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The novel nematicide chiricanine
A suppresses Bursaphelenchus
xylophilus pathogenicity in Pinus
massoniana by inhibiting
Aspergillus and its secondary
metabolite, sterigmatocystin
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Introduction: Pine wilt disease (PWD) is responsible for extensive economic and

ecological damage to Pinus spp. forests and plantations worldwide. PWD is

caused by the pine wood nematode (PWN, Bursaphelenchus xylophilus) and

transmitted into pine trees by a vector insect, the Japanese pine sawyer (JPS,

Monochamus alternatus). Host infection by PWNwill attract JPS to spawn, which

leads to the co-existence of PWN and JPS within the host tree, an essential

precondition for PWD outbreaks. Through the action of their metabolites,

microbes can manipulate the co-existence of PWN and JPS, but our

understanding on how key microorganisms engage in this process remains

limited, which severely hinders the exploration and utilization of promising

microbial resources in the prevention and control of PWD.

Methods: In this study we investigated how the PWN-associated fungus

Aspergillus promotes the co-existence of PWN and JPS in the host trees

(Pinus massoniana) via its secondary metabolite, sterigmatocystin (ST), by

taking a multi-omics approach (phenomics, transcriptomics, microbiome,

and metabolomics).

Results: We found that Aspergillus was able to promote PWN invasion and

pathogenicity by increasing ST biosynthesis in the host plant, mainly by

suppressing the accumulation of ROS (reactive oxygen species) in plant tissues

that could counter PWN. Further, ST accumulation triggered the biosynthesis of

VOC (volatile organic compounds) that attracts JPS and drives the coexistence of

PWN and JPS in the host plant, thereby encouraging the local transmission of PWD.

Meanwhile, we show that application of an Aspergillus inhibitor (chiricanine A
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treatment) results in the absence of Aspergillus and decreases the in vivo ST amount,

thereby sharply restricting the PWN development in host. This further proved that

Aspergillus is vital and sufficient for promoting PWD transmission.

Discussion: Altogether, these results document, for the first time, how the function

of Aspergillus and its metabolite ST is involved in the entire PWD transmission

chain, in addition to providing a novel and long-term effective nematicide for

better PWD control in the field.
KEYWORDS

aspergillus, host performance, Monochamus alternatus, nematicide, pine wilt disease,
pinewood nematode (Bursaphelenchus xylophilus), sterigmatocystin
1 Introduction

Pine wilt disease (PWD) has brought great economic and

ecological damage to Pinus spp. forests and plantations worldwide

(Zhao et al., 2014). PWD is caused by the pine wood nematode

(PWN) Bursaphelenchus xylophilus, which itself is transmitted by

vector insects, namely the Japanese pine sawyer (JPS)Monochamus

alternatus (Hu et al., 2013; Hirata et al., 2017; Carnegie et al., 2018;

Wu et al., 2021). Infection with PWN will turn the host into a lure

that attracts JPS to spawn, this leading to the PWN and JPS co-

existing within the host pine tree, an essential precondition for

PWD transmission (Li et al., 2022). In the last decade, tremendous

effort has been expended towards developing effective strategies to

impair the co-existence of PWN and JPS and thereby suppress the

transmission PWD and potential outbreaks in stand. Microbes have

proven substantial advantages for long-term pest control (Wang

et al., 2017; Ponpandian et al., 2019; Cai et al., 2022; Pires et al.,

2022; Tian et al., 2022); however, their efficacy is strongly affected by

local environments and a highly structured microbial community,

as well as microbe-specific biochemical metabolites. Accordingly,

the high-efficiency use of microbes varies with different conditions,

being context-dependent (Chaudhary et al., 2023; Poppeliers et al.,

2023). Thus, exploring the biochemical basis enabling microbes to

interfere with PWN and JPS co-existence is crucial for their use in

effective long-term control of PWD.

Microbes are associated with PWN and play a crucial role in its

invasion and pathogenicity (Zhao et al., 2014; Feng et al., 2022). The

biological function of these PWN-associated microbes (PAMs) has

been widely explored. Research has shown these PWN–PAM

interactions can be beneficial (a mutualistic relationship), harmful

(a parasitic/pathogenic relationship), or neutral (Zhao et al., 2014;

Proenca et al., 2017a; Proenca et al., 2017b; Feng et al., 2022). These

PAMs can also inactivate the PWN-induced resistance (mainly

through the accumulation of reactive oxygen species [ROS]) in host

pine trees, thus promoting the invasion and pathogenicity of PWN

through adjustments to the microbial community or its members’

metabolites, including pathogenic factors, exoenzymes, and toxic

secondary metabolites (Zhao et al., 2014; Li, 2018; Liu et al., 2019;

Xue et al., 2019; Zhang, 2021; Feng et al., 2022; Li et al., 2022). Yet,
02
because of the complex structure and function of microbial

communities, our understanding of the key microorganisms and

their functions that affect the invasion and pathogenicity of PWN is

still limited. This greatly restricts the exploration and utilization of

potent microbial resources in the prevention and control of PWD.

After infection by PWN, the biosynthesis of volatile organic

compounds (VOCs) is strongly augmented in host pine trees, which

lures JPS for feeding and spawning (Cheng et al., 2005). Several such

VOC have been identified that are clearly capable of attracting JPS,

including a-pinene, b-pinene, b-phellandrene, myrcene, and other

terpene and sterols; some of them were successfully used to bait and

trap JPS in the field (Teale et al., 2011). Previous studies have shown

that PAM and host plant-associated microbes are directly or

indirectly involved in the biosynthesis of the above VOCs via

exoenzymes or metabolites (Alicandri et al., 2020). Hence, this

hints that these PWN- and host-associated microbes might also

affect the host preference of JPS, but this prospect warrants

further exploration.

Based on above-mentioned lines of evidence, we hypothesized

that a microbe can manipulate the co-existence of PWN and JPS

through its metabolites, to influence PWD transmission. In our

previous studies(Cai et al., 2022), by using metagenomic

sequencing, we identified the key microorganism in host pine trees

to be Aspergillus, whose abundance and activity are highly enriched

during a PWN invasion and positively correlated with the amount

and pathogenicity of PWN. Further, from correlations withmetabolic

data, it is evident that the pivotal metabolite of Aspergillus species,

sterigmatocystin (ST), is highly induced by a PWN invasion, which

might be the biochemical basis enabling Aspergillus to facilitate PWN

invasion and pathogenicity. Given the above findings, the present

study employed phenotypic, genetic, metabolic, and microbiological

techniques to comprehensively clarify whether and how ST in the

host plant Pinus massoniana enhances PWN invasion and

pathogenicity; that is, by promoting host synthesis of VOC to

attract JPS adults and ultimately sustaining the coexistence of PWN

and JPS in their host, thus bolstering the transmission of PWD.

Meanwhile, we speculated and tested whether the application of

Aspergillus inhibitor (chiricanine A) could reduce the ST level in the

host, to thus suppress PWN invasion and pathogenicity (Cai et al.,
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2022). The successful implementation of this project convincingly

demonstrates the intrinsic biochemical mechanism of how key

microorganisms, such as Aspergillus spp., are able to promote the

transmission of PWD, which should encourage exploration of its

application prospects in field settings.
2 Materials and methods

2.1 Plants and growth conditions

For the laboratory experiments, 2-year-old seedlings of P.

massoniana were harvested from a nursery garden in a Shaxian

Guanzhuang state-owned forest farm in Sanming, Fujian, China

(26.5603°N, 117.7455°E). They were placed in growth chambers

(light: dark = 16 h: 8 h, 70% humidity, 28°C in light and 24°C in

dark) for 2 months before the experimental treatments began.

The field experiments were carried out in the same state-owned

farm. This study area consisted of a 76-ha, 16-year-old pure P.

massoniana plantation, where the annual average temperature and

precipitation is 19.9°C and 1375.2 mm, respectively.
2.2 Inoculation of pine wood nematode

Adults of PWN were cultured as previously described (Cai et al.,

2022). 1 mL of a PWN inoculation solution (5000 individuals/mL)

was inoculated into P. massoniana seedlings as previously

described, with 15 replicates (individual plants) used in each

treatment. Double-distilled water served as the negative control.
2.3 Seedling injection with
sterigmatocystin, A. arachidicola, A.
sclerotioniger, and chiricanine A

Sterigmatocystin (cat no. 10048-13-2, Shanghai Yuanye Bio-

Technology Co., Ltd, Shanghai, China) was first dissolved in

methanol, to prepare a stock solution (1mg/mL), then diluted to

1/10, 1/100, and 1/1000 with methanol as the working solution.

These working solutions were separately injected into P.

massoniana seedlings (1 mL per individual), as previously

described (Xiang et al., 2015). There was n = 15 per treatment,

and a methanol solution served as the negative control.

Aspergillus arachidicola (CBS117610) and A. sclerotioniger

(CBS115572) were ordered from the Westerdijk Fungal

Biodiversity Institute (https://wi.knaw.nl/). Each was inoculated

separately into P. massoniana seedlings (1 mL per individual),

with n = 15 for each treatment and double-distilled water used as

the negative control.

Under laboratory conditions, 2-year-old P. massoniana seedling

were inoculated with PWN, then injected with a solution of 4 ppm

chiricanine A (cat no. B35217-5mg, Shanghai Yuanye Bio-

Technology Co., Ltd, Shanghai, China) and emamectin benzoate

(cat no. 155569-91-8, Merck, Shanghai, China). These solutions

were injected into P. massoniana seedlings (1 mL per individual) as
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previously described (Xiang et al., 2015); n = 10 for each treatment,

for which a 4 ppmmethanol solution served as the negative control.

Plant samples were harvested at 14 dpi, then stored at –80°C for

subsequent experiments. In the field testing chiricanine A and 2%

emamectin benzoate (EB) solution (PD20110688, Syngenta,

Shanghai, China) were used for the trunk injections. The

injection dose was based on the DBH of each tree (1 mL/cm).

High-pressure trunk drilling and injection equipment (cat no.

ZYJ15B, Greenman, Beijing, China) was used to apply the

injections, by following a standard protocol (dose injected into

stem at 1 m above the ground at a 45° angle).
2.4 Quantification of ROS accumulation in
the host plant P. massoniana

The ST-infected and negative control P. massoniana seedling

samples in the laboratory experiments were harvested at 14 dpi.

Their collected pine needles were immediately placed in liquid

nitrogen and stored in a –80°C refrigerator. Then the amounts of

ROS (cat no. ROS-1-Y, Comin Biology, Suzhou, China) and H2O2

(cat no. G0112W, Gris Biology, Suzhou, China) in these samples

were measured by following the standard protocols of the above two

kits. To ascertain differences among the means of the treatment

groups, a one-way analysis of variance (ANOVA) along with

Tukey’s test was employed.
2.5 Quantification of the relative PWN level

The amount of PWN in live plants was quantified by RT-qPCR

(real-time quantitative polymerase chain reaction). Whole 2-year-old

seedlings in the laboratory were used for the PWN quantification.

The total genomic DNA of each plant sample was extracted using the

MoBio PowerSoil DNA isolation kit (cat no.12855-50, MoBio, USA),

according to the manufacturer’s protocol. The quantity and quality of

DNA were measured on a NanoDrop 2000 photometer (Thermo

Fisher Scientific, USA), with DNA integrity determined by 1%

agarose gel electrophoresis. The extracted DNA was then stored at

–80°C until further use. Quantitative PCR were conducted using

PWN-specific primers and a host-specific primer (one transcript

from P. massoniana as the internal control) (Table S32), by using the

Hieff™ qPCR SYBR Green Master Mix (Low Rox Plus, cat no.

11202ES08, Yeasen, Shanghai, China) on a QuantStudio 6 Flex PCR

(ABI). The qPCR signals were normalized to those of the reference

gene PST in pine trees, by applying the 2-DDCT method (Fang et al.,

2023). Biological triplicates with technical triplicates were used. One-

way analysis of variance (ANOVA; Tukey’s test) was performed to

determine the differences among groups.
2.6 Quantification of plant defense genes
and aflR of Aspergillus spp.

Total RNAs were isolated from P. massoniana seedlings at 14

dpi by using the Trizol reagent (cat no. 15596026, Invitrogen, CA,
frontiersin.org
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USA). Each sample of total RNA (1 mg) was reverse transcribed by

the PrimeScript™ RT reagent Kit with gDNA Eraser (cat no.

RR047A, Takara, Japan). The resistance genes examined were the

same as those investigated in our previous study (Cai et al., 2022).

The aflR gene was extracted and searched by BLAST in the

available genomes of the Aspergillus series at Genome/NCBI

(https://www.ncbi.nlm.nih.gov/genome). The sequences extracted

from these genomes were aligned and consensus sequence used to

design the primers onl ine in Primer3 Plus (https : / /

www.primer3plus.com). All the gene-specific primers used in this

assay are listed in Table S32. RT-qPCR was carried out to quantify

the gene expression level (as described in section 2.5). One-way

analysis of variance (ANOVA; Tukey’s test) was implemented to

determine the differences among the means of treatment groups.
2.7 Metabolome sequencing and analysis in
the host plant P. massoniana

Sample preparation went as described in section 2.3, with three

technical replications used. The metabolites were then extracted

from each sample by following a previously described protocol (De

Vos et al., 2007). The Ultra High Performance Liquid

Chromatography (UHPLC) separation was carried out using an A

Dionex Ultimate 3000 RS UHPLC (Thermo Fisher Scientific,

Waltham, MA, USA) equipped with an ACQUITY UPLC HSS T3

column (1.8 mm, 2.1×100 mm, 186009468, Waters, Milford, USA)

by the Oebiotech Company (Shanghai, China). Set to a flow rate of

0.35 mL/min, the mobile phases were 0.1% formic acid in water (A)

(A117-50, Thermo Fisher Scientific, Waltham, MA, USA) and 0.1%

formic acid in acetonitrile (B) (A998-4, Thermo Fisher Scientific,

Waltham, MA, USA). The column temperature was set to 45°C,

while the auto-sampler temperature was set to 4°C, and the

injection volume was 5 mL (Chen et al., 2007; Theodoridis et al.,

2008). Ensuing data were trimmed from different samples to

distinguish the insect-induced metabolites. Next, commercial

databases, including the Kyoto Encyclopedia of Genes and

Genomes (KEGG; http://www.kegg.jp) and MetaboAnalyst

(h t tp s : / /www.kegg . j p / ) wer e u t i l i z ed to s ea r ch for

‘metabolitepathways’ (https://www.genome.jp/kegg/pathway.html).
2.8 Metagenome sequencing and analysis

For the microbiota within host pine tree, whole seedlings of P.

massoniana (n = 5, containing PWN) after 14 dpi under the ST

treatments were crushed in liquid nitrogen for their respective total

DNA extraction, followed by metagenomic sequencing and

analysis, as previously described (Bolger et al., 2014; Cai et al.,

2022). Total genomic DNA was extracted from each sample by

using the MoBio PowerSoil DNA Isolation Kit (12855-50, MoBio,

United States) as per the manufacturer’s protocol. The DNA

quantity and quality were measured on a NanoDrop 2000

spectrophotometer (Thermo Fisher Scientific, United States). This

DNA was then sheared to 300-bp fragments by a Covaris ultrasonic

crusher. To prepare each sequencing library, those fragments were
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adapters. Next all DNA sequencing libraries were deep-sequenced

on an Illumina HiSeq platform at the Allwegene Company (Beijing,

China). After every run, the image analysis, base calling, and error

estimation were carried out using Illumina Analysis Pipeline v2.6.

Quality control of the raw data, including the removal of adapter

sequence and low-quality reads, was performed using

Trimmomatic. High-quality sequences were compared with NR

database and classified into different taxonomic groups, using the

DIAMOND tool (Buchfink et al., 2015). Then MEGAHIT (Li et al.,

2015) was used to assemble the sequencing data, and the contigs

were annotated with Prodigal software (Hyatt et al., 2012) to predict

the open reading frames (ORFs). After that, CD-HIT software (Li

et al., 2001) constructed the non-redundant gene set. To compare

the sequencing data with the non-redundant gene set, Bowtie

(Langmead et al., 2009) was used, after which the abundance

information of genes in the different samples was counted.
2.9 Volatile organic compound sequencing
and analysis

For the VOC within the host pine tree, whole seedlings of P.

massoniana (n = 5, with PWN) at 14 dpi under the ST treatments

were examined, as previously described (Fang et al., 2023). First, 500

mg (1 mL) of sample powder was transferred immediately into a 20-

mL headspace vial (Agilent, Palo Alto, CA, USA) that contained an

NaCl-saturated solution, to inhibit any enzyme reactions. These

vials were sealed using crimp-top caps with TFE-silicone headspace

septa (Agilent). During the Solid Phase Microextraction (SPME)

analysis, each vial was placed accordingly at 60°C for 5 min, then a

120 µm DVB/CWR/PDMS fibre (Agilent) was exposed to the

headspace of a given sample for 15 min (also at 60°C).

After completing that sampling procedure, desorption of VOCs

from the fiber coating was performed in the injection port of the GC

apparatus (Model 8890; Agilent), at 250°C for 5 min, in the splitless

mode. The identification and quantification of VOCs was carried

out using an Agilent Model 8890 GC and a 7000D mass

spectrometer (Agilent). The selected ion monitoring (SIM) mode

was used for the identification and quantification of analytes by MS.

The ensuing identified metabolites were annotated using KEGG

Compound database (http://www.kegg.jp/kegg/compound/);

annotated metabolites were then mapped to the KEGG Pathway

database (http://www.kegg.jp/kegg/pathway.html). Pathways with

significantly regulated metabolites mapped to them were then fed

into MSEA (metabolite sets enrichment analysis), whose

significance was determined by hypergeometric test’s P-values.
2.10 Insect host preference and diet
quantification assay

Adults of JPS were collected from an experimental population

reared at the Fujian Agriculture and Forestry University, Fuzhou,

China. All experiments using them, as described below, were
frontiersin.org
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conducted in a growth chamber (light: dark = 12 h: 12 h, 70%

humidity, 25°C).

The host performance assay was done as described in a previous

study(Geneau et al., 2013), albeit with some minor changes. Healthy

and vigorous JPS were collected and starved for 24 h before starting the

treatments, using a total 18 JPS adults per treatment (9 males, 9

females). Entire P. massoniana seedlings that had been inoculated with

ST or 4 ppm methanol solution were the experimental odor source or

negative control, respectively. Biological triplicates with technical

triplicates were used. The performance of JPS on the host pine plants

was expressed as an attraction ratio: [no. of choices by JPS/total no. Of

JPS adults] * 100%. To determine statistical differences between

treatment groups, first a Kruskal–Wallis test was applied, and then

pairwise comparisons were made using multiple Mann-Whitney tests.

The diet of JPS adults was quantified as the consumed area of P.

massoniana bark by these insects. Healthy and vigorous JPS

individuals were collected and starved for 24 h before starting the

treatments. A total of 12 JPS adults (6 males, 6 females) were used

per treatment. Fresh 2-year-old P. massoniana seedlings from the

various treatments were fed to the JPS for 3 days; then, the feeding

area of the JPS was rubbed with transparent sulfuric acid paper, and

this measured on grid coordinate paper. One-way analysis of

variance (ANOVA; followed by Tukey’s test) was performed to

determine the differences among the means of treatment groups.

All the JPS adults from the same treatment of each diet

quantification assay were pooled into a single sample, crushed in

liquid nitrogen, and divided into three equal aliquots for further

analysis. The activities of exo-b-1,4-glucanase/cellobiose hydrolase
(cat no. G0533W, Gris Biology, Suzhou, China), endo-b-1,4-
glucanase (cat no. G0534W, Gris Biology, Suzhou, China), and b-
glucosidase (cat no. G0535W, Gris Biology, Suzhou, China) in each

sample were measured by following the standard protocols of

corresponding kits. One-way analysis of variance (ANOVA;

Tukey’s test) was implemented to determine the differences

among the means of treatment groups.
3 Results

3.1 Sterigmatocystin increases PWN
pathogenicity by suppressing ROS
accumulation in P. massoniana

Previous results shown that sterigmatocystin (ST) is highly

positively associated with the pathogenicity of PWN. Here, we

speculated that ST functions during the PWN invasion and

pathogenic process (Figure 1A). First, after PWN invasion, the ST

level was highly induced (5.2 times, P < 0.01). Different concentrations

(0.1 mg/mL, 0.01 mg/mL, 0.001 mg/mL) of the exogenous ST treatment

applied to PWN-carrying P. massoniana (PCP) could significantly (P <

0.05) increase the PWN amount in the host, by 9.6, 6.6, and 4.6 times,

respectively (Figure 1B). Further, the death rate of host plants was

measured at 2 months post-treatment with respect to different

concentrations of ST (Figure 1C). Evidently, the death ratio was
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positively correlated with the exogenous ST amounts; hence, ST could

enhance the pathogenicity of PWN.We also measured the ROS level in

PCP under the three ST treatments, finding that the rate of ROS

(Figure 1D) as well as H2O2 (Figure 1E) production in PCP was

significantly reduced by ST (P < 0.05) and negatively correlated (P <

0.01) with the exogenous ST concentration; this weakened resistance in

PCP, thus benefiting the PWN invasion and pathogenic process.

Further multi-omics (transcriptomics, microbiomes, and metabolic)

data revealed that ST was capable of suppressing ROS accumulation

through the regulation of a vast array of related genes (c60547.graph_c0,

c82953.graph_c0, c64867.graph_c0, c68789.graph_c0, c81022.graph_c0),

microbes (Cladophialophora, Penicillium, Trichoderma, Achromobacter,

Chitinophaga, and Flavobacterium), and metabolites (maltotriose, 1-

hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine

and myo-inositol) (Figure 1F). We also explored the ST-regulated

metabolites from metabolic data. They were mostly enriched in

arachidonic acid metabolism, flavonoid biosynthesis, phenylpropanoid

biosynthesis, nucleotide metabolism, and Cyprinus carpio (common

carp) pathways; this suggested secondary metabolites, ST inhibitors

(stilbenoid), and VOCs (phenylpropanoids) were highly negatively (P =

0.021, r = -0.979), positively (P = 0.006, r = 0.994), and positively (P =

0.012, r = 0.989) correlated with the ST concentration, respectively

(Figure 1G). Also, the richness of several genera of microbes

(Enterobacter, Klebsiella, Pelagivirga, Herbaspirilum, Staphylococcus,

Pseudovibrio , Rhizophagus , Cronobacter , Acinetobacter ,

Achromobacter) was correlated with the ST concentration, and most

of them were predicted to regulate the VOC and flavonoid biosynthesis

(Supplementary Figure S1).
3.2 Sterigmatocystin increases VOC
accumulation in P. massoniana to attract
Monochamus alternatus

VOCs have been proven to determine the host preference of JPS

(Yan et al., 2008; Wang et al., 2016). Accordingly, here we first

quantified the VOC amount of P. massoniana under each exogenous

ST treatment. The latter significantly increased the total VOC

amount within P. massoniana by 212, 182, and 105 times when

compared to the negative control, respectively (P < 0.001; Figure 2A).

Also, for 10 VOCs (trans-anethole; acetophenone, 4’-hydroxy-;

humulene; niacinamide; 4a(2H)-naphthalenol, octahydro-4,8a-

dimethyl-,(4.alpha.,4a.alpha.,8a.beta.)-; 6-octen-1-ol,3,7-dimethyl-,

(R)-; alpha-pinene; butanoic acid,3-hydroxy-3-methyl-; phenol;

beta-myrcene), their amounts were positively correlated with the

ST concentration, including three reported JPS-attracting VOCs

(acetophenone, alpha-pinene, beta-myrcene) (Li et al., 2015; Zhang,

2016) (Figure 2B). These results led us to speculate whether the

exogenous ST treatment can lure JPS adults. So we conducted an

olfactory experiment, which showed that exogenous ST treatment

can significantly (P < 0.05) promote the selective ratio of JPS adults to

the host pine tree, and that ratio increased with a higher ST

concentration (Figure 2C). Host performance of insects were based

on that this behavior is benefit to themselves (Li et al., 2007; Zhu et al.,
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2019; Togashi et al., 2022). Furthermore, we also observed whether

feeding on ST-treated P. massoniana could benefit the development

of JPS The consumption area of JPS larvae feeding upon ST-treated P.

massoniana increased significantly (P < 0.05) over time, and the body
Frontiers in Plant Science 06
weight of the 3rd instar along with the spawning ratio of JPS eggs were

both significantly increased by 1.67 and 4.7 times vis-à-vis the

negative control, respectively (Figures 2D–F). The EG (endo-1,4-b-
D-glucanase), CBH (exo-b-1,4-D-glucanase) and b-GC (b-
B C

D

E

F

G

A

FIGURE 1

Sterigmatocystin (ST) increases Pinewood nematode (PWN) pathogenicity by suppressing ROS accumulation in Pinus massoniana. (A) Relative ST
concentrations in the host plant P. massoniana quantified before (PWN(-)) and after (PWN(+)) invasion by PWN. The seedlings were inoculated with
an equal amount of PWN (5000 individuals), followed by 0.1 mg/mL (ST_H), 0.01 mg/mL (ST_M), 0.001 mg/mL (ST_L) or a 0 mg/mL (ST(-)) of ST as
the treatment, after which the (B) relative PWN amount, (C) death rate, (D) rate of ROS production, and (E) rate of H2O2 production were quantified
at 14 days post-infection. Data shown is the mean ± standard deviation (SD). (F) Correlations between ST and their correlated ROS, transcripts,
microbes, and metabolites. Metabolite pathways of P. massoniana as induced by ST with a highly correlated concentration. Different lowercase
letters above bar columns show significant differences between treatments at P < 0.05, based on a one-way ANOVA, with multiple comparisons
made using Tukey’s test. G1–G5 denote different transcripts (c60547.graph_c0, c82953.graph_c0, c64867.graph_c0, c68789.graph_c0,
c81022.graph_c0); Mb1–Mb6 correspond to different microbial genera (Cladophialophora, Penicillium, Trichoderma, Achromobacter, Chitinophaga,
and Flavobacterium); Mt1–Mt3 indicate different metabolites [maltotriose, 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-
phosphoethanolamine, and myo-inositol]. (G) KEGG enrichment map of metabolic pathways of metabolites found significantly related to ST. The
abscissa represents the impact of each pathway and the ordinate represents the pathways’ name. Impact is expressed as the ratio of the number of
differential metabolites to the number of metabolites annotated in a given pathway. The circle represents ST_H vs. ST(-), the square represents ST_M
vs. ST(-), and the triangle represents ST_L vs. ST(-), whose sizes indicate the number of differentially expressed metabolites contained in that
metabolic pathway. Coloring represents the P-values for the enrichment analysis.
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glucosidase) activity in the gut of the JPS adults that fed upon P.

massoniana treated with ST were quantified as well, these increasing

by 1.24, 1.21, and 1.54 times relative to the negative control,

respectively (Figures 2G–I). Altogether, these results suggested ST
Frontiers in Plant Science 07
is able to increase the VOC accumulation in P. massoniana, thus

attracting the JPS, whose feeding and development obviously

improves when eating ST-treated P. massoniana, which can

therefore manipulate the host preference of JPS.
B

C

D E F

G H I

A

FIGURE 2

Sterigmatocystin (ST) increases VOC accumulation in Pinus Massoniana to attract Monochamus alternatus (JPS). (A) VOC amounts in host plant P.
massoniana quantified 14 days after treatment with 0.1 mg/mL (ST_H), 0.01 mg/ml (ST_M), 0.001 mg/mL (ST_L), or 0 mg/mL (ST(-)) of ST. (B) VOC
compounds of P. massoniana induced by ST with a high concentration correlation. (C) Selective ratio of JPS to different plant samples were plotted,
with the P-value for the t test between samples treated with (ST (+)) and without ST(ST(-)) presented in white. The (D) consumption area and
(E) body weight of 3rd instar JPS larvae, and the (F) spawning rate, (G) EG (endo-1,4-b-D-glucanase) activity, (H) CBH (exo-b-1,4-D-glucanase)
activity, and (I) b-GC (b-glucosidase) activity in the gut of the JPS adults that fed upon plant samples treated with (ST (+)) and without ST(ST(-)); data
shown are the mean ± standard error (SE). The * and *** represents significant differences between treatments at P < 0.05 and P < 0.001,
respectively, based on a one-way ANOVA, with multiple comparisons made using Tukey’s test. VOC1–VOC10 indicate different volatile organic
compound (trans-anethole; acetophenone, 4’-hydroxy-; humulene; niacinamide; 4a(2H)-naphthalenol, octahydro-4,8a-dimethyl-,
(4.alpha.,4a.alpha.,8a.beta.)-; 6-octen-1-ol,3,7-dimethyl-, (R)-; alpha-pinene; butanoic acid, 3-hydroxy-3-methyl-; phenol; beta-myrcene). The **
represents significant differences between treatments at P < 0.01.
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3.3 An associated microbe A. arachidicola,
promotes PWN pathogenicity by increasing
the sterigmatocystin accumulation in
P. massoniana

Identify the vital effective microbe is crucial to achieving PWD

control in the field. As an important metabolite in Aspergillus, ST is

positively regulated by alfR. Although total species richness of

Aspergillus harbored by the host plant was negligible influenced

by PWN invasion and perhaps even slightly reduced (Figure 3A),

evidently the alfR expression level was significantly induced (14.06

times, P < 0.001) by PWN (Figure 3B). We also found that only a

few Aspergillus species (A. arachidicola, A. fischeri, A. taichungensis)

were strongly (P < 0.001) increased or decreased (A. sclerotioniger,

A. awamori, A. aculeatus) by PWN (Supplementary Figure S2). This

prompted us to compare the functional differences between PWN-

increased (A. sarachidicola) and -decreased (A. sclerotioniger)

species and their associated microbes (Figure 3C). After

introducing it into P. massoniana via PWN, it was found that A.

arachidicola significantly induced the accumulation of ST in the

host (2.61 times, P < 0.001) whereas A. sclerotioniger did not

(Figure 3D). Further, the amount of PWN was respectively

quantified in A. arachidicola- and A. sclerotioniger-infected PCP,

which demonstrated the former can increase the PWN population
Frontiers in Plant Science 08
size, whereas the latter cannot (Figure 3E). Comparing the survival

ratio of PCP infected by different microbes showed that it was

sharply reduced after 2 weeks of infection by A. arachidicola but not

A. sclerotioniger (Figure 3F). Collectively, these results suggested

that PWN-induced Aspergillus are sufficient to trigger ST

accumulation that assists PWN invasion and pathogenicity.
3.4 The fungal inhibitor chiricanine A
can suppress the species richness of
Aspergillus fungi in P. massoniana host,
thus curtailing in vivo PWN population
size or pathogenicity in both laboratory
and field tests

The Aspergillus-inhibitor chiricanine A has long been used to

suppress ST accumulation in numerous crops(Arias et al., 2014).

Accordingly, we wondered whether chiricanine A could decrease

the accumulation of ST by reducing the richness of PWN-induced

Aspergillu species. We found that the application of chiricanine A

significantly decreased (P < 0.001) the richness of PWN-induced

Aspergillu spp. as well as the aflR expression level by 4 times and

1.77 times, respectively (Figures 4A, B). When compared with

emamectin benzoate, currently the most efficacious nematicide,
B C D

E F

A

FIGURE 3

Associated microbe Aspergillus arachidicola promotes PWN pathogenicity by increasing the sterigmatocystin (ST) accumulation in Pinus massoniana.
(A) Richness of microbes belonging to the Aspergillus genus, (B) expression level of ST synthesis promoting gene aflR, (C) richness of A arachidicola
and A sclerotioniger in plant samples before (PWN(-)) and after (PWN(+)), invasion by PWN invasion are plotted. Aspergillus arachidicola, A
sclerotioniger, and inactivated A arachidicola (-) were co-incubated with sterilized PWN, then inoculated into P. massoniana and the (D) ST amount,
(E) relative PWN amount, and (F) survival ratio of different host plants were measured. Data shown are the mean ± standard deviation (SD). The ***
represents significant differences between treatments at P < 0.001, based on a one-way ANOVA, with multiple comparisons made using Tukey’s test;
‘n.s.’ denotes no significant differences found.
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chiricanine A was able to inhibit PWN for much longer (Figure 4C).

But when the host is inoculated with A. arachidicola or ST, either

was clearly able to suppress that long-term effect of chiricanine A

(Figures 4D, E).

We also tested the PWN-control functioning of chiricanine A in

a 2-year field trial. The application of chiricanine A significantly

increased the survival rate of PCP in both years vis-à-vis the control

(1.17 and 1.33 times, P < 0.001) (Figure 4F). Yet, significant

reductions in the amount of PWN (2.36 and 22.05 times, P <

0.001), richness of PWN-induced Aspergillus spp. (4.44 and 18.07

times, P < 0.001), and the aflR expression level (2.15 and 18.07

times, P < 0.001) of PCP occurred in both years relative to the

control (Figures 4G–I). These results indicated that chiricanine A

could serve as more efficient nematicide in the field by suppressing

ST accumulation thereby performed a long-term control of PWD.
4 Discussion

A paramount prerequisite to manipulating functional

microorganisms is identifying those vital effective microbes that

drive ecological phenomena, and elucidating their underlying

biochemical mechanisms (Ayilara et al., 2023). Associated

microbes enable linkages between PWN, host pine, and JPS (Feng

et al., 2022); however, our understanding of how microbes directly

affect the “PWN- host-JPS” complex through their produced
Frontiers in Plant Science 09
metabolites are largely unknown (Zhao et al., 2014; Santini and

Battisti, 2019; Feng et al., 2022). Here, we demonstrated that PWN-

associated fungi, Aspergillus spp., are able to promote PWN

invasion and pathogenicity by increasing biosynthesis of a

secondary metabolite, sterigmatocystin (ST), in the host plant P.

massoniana, mainly via suppressed ROS accumulation in hosts

against PWN. Further, ST accumulation triggers VOC biosynthesis

for attracting JPS to spawn and this drives the coexistence of PWN

and JPS in host trees, thereby encouraging transmission of PWD

(Figure 5). Meanwhile, through the application of an Aspergillus

inhibitor (Chiricanine A), we also showed that the absence of

Aspergillus sharply restricts the development of PWN in P.

massoniana (Figure 4), further proving that Aspergillus is vital

and sufficient to promote PWD transmission.

Ophiostomatoids and molds are two major fungal families well

known for being highly correlated with the propagation and

distribution of the PWN (Feng et al., 2022). Although molds do

play crucial roles in multiple processes of PWD epidemics (Guo

et al., 2020), in a way unlike the known contributions of

ophiostomatoids to PWN (important food resources) (An et al.,

2022; Cai et al., 2022; Li et al., 2022), how molds are involved in

PWD epidemics remains unclear. The present work, for the first

time, clarifies how an important genus of molds, Aspergillus,

contributes to the PWD epidemic via its secondary metabolite.

The ST biosynthesis is conserved in Aspergillus (Sobolev et al., 2018)

and promoted by aflR, and a pronounced positive correlation
B
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FIGURE 4

The fungal inhibitor chiricanine A can suppress the richness of Aspergillus fungi in Pinus massoniana to limit in vivo PWN population or
pathogenicity, in both laboratory and field testing. Under laboratory conditions, 2-year-old P. massoniana seedlings were inoculated with PWN, and
then inoculated with chiricanine A solution or methanol (control). For these samples, the (A) richness of Aspergillus fungi highly induced and (B) aflR
expression level in response to PWN invasion were quantified. Relative PWN amount in PWN-carrying P. massoniana treated with (C) emamectin
benzoate and chiricanine A, as well as those (D) injected with A arachidicola or (E) ST at 8 weeks post-inoculation. In the field trial, a solution of
chiricanine A or methanol (control) was injected into PWN-carrying P. massoniana, and its (F) survival ratio, (G) relative PWN amount, and the
(H) richness of Aspergillus fungi highly induced and (I) aflR expression level in response to PWN invasion were quantified after the 1st and 2nd year
post-injection. Data shown are the mean ± standard deviation (SD). The *** represents significant differences between treatments at P < 0.001,
based on a one-way ANOVA, with multiple comparisons made using Tukey’s test.
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between ST and aflR expression was indeed observed in this study,

but no correlation of ST with richness of Aspergillus spp. Although

the absence of Aspergillus substantially restricts the PWN’s

development in its host, among these identified Aspergillus species

in the PWN-carrying P. massoniana, only three of them—A.

fischeri, A. arachidicola, A. taichungensis—increased markedly in

response to PWN invasion and were very likely transferred by PWN

into host plants, in contrast to most of them (like A. sclerotioniger)

decreasing considerably. These lines of evidence suggest PWN-

associated Aspergillus fungi are able to reconstruct the host plant-

associated microbial community to promote PWN development.

This point is also supported by the diversity of the host plant-

associated microbial community being severely reduced by the

application of a low ST concentration yet increasing with higher

ST concentrations. The above point can also explained by the

various functions of Aspergillus species; most of the plant-

associated Aspergillus are mutualists (El-Desoky et al., 2021;

Cheng et al., 2022; Toth et al., 2022), one of the PWN-associated

Aspergillus fungi, A. arachidicola, has been reported as being

harmful to plant and beneficial for insect feeding (El-Desoky

et al., 2021; Cheng et al., 2022).

Despite ST being detectable in various of crops and foods

(Versilovskis and De Saeger, 2010), its functioning in plants has yet
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to be resolved. In this work, we demonstrated that ST was able to

suppress ROS accumulation in the host pine tree via genetic, metabolic,

and microbial level regulation processes. The richness of several genera

of microbes—Enterobacter, Klebsiella, Pelagivirga, Herbaspirilum,

Staphylococcus, Pseudovibrio , Rhizophagus, Cronobacter,

Acinetobacter, and Achromobacter—was correlated with the ST

concentration, and most of them were predicted to regulate the

biosynthesis of VOCs and flavonoids. Further, these functional

predictions were supported by the metabolic data. By quantifying the

VOC amounts in host pine trees, we find that the total VOC amount is

highly induced by ST (more than 100 times), yet only a few of them

(mostly terpenes) are induced in a ST-dependent manner; this finding

hints that ST might be a potential signal acting to regulate the host

performance of insects. Although, some reported JPS-attracting VOCs

(acetophenone, pinene, and myrcene) were among the above ST-

induced metabolites, it was not clear whether these are all JPS-

specific VOC, an aspect worth exploring further. Meanwhile, the

amount of flavonoids was significantly increased by ST treatment,

indicating that ST may serve as a signal to initiate the later stages of

plant defense (Hedrich et al., 2016). Plant flavonoids have been widely

demonstrated to be toxic to pests, including the Pine Wood Nematode

(PWN) (Shen et al., 2022; Xie et al., 2022). However, over a long period

of co-evolution, pests have developed efficient detoxification systems to
FIGURE 5

Schematic diagram of the pine wood nematode-Monochamus alternatus symbiosis promoted by Aspergillus fungi in Pinus massoniana host trees
via sterigmatocystin (ST).
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counteract the toxic effects of secondary metabolites, including

flavonoids (Souto et al., 2021). This suggests that the PWN may

possess a highly effective detoxification system to survive the

presence of flavonoids in the host plant. Further investigation into

the detoxification system of the PWN against plant secondary

metabolites would provide a valuable opportunity to shed light on

the outbreak of PWD. Interestingly, we also found that synthesis of an

ST inhibitor, stilbenoid (Sobolev et al., 2018), was promoted by ST,

suggesting that plants may have a conserved system to respond to ST as

a signal. Together, we hypothesize that ST can suppress the early stage

of PWN resistance and reconstructs the microbial community in the

host plant; it may also strongly activate the later stage of pest resistance

(flavonoid accumulation) to limits competitors in the same niche,

thereby promoting outbreaks of PWD in pine stands.

Emamectin benzoate (EB) is widely regarded as the most useful

nematicide against the PWN, largely because it is environmentally

friendly and has longer field residence time (i.e., at least 3 years)

(Takai et al., 2004; Lu et al., 2020). However, continuous injection is

required to maintain an effective dose of EB in a pine tree or whole

stand (Rajasekharan et al., 2017; Lu et al., 2020; Chen et al., 2021; Hao

et al., 2021). Although neither EB nor chiricanine A can completely

eradicate the PWN population in host pines, we propose that

chiricanine A has a PWN control efficiency on par with EB, but is

able to suppress the PWN population for a longer time. As a plant

metabolite, chiricanine A can also be synthesized manually (Park

et al., 2011), which greatly reduces the cost of its application.

Chiricanine A is plant-originating metabolic that has multiple

biological functions: it can be utilized and metabolized by the

recipient plant itself (Wang et al., 2018), which may affect its

residence time within the host, an aspect that requires future

research attention. As an Aspergillus inhibitor, chiricanine A is

already widely used for eliminating Aspergillus spp. in the crops

(Sobolev, 2008; Sobolev et al., 2011; Sobolev et al., 2016; Sobolev et al.,

2018; Souto et al., 2021), but whether Aspergillus spp are the unique

target of chiricanine A remains unknown. We know that ST is

produced by various species of Aspergillus (Versilovskis and De

Saeger, 2010), but it can also be produced by other mold species,

including some members of Penicillium, Emiricella, Chaetomium,

and Bipolaris genera, and most of them are pertinent to plant growth

(Barnes et al., 1994; Rank et al., 2011). Plenty of above ST-producing

microbes could be induced by PWN invasion, though in this study

only Aspergillus was investigated. Although we show that applying

chiricanine A could drastcially reduce the Aspergillus and ST levels in

host pine trees, it is uncertain whether such chiricanine A

applications can limit or benefit other microbes of host plants. In

conclusion, we found a new plant-originating nematicide, chiricanine

A, that has obvious advantages in terms of residence time to aid in the

long-term control of PWN in pine stands, but the side effects of its

and underline mechanistic action both require further attention.
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