parmley et al., 2019; Xu
TABLE 1 Deep learning algorithms and models used in intelligent breeding.

Categories (model) Data Application

CNN (DeepBind) DNA sequences DNA and Gene Characteristics (Alipanahi et al., 2015)

CNN (DeepSEA) DNA sequences DNA and Gene Characteristics (Zhou and Troyanskaya, 2015)

Bi-GRU and LSTM (DeepCpG) DNA sequences DNA and Gene Characteristics (Angermueller et al., 2017)

CNN and RNN (BiRen) DNA sequences DNA and Gene Characteristics (Yang et al., 2017)

CNN (Basset) DNA sequences DNA and Gene Characteristics (Kelley et al., 2018)

RNN DNA sequences, DNA probes DNA and Gene Characteristics (Zhang et al., 2021a)

ResNet and LSTM (DeepcycP) DNA sequences DNA and Gene Characteristics (Li et al., 2022a)

DBN Gene sequences DNA and Gene Characteristics (Rachmatia et al., 2017)

GCN Genetic diagram interaction DNA and Gene Characteristics (Dutil et al., 2018)

CNN and LSTM (DeepNovo) Peptide spectrum sequences, Protein Characteristics (Tran et al., 2017)

BiLSTM and SVM-rank (pNovo3) Peptide spectrum sequences, Protein Characteristics (Yang et al., 2019)

GRU spectrum Protein Characteristics (Gessulat et al., 2019)

Stacked AutoEncoder and DNN protein sequences Protein Characteristics (Zhang and Kabuka, 2019)

RCNN protein sequences Protein Characteristics (Xu et al., 2021)

Evoformer and transformer
(AlphaFold)

protein sequences Protein Characteristics (Jumper et al., 2021)

GCN (Decagon) protein-protein interaction network Protein Characteristics (Zitnik et al., 2018)

GAN DNA sequences Protein Characteristics (Gupta and Zou, 2018)

Multilayer Perceptron and
autoencoder

SNP Genomics Variations (Xie et al., 2017)

GAN RNA sequences Genomics Variations
(Ghahramani et al., 2018)

DCNN DNA sequences Genomics Variations (Kelley, 2020)

CNN (AMBER) gene sequences Genomics Variations (Zhang et al., 2021a)

RCNN RGB image Genomics Variations (Li et al., 2022b)

Multilayer Perceptron Classifier DNA sequences Genomics Variations (Chen et al., 2023)
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et al., 2021). It is also important, especially in complex models, to

indirectly examine parameters by inspecting the input-output

relationships for each predicted example. Feature importance

scores highlight the most influential parts of a given input for

model predictions, helping to explain why such predictions are

made. In DNA sequence-based models, feature importance scores

highlight sequence motifs and are widely used in genomics

(Alipanahi et al., 2015; Kelley et al., 2016; Kelley et al., 2018).

They can also be used to explore more complex epistatic

interactions (Greenside et al., 2018). Feature importance scores

can be divided into two categories: perturbation-based and

backpropagation-based (Figure 2). The former perturbs input

features and observe changes in the output, but it is

computationally expensive. On the other hand, the latter

calculates the importance scores for all input features using a

single backpropagation pass, making them computationally

efficient. The simplest backpropagation-based importance scores

are saliency maps (Simonyan et al., 2013) and input-masked

gradients (Shrikumar et al., 2017).
Applications of deep learning in
crop breeding

DNA and gene characteristics

The shape of DNA plays an important role in the specificity of

transcription factor (TF)-DNA binding (Lai et al., 2019), and deep

learning models can utilize various types of data for analysis
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(Zampieri et al., 2019). Understanding the sequence specificity of

DNA and RNA binding proteins is crucial for biological system

regulation models and pathogenic variant identification (Wang

et al., 2020). There are currently several deep learning-based

methods for predicting TF binding properties. DeepBind

(Alipanahi et al., 2015), Basset (Kelley et al., 2018), and DeepSEA

(Zhou and Troyanskaya, 2015) were among the earliest

convolutional neural networks (CNNs) applied to genomic data

analysis. DeepBind trained multiple single-task models to predict

the binding affinities of transcription factors, while DeepSEA

compiled a large set of chromatin maps for non-coding variants

to study chromatin features, and Basset predicted DNA accessibility

features. The impact of functional non-coding variants was

evaluated in DeepSEA, DFIM (Greenside et al., 2018), and

DeFine (Wang et al., 2018). This has always been considered a

challenge to identify critical genomic regulatory regions in species

with abundant repetitive elements and broad intergenic regions. To

address this challenge, efficient and accurate annotation of

regulatory regions in maize was achieved using methods based on

natural language processing, such as k-mer grammar (Qin and

Feng, 2017). These methods have played an important role in the

prediction of functional non-coding variants, regulatory region

annotation, and transcription factor binding site (TFBS)

prediction. Machine learning models have proven to be efficient

in plant biology, capable of being trained on various types of

sequencing data while incorporating additional information, such

as DNase I hypersensitivity data, to improve the prediction of in

vivo transcription factor binding sites (Qin and Feng, 2017). In

summary, CNNs have been widely applied in predicting molecular
FIGURE 2

Model interpretation via feature importance scores. It highlights predictive parts of the input. For DNA sequence models, they can be visualized as a
sequence logo with letter heights proportional to the scores. Negative scores are shown with upside-down letters. There are two types of
importance scores: perturbation-based and backpropagation-based. The methods calculating perturbation-based scores can modify input features,
record prediction changes, and create an importance matrix. For DNA sequences, perturbations involve single base substitutions. Therefore, the
perturbation matrix can also be visualized as a sequence logo showing average per-base impact. On the other hand, the methods computing
backpropagation-based scores normally use gradients or augmented gradients like DeepLIFT (Shrikumar et al., 2017) for input features and model
prediction. Thanks to the insights from Simonyan et al. (2013); Shrikumar et al. (2017), and Eraslan et al. (2019).
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phenotypes from DNA sequences and have become advanced

models. They have been used for classifying transcription factor

binding sites (Wang et al., 2018), chromatin function (Kelley et al.,

2018), DNA contact mapping (Schreiber et al., 2017), DNA

methylation (Angermueller et al., 2017; Zeng and Gifford, 2017),

gene expression (Zhou et al., 2018), and RNA binding protein (Pan

and Shen, 2017). Additionally, CNNs have been successfully applied

to tasks such as RNA specificity prediction (Kim et al., 2018) and

enhancing Hi-C data resolution (Zhang et al., 2018). Not

surprisingly, CNNs can model long-range dependencies in the

genome and improve the accuracy of predicting molecular

phenotypes from linear DNA sequences through dilated

convolutions (Zeng and Gifford, 2017). Interestingly, in addition

to the CNNmodel, several other deep learning models are also used

to analyze genetic characteristics. For instance, Angermueller et al.

(2017) designed the DeepCpG model based on RNN, which can

predict single-cell methylation states from local DNA sequences

and observed neighboring methylation states. Zhang et al. (2021a)

constructed a deep learning model to predict the depth of next

generation sequencing according to the DNA probe sequences.

Enhancer elements are non coding fragments of DNA that play a

crucial role in controlling gene expression programs. Yang et al.

(2017) proposed a hybrid BiRen architecture based deep learning,

which only used DNA sequences to predict enhancers. Li et al.

(2022b) constructed a deep model called DeepcycP that combines

the Inception ResNet structure and LSTM layer, which can predict

intrinsic DNA cyclization with high fidelity. Rachmatia et al. (2017)

designed a deep learning algorithm DBN, which used whole-

genome single-nucleotide polymorphism (SNP) as training and

testing data to construct a genome prediction model. The results

showed that the DBN algorithm had a correlation of 0.579 within

the range of [−1,1] with non additive features. Dutil et al. (2018)

studied gene expression by deep learning and applied bias to the

model using gene interaction maps, which has advantages in

specific tasks within a low data range.
Protein characteristics

There is a close relationship between the function and structure

of proteins. The function of a protein is determined by its tertiary

structure, which can be revealed through comprehensive analysis of

various protein characteristics. To extract important amino acid

features from primary peptide sequences, DeepNovo (Tran et al.,

2017) was developed using the CNN method. pNovo3 (Yang et al.,

2019) utilizes a learning-to-rank framework to differentiate similar

peptide candidates for each spectrum. It employs three metrics to

measure the similarity between experimental and theoretical

spectra, with the theoretical spectra precisely predicted through

deep learning using the pDeep algorithm. In mass spectrometry-

based proteomics, identification and quantification of peptides and

proteins heavily rely on database searching and spectrum matching.

The lack of accurate models for predicting fragment ion intensities

limits the practicality of these methods. By expanding the

ProteomeTools synthetic peptide library and training the deep

neura l ne twork Pros i t , the pred i c t i on accuracy o f
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chromatographic retention time and fragment ion intensities has

been significantly improved (Gessulat et al., 2019). Gupta and Zou

(2018) used GAN to generate DNA sequences for proteins with

variable coding lengths, which have ideal biophysical properties.

Protein-protein interactions are crucial for understanding biological

processes and disease mechanisms. Researchers have explored

various methods to predict protein-protein interactions, including

sequence-based prediction techniques (Hashemifar et al., 2018) and

deep learning models (Mirabello andWallner, 2018). One approach

involves unsupervised derivation of novel protein features from the

“proteinprotein” interaction network, followed by using these

features to predict protein functions in different tissues (Zitnik

and Leskovec, 2017). Zitnik et al. (2018) proposed the graph

convolutional neural network model Decagon, and used this

model to construct multimodal graphs of protein protein

interactions, drug protein target interactions, and multi drug side

effects.Some of these methods also incorporate physicochemical

features of proteins and topological features of protein-protein

interaction (PPI) networks to enhance predictive performance

through multimodal supervised deep representation learning

(Zhang and Kabuka, 2019). A novel residue representation

method called Res2vec has been designed to represent protein

sequences, combining effective feature embedding and powerful

deep learning techniques, providing a universal computational

pipeline for inferring “protein-protein” interactions (Longwell and

Shimko, 2022). The confidence score of a protein sequence pair can

be regarded as a measure of PPI. Therefore, a deep learning

framework (Xu et al., 2021), namely the ordinal regression and

recursive convolutional neural network approach, has been

introduced to predict PPI from the perspective of confidence.

Analysis of co-variation in homologous sequences aids in

predicting protein structures. AlphaFold is an algorithm that

predicts protein structures using deep learning methods, training

neural networks to predict distances between residues and generate

protein structures (Jumper et al., 2021). AlphaFold2 is an improved

version of AlphaFold, greatly enhancing the accuracy of protein

structure prediction by introducing new neural network

architectures and training procedures (Tunyasuvunakool

et al., 2021).
Genomics variations

Despite the presence of numerous genetic variations in natural

populations, it is possible to train deep learning models on a small

subset of these variations to predict the effects across the entire

spectrum of mutations (Killamsetty et al., 2021). For instance,

models trained on certain genes can be used to predict the

outcomes of other genes. These models encompass various types

of mutations, including common alleles as well as rare and low-

frequency variants, regardless of their impact on gene function. Xie

et al. (2017) constructed a deep automatic encoder model to

evaluate the impact of genetic variation on gene expression

changes. Li et al. (2022b) developed an image-based wheat spike

counter using the Faster R-CNN algorithm, revealing significant

differences between genotypes. ExPecto is a deep learning
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framework that accurately predicts the transcriptional effects of

mutations in DNA sequences, including rare or unobserved

mutations (Zhou et al., 2018). This framework enables initial

predictions for exploring the evolutionary constraints on gene

expression and the effects of mutational diseases. Furthermore,

models trained in one species can be directly applied to closely

related species (Kelley, 2020), due to the conservation of molecular

processes in closely related species. Chen et al. (2023) proposed an

unsupervised clustering method and developed a deep learning

model accordingly to predict gene mutations. Ghahramani et al.

(2018) used GAN to simulate gene expression and predict

perturbations in single cells, thereby identifying biological state

determining genes and ultimately inferring gene regulatory

relationships. A biologically-informed automated modeling

framework, known as AMBER (Zhang et al., 2021b), has been

proposed. It is a fully automated framework that efficiently designs

and applies CNNs to genomic sequences. AMBER utilizes state-of-

the-art neural architecture search to design optimal models for

specified biological questions. Applying AMBER to modeling tasks

of genomic regulatory features has demonstrated significantly more

accurate predictions compared to non-neural architecture search

baseline models, matching or even surpassing expert-designed

models. In summary, deep learning models have the potential to

greatly advance our understanding of genomic variations in relation

to the ultimate phenotypes.
The impact on crop quality and yield
of deep learning-empowered
crop breeding

Climate change is seriously hindering the development of

agricultural productivity globally, with significant impacts on crop

yield and quality (Praveen and Sharma, 2019). Analyzing and

identifying crop images using deep learning models can aid in

rapidly identifying superior plants with target traits, thereby

accelerating the process of crop breeding and selecting high-

yielding, disease-resistant, and other desirable varieties. Deep

learning models can also recognize crop performance under

adverse environmental conditions such as drought and salinity

stress, helping to cultivate more resilient crop varieties (Sun et al.,

2019). Specifically, the identification and classification algorithm for

corn leaf blight achieved high accuracy using the CNN algorithm,

which is of significant importance for rapid detection of crop

diseases and improving crop yields (Abdullahi et al., 2017). The

solutions for crop disease identification and diagnosis were

provided using different deep learning methods (Ferentinos,

2018). In terms of abiotic stress, the extraction of time-series

chlorophyll fluorescence features using the SAE neural network

algorithm provided an effective means for identifying chlorophyll

fluorescence fingerprints in Arabidopsis thaliana, offering new

insights for improving crop drought resistance (Sun et al., 2019).

By using a large number of soybean leaf images for deep learning

classification, the identification and classification of soybean

symptoms under non-biological stress was achieved, enabling
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rapid detection of non-biological stress in soybeans (Ghosal et al.,

2018). The good correlation between the classification of corn freeze

damage based on spectral features of multiple genotypes and the

discrimination results based on chemical values was demonstrated

using a CNN model (Yang et al., 2019). Employing various deep

learning methods for diagnosing pumpkin leaf diseases helps

farmers detect crop damage early (Nirmala and Gomathy, 2019).

Using an integrated classifier based on a deep convolutional neural

network for identifying citrus pests has effectively enhanced the

quality and yield of citrus fruits (Khanramaki et al., 2021).

Developing a model to estimate the number of leaves and plant

age for watermelon plants, and classifying them under normal and

low-temperature stress, facilitates growth monitoring and improves

water and sugar content in watermelons (Nabwire et al., 2022).

Training deep learning models to classify coffee leaf images and

determine if they are infected with leaf rust disease can aid in early

detection of diseases and enables timely measures to protect coffee

crop yields and quality (Shao et al., 2022). Furthermore, deep

learning can analyze the correlation between phenotypic genomic,

facilitating precise selection and optimization of genomic

combinations as well as gene editing techniques to improve crop

yields and quality. For instance, deep learning-based genomic

selection models (GS) have shown outstanding performance in

predicting wheat terminal quality traits, advancing the deployment

of superior genotypes into broader grain yield trials (Sandhu et al.,

2021). Therefore, deep learning can analyze massive amounts of

data, build intelligent breeding decisions, and rapidly create

superior inbred lines, effectively shortening breeding cycles,

improving breeding efficiency, reducing costs, and enhancing crop

yields and quality.
Challenges and prospects

In the past 20 years, machine learning has achieved significant

success in the field of agriculture. In recent years, deep learning, as a

branch of machine learning, has represented the most advanced

technology in smart agriculture (Kamilaris and Prenafeta-Boldú,

2018). As an integral part of agriculture, deep learning has been

widely applied to various plant phenomics, such as image

classification (Ramcharan et al., 2017), object detection (Ghosal

et al., 2019), and semantic segmentation (Aich and Stavness, 2017).

Consequently, it has tremendous potential in predicting plant

growth, estimating yield, detecting maturity, and perceiving

biotic/abiotic stresses. However, deep learning algorithms require

a large amount of labeled data (Cordts et al., 2016), and data

acquisition comes at a high cost, especially when identifying

numerous categories (Tong et al., 2022) or subtle differences

between categories (Taghavi Namin et al., 2018). Furthermore,

collecting phenotype data faces additional obstacles of severe

occlusion and various lighting conditions (Scharr et al., 2016),

which increase the time required for obtaining the necessary

annotations. Genotypic, phenotypic, and environmental big data

form the core of intelligent breeding design (Talbot et al., 2017).

Nevertheless, there is a significant shortage of accumulated

phenotype data, and the problems with traditional manual
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detection are increasingly prominent, necessitating a balanced

consideration of accuracy, throughput, and cost (Liu and Wang,

2021). It is anticipated that breakthroughs and innovations in next-

generation sensors and robotics will serve as underlying driving

technologies to accelerate the acquisition of crop phenotype big data

(Sony et al., 2019). By utilizing bio-sensors and agricultural robots,

continuous detection of multiple traits is achieved, leading to

improved detection accuracy, but the development of sensors and

robots also faces certain challenges. Firstly, the working

mechanisms and conditions may vary significantly. Even within

the same species and variety, robot components may require

adjustments or replacements (De Preter et al., 2018), reducing the

universality of robots. Most studies only report simulations,

experiments, preliminary results, and specifications related to

hardware/software design. In contrast, only a few studies discuss

commercial solutions (Bagagiolo et al., 2022). Additionally, the

efficiency of the sensors and robots used is not high. If local labor is

inexpensive, there is an unacceptable risk associated with using

sensors and robots. Currently, a better solution may be to enable

collaboration between workers and robots (Bragança et al., 2019).

The availability of massive big data enables informed decision-

making, however the adaptability of deep learning models across

different crops and environmental conditions may be limited (Khaki

and Wang, 2019). Due to the differences in crop genetics and

environmental factors, model transfer from one crop to another

may require additional adjustments and optimization (Ghazi et al.,

2017). This poses challenges for the application of deep learning in

intelligent analysis and interpretation. Big data includes plant

phenotypes, genetic genotypes, environmental parameters, diseases,

pest conditions, and more. What’s frustrating is that, the acquisition

and processing of plant data lag behind research needs, limiting the

development of intelligent breeding and functional plant genomics.

Furthermore, they are not organically integrated, which hinders

informed decision-making. In the future, researchers should

collectively strive to establish a large-scale database, and

interdisciplinary collaboration and data sharing can unlock greater

potential for deep learning in breeding applications, benefiting more

people from big data (Kim, 2019). In addition, transfer learning (Pan

and Yang, 2009) and few-shot learning (Snell et al., 2017) will be

effective approaches to alleviate the deep learning models’

dependency on massive datasets. Transfer learning aims to transfer

knowledge accumulated from a source task with ample labeled data to

a new or similar target task, particularly when training data is limited.

Notably, when the source and target domains exhibit strong

similarity, transfer learning can provide a more economical and

expedited solution to address the constraints of scarce training data

(Sun et al., 2018). Themost distinct characteristic of few-shot learning

is its capacity for “learning to learn”, achieved by emulating human-

level concept learning, meaning that acquiring new concepts requires

only a small number of labeled examples (Chen et al., 2019).

Approaches like data augmentation (Shorten and Khoshgoftaar,

2019), image segmentation (Minaee et al., 2021), and attention

mechanisms (Niu et al., 2021) can be used to solve the problem of

severe occlusion in collected phenotype data, and improve the

performance of deep learning models when facing such problems.
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Deep reinforcement learning is the process of making intelligent

decisions through reinforcement learning on the basis of deep

learning (Shaikh et al., 2022). By using deep reinforcement learning

to plan the robot’s path and make decisions on its actions during its

journey, the robot can efficiently assist farmers in crop data collection,

crop picking, transportation, watering, and fertilization operations.

No doubt, addressing key issues related to accurate collection,

intelligent analysis of crop deep phenotype, and intelligent

decision-making for precision agriculture on this basis will be of

significant importance to the research of intelligent breeding.
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