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Due to the constraints of agricultural computing resources and the diversity of

plant diseases, it is challenging to achieve the desired accuracy rate while

keeping the network lightweight. In this paper, we proposed a computationally

efficient deep learning architecture based on the mobile vision transformer

(MobileViT) for real-time detection of plant diseases, which we called plant-

based MobileViT (PMVT). Our proposed model was designed to be highly

accurate and low-cost, making it suitable for deployment on mobile devices

with limited resources. Specifically, we replaced the convolution block in

MobileViT with an inverted residual structure that employs a 7×7 convolution

kernel to effectively model long-distance dependencies between different leaves

in plant disease images. Furthermore, inspired by the concept of multi-level

attention in computer vision tasks, we integrated a convolutional block attention

module (CBAM) into the standard ViT encoder. This integration allows the

network to effectively avoid irrelevant information and focus on essential

features. The PMVT network achieves reduced parameter counts compared to

alternative networks on various mobile devices while maintaining high accuracy

across different vision tasks. Extensive experiments on multiple agricultural

datasets, including wheat, coffee, and rice, demonstrate that the proposed

method outperforms the current best lightweight and heavyweight models.

On the wheat dataset, PMVT achieves the highest accuracy of 93.6% using

approximately 0.98 million (M) parameters. This accuracy is 1.6% higher than that

of MobileNetV3. Under the same parameters, PMVT achieved an accuracy of

85.4% on the coffee dataset, surpassing SqueezeNet by 2.3%. Furthermore, out

method achieved an accuracy of 93.1% on the rice dataset, surpassing

MobileNetV3 by 3.4%. Additionally, we developed a plant disease diagnosis app

and successfully used the trained PMVT model to identify plant disease in

different scenarios.

KEYWORDS

plant disease identification, vision transformer, lightweight model, attention
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1 Introduction

Plant disease is one of the contributing factors to the global

decrease in grain production (Savary et al., 2019), and real-time

detection of plant disease has an important impact on the

agricultural industry. Applying deep learning models significantly

simplifies the entire process and enables end-to-end technical

services. Currently, there are two typical architectures for plant

disease recognition: convolutional neural network (CNN)-based

architectures and vision transformer (ViT)-based architectures.

These methods extract explicit features from images and

automatically perform classification, which is key for plant

disease recognition.

Over the past few years, the application of CNNs to

identifying plant diseases has gained in popularity with the

development of artificial intelligence technology. For instance,

Akshai and Anitha (2021) compared various CNNs using the

PlantVillage dataset (Hughes and Salathe 2015) and reported

that the DenseNet model with feature map reuse achieved the

highest accuracy of 98.27%. Another study by Yu et al. (2022a)

used a ResNet network with a residual structure to identify apple

leaf diseases, and it obtained an average F1-score of 95.70%.

CNNs can efficiently extract significant features from images and

accomplish plant disease identification automatically. The

primary reason for this is that CNNs have the characteristic of

parameter sharing, which reduces the number of parameters in

the model and addresses the overfitting issue seen in computer

vision tasks. Therefore, the application of deep learning

technology based on CNNs has made significant progress in

plant disease diagnosis (Hasan et al., 2020; Xiong et al., 2021;

Ahmad et al., 2022). Nonetheless, there will be an increase in

unnecessary computational overhead as a network’s depth

increases. Simultaneously, the convolutional layer of CNNs

only considers the characteristics of the local area during

convolution and does not explicitly incorporate the positional

information of pixels. This will impact the effectiveness of a plant

disease identification model.

To address the above issues, Dosovitskiy et al. (2020) proposed

a vision transformer (ViT) architecture based on a self-attention

mechanism (Vaswani et al., 2017) to replace the traditional CNN

for image recognition. A ViT architecture divides an image into

non-overlapping patches and applies multi-head self-attention

within the transformer encoder to learn representations of

patches. Although this paradigm considers the global relationship

of images and has achieved satisfactory results in plant disease

recognition, it usually requires a large quantity of training data to

achieve relatively high accuracy. Hence, alternating the use of CNNs

and ViTs to extract more comprehensive features has become a

better choice in plant disease diagnosis. Take a classic case: Lu et al.

(2022) introduced a ghost module into the ViT encoder, which

extracts different levels of features in an image. Their model

achieved an accuracy rate of 98.14% in detecting grape leaf

diseases and insect pests in the field. Similarly, Yu et al. (2023)

used inception blocks to enhance the ability of the ViT encoder to

extract local information; they achieved optimal performance on

four typical plant disease datasets. As an alternative architectural
Frontiers in Plant Science 02
paradigm to CNNs, the ViT has attracted significant attention and

achieved considerable success in the field of computer vision (Khan

et al., 2022; Lin et al., 2022).

With the significant advancements of CNNs and ViT networks

in plant disease recognition technology, a prevailing trend among

network models is to augment the number of parameters in order to

enhance performance. These enhancements in performance are

accompanied by an increase in model size (network parameters)

and latency (Han et al., 2021; Wu et al., 2021; Yu et al., 2022b). They

overlook a common issue: plant disease identification is typically

conducted on edge devices, such as smartphones and embedded

devices. Such devices usually have restricted computing power,

storage capacity, and energy supply. Hence, using a lightweight

network can decrease the size and computational complexity of the

model, thereby improving its compatibility with resource

constraints. Numerous researchers have recently been studying

the application of affordable network models for real-time plant

disease detection. Concretely, Bao et al. (2021) proposed SimpleNet,

which achieved 94.10% wheat recognition accuracy with only 2.13

million (M) parameters. In addition, the apple leaf disease

identification method based on the cascade backbone network

(CBNet) proposed by (Sheng et al., 2022) achieved an accuracy

rate of 96.76%. Moreover, the VGG-ICNN model proposed by

Thakur et al. (2023) has 6 M parameters, which is lower than most

deep learning models; and it performs well on multiple datasets

such as apple, corn, and rice. Generally, the methods mentioned

above primarily concentrate on identifying a single plant disease,

while other methods exhibit imbalances in identification accuracy

and calculation cost. Hence, to enhance the real-time performance

of plant disease identification, it is crucial to employ a low-latency

and highly accurate network model.

Achieving high-accuracy and low-cost plant disease

identification in agricultural environments with limited

computing resources presents a significant challenge. The

majority of existing lightweight networks focus on a single plant

disease. However, when faced with numerous types of plant

diseases, they fail to deliver satisfactory performance. In this

paper, we introduced a lightweight model for plant disease

diagnosis based on MobileViT (Mehta and Rastegari, 2021),

which has a low computational cost and is competitive in terms

of inference speed. In particular, the crisscrossing leaves in the

agricultural dataset lead to an unsatisfactory recognition effect with

MobileViT. Thus, we consider using a larger convolution kernel (7

× 7) to analyze the connection between different leaves. Using larger

convolution kernels allows us to model the dependencies between

long-distance pixels (Liu et al., 2021; Liu et al., 2022) and enhance

the ability of the model to capture global information from plant

disease images. Additionally, focusing on the salient leaf regions in

plant images can improve the robustness of the model. We used the

CBAM (Woo et al., 2018) to adjust feature weights in various

channels of the transformer encoder. Finally, we employed a

residual network to fuse the initial feature map and improve the

fitting ability of the model. We named this model plant-based

MobileViT (PMVT) and deployed it to identify plant diseases in

datasets and in various scenarios. Experimental results indicate that

PMVT surpasses the current leading lightweight networks and
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heavyweight models, thereby demonstrating its effectiveness as a

versatile backbone network across various datasets.

The main contributions of this paper are as follows.
Fron
• We used a low-cost ViT model for plant disease diagnosis.

This model is computationally efficient and can function as

a generic backbone network on mobile devices.

• We introduced a 7 × 7-sized convolution kernel into the

convolution block for modeling long-distance pixel-to-pixel

dependencies. Moreover, the CBAM guides the network to

learn the weights between various channels, which

enhances the fitting ability of MobileViT to image feature

representation.

• We conducted comparative experiments on several datasets

obtained under different scenarios, and the results revealed

that our method not only competes with similarly sized

lightweight networks but also outperforms state-of-the-art

heavyweight networks.
2 Materials and methods

2.1 Datasets

We randomly divided three datasets into a training set,

validation set, and testing set according to the ratio of 8:1:1.

Table 1 shows the details of each dataset and how many samples

comprised each subset. Figure 1 displays some samples of

the datasets.

2.1.1 Wheat
The wheat (Lian, 2022) dataset comprises 4087 images of varying

sizes depicting seven different categories of wheat diseases. The

images include the real-world environmental factors that interfere

with identifying the wheat crop, such as sky, soil, and weeds.
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2.1.2 Coffee
The coffee (Parraga-Alava et al., 2019) dataset contains three

types of coffee leaves: healthy, red spider mite, and rust. Images of

the same size and resolution are included in each category of

leaves. The dataset was collected in a natural field environment,

where the background of the pictures contains various

disturbances such as weeds and soil. Since some sample features

are not significant enough, we selected a thousand of them to build

a new dataset.

2.1.3 Rice
The rice (Sethy, 2020) dataset lends itself to the classical binary

classification problem as it contains samples classified simply as

either healthy or unhealthy rice. The resolution of the images in this

dataset varies in size. Furthermore, some of the images in this

dataset have a uniform white background, which makes the dataset

ideal for testing model performance in both a controlled laboratory

environment and a real field environment.
2.2 Our proposed method

2.2.1 Overall structure of PMVT
Figure 2 depicts the overall structure of our model, which

comprises five layers. Before pushing input into the block, the

feature map is downsampled using a 3 × 3 convolution; this is

followed by an inverted residual block or a standard transformer

encoder. The inverted residual block is used to extract local features

of the image and capture the long-distance dependencies between

distant pixels. The MobileViT block uses a self-attention

mechanism to model the global relationship of the image and

employs a CBAM block to make up the channel attention and

spatial attention information. The channel dimension is expanded

by four times using a 1 × 1 convolution in the last layer of the

network to better adapt to computer classification tasks. PMVT

contains three different network sizes: extra extra small (XXS); extra
TABLE 1 Data distributions for the datasets used in our comparative experiments.

Name Class Diseases Training set size Validation set size Testing set size

Wheat 0 health 528 65 59

1 rust 673 83 77

2 mildew 282 34 32

3 smut 674 83 75

4 root rot 381 46 41

5 scab 391 48 45

6 leaf spot 378 47 45

Coffee 0 healthy red 353 43 39

1 spider mite 136 16 15

2 rust 324 39 35

Rice 0 healthy 407 50 44

1 unhealthy 413 50 43
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small (XS); and small (S)). These sizes correspond to those

in MobileViT.

2.2.2 Inverted residual block
An inverted residual block is a standard convolutional structure

comprising three convolution kernels. Before extracting image

features, a 1 × 1 convolution kernel is used to increase the

channel dimension, generally by two times. Then, we replace the

3 × 3 convolution kernel of the original MobileViT with a 7 × 7

convolution kernel, thus making it easier to capture long-distance

dependencies between pixels. In addition, depthwise separable

convolutions are used to reduce the computational complexity of

the model and increase the inference speed. Finally, we use a 1 × 1

convolution kernel to restore the channel dimension of the image.

Figure 3 shows the overall structure of the inverted residual block.

2.2.3 Mobile ViT block
As described in Figure 4A, learning global representations of

feature maps using 1 × 1 and 3 × 3 convolutions. Before entering the

standard transformer encoder, the same color patch at the same

position is taken out and put into the same sequence for self-

attention calculation. This measure allows us to learn the global
Frontiers in Plant Science 04
representation information of the image in a more blocky manner

and reduce the computational cost of the self-attention mechanism.

Through the 1 × 1 convolution kernel, the output of the transformer

is restored to the original channel dimension, and the channel

attention and spatial attention information are learned through the

CBAM block. Finally, the obtained feature map is spliced with the

original feature map to prevent loss of feature information and is

then input to the next stage after a 3 × 3 convolution.
2.2.4 Vision transformer encoder
As shown in Figure 4B, the encoder used to learn image features

consisting of standard transformer blocks. First, an image with

dimensions [C,H,W] is divided into patches of P size, and a linear

transformation is applied to each patch for flattening. Positional

encoding information is then applied to each patch; through this,

each patch then has dimensions of ½HPi , WPi ,C�. Next, we use three

learnable parameter matrices to multiply each patch to get queries

(WQ), keys (WK), and values (WV). For patch i, we apply the dot

product to the query matrix with the key matrix of the remaining

patches, and then we divide by the number of key matrix elements.

Finally, we apply the softmax function to obtain the attention scores

of the remaining patches for patch i. These attention scores are
FIGURE 2

Overview of the PMVT model. ↓2 means to downsample the feature map twice, and L stands for repeated stacking of L MobileViT blocks. For
computer vision classification tasks, we use a classifier composed of an average pooling layer and a fully connected layer.
B

C

A

FIGURE 1

Sample images from the (A) wheat dataset, (B) coffee dataset, and (C) rice dataset.
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multiplied by the value matrix of patch i to obtain the feature

information. Equation 1 illustrates the process of the entire

attention mechanism. MLP comprises two fully connected layers

and employs an incentive compression mechanism to learn

interaction information between different dimensions.

self − attention = softmax (
QKT

ffiffiffiffiffi
dk

p ) �  V (1)
Frontiers in Plant Science 05
2.2.5 CBAM block
The CBAM block is composed of a channel attention module

and a spatial attention module, and it uses a 3 × 3 convolution

kernel to preprocess the feature map before insertion. We pass the

input feature map through a parallel average pooling layer and max

pooling layer, and then we change the feature map from [C,H,W] to

[C,1,1] dimensions. The shared MLP module comprises two 1 × 1

convolution kernels, which compress the number of channels to R

times the original number and then expand it back to the original

number of channels. The feature maps obtained by the average

pooling layer and the max pooling layer are spliced to obtain the

weights of each channel, which are finally multiplied by the original

feature map. Equation 2 describes the weight assignment process of

the channel attention module. s stands for using Sigmoid as the

activation function, W1 ∈ RC/r×C, and W1 ∈ RC/r×C. W1 and W0 are

shared weights for the two inputs of the max pooling layer and the

average pooling layer.

Mc(F) = s (MLP(AvgPool(F)) +MLP(MaxPool(F)))

= s (W1(W0(F
c
avg)) +W1(W0(F

c
max)))         

(2)

The output of the channel attention module is obtained through

the max pooling layer and average pooling layer. We acquire two
B

C

A

FIGURE 4

Detailed description of the vision transformer block. (A) The overall structure of the vision transformer block; (B) the structure of the vision
transformer block encoder; and (C) the architecture of the CBAM block, where ⊗ represents the multiplication with the original feature map.
FIGURE 3

Structure of the inverted residual block. C× represents the feature
information obtained by convolving each channel of the feature
map using a convolution kernel.
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feature maps with dimensions of [1,H,W], and then we splice them.

Through a 7 × 7 convolution, we obtain a feature map of one

channel and multiply it by the original feature map. Equation 3

shows the forward process of the spatial attention module, while

Figure 4C shows the forward process of the entire CBAM block.

Ms(F) = s (f 7�7(½AvgPool(F);MaxPool(F)�))
= s (f 7�7(½Fs

avg ; F
s
max�))                

(3)
2.3 App for plant disease identification

We export the trained model to an open neural network

exchange (ONNX) file format to preserve crucial details such as

structure and weights. The model is converted into an NCNN file

format for storage to facilitate deployment on a mobile terminal for

inference because the NCNN format is a high-performance neural

network inference framework optimized for mobile platforms.

Subsequently, the structure and weight information of the model

are extracted for plant disease identification using the C++

language. The XML language is used to define the layout and

appearance of the application front-end interface. Lastly, the

back-end interaction of the application is developed using the

JAVA language, while the MySQL database is used for storing

plant diseases and related information. As shown in Figure 5, the

app possesses the capability to perform photo identification using

the camera of the device (Figure 5B). Alternatively, it allows users to
Frontiers in Plant Science 06
select pictures from their album for identification (Figure 5C).

Furthermore, users have the option to search for plant diseases

based on specific conditions or criteria (Figure 5D). The application

then presents the relevant categories of plant diseases based on the

selected pictures or conditions. Figure 5E displays the final

identification results of plant diseases and the corresponding

control methods.
2.4 Experimental details

Data augmentation has been shown to improve model

robustness and generalization. Before training the network, all

images are uniformly resized to 224 × 224. The samples in the

training, validation, and test sets are randomly rotated and cropped

along the center. Finally, we normalize all images using standard

deviation and mean square deviation. Table 2 describes our

hyperparameter settings for model training.
2.5 Model evaluation

In this study, we use top-1 accuracy (Equation 4) to determine

the highest accuracy that the model can achieve. We also use

precision (Equation 5) and recall (Equation 6) to evaluate the

performance of the model. Parameters, floating point operations

per second (FLOPs), and frames per second (FPS; the number of

images the model processes per second) are used to express the
B C D EA

FIGURE 5

Introduction of plant disease identification app. (A) the main page of the app; (B) the page for camera recognition; (C) the page to select local
albums for recognition; (D) the page for disease search; and (E) the page displaying disease identification results.
TABLE 2 Hyperparameter settings for training.

Name Value Description

Epochs 100 Number of times the model was trained

Batch size 32 Number of samples selected for one training

Optimizer AdamW Tool used to bootstrap network update parameters

Learning rate 0.0001 Tunes parameters in optimization algorithms

Loss function Cross Entropy Evaluates the gap between the predicted value and the true value
frontiersin.org
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inference speed of the model. True positive (TP) means that the

predicted positive sample is actually a positive sample; false positive

(FP) indicates that the predicted positive sample is actually a

negative sample; true negative (TN) means that the predicted

negative sample is actually a negative sample; and false negative

(FN) means that the predicted negative sample is actually a positive

sample.

Top − 1 Accuracy =
TP + TN

TP + TN + EP + FN
(4)

Pr ecision =
TP

TP + FP
(5)

Re call =
TP

TP + FN
(6)
2.6 Experimental setup

All experiments run on a deep learning–based cloud platform.

The hardware configuration is a 14-Core VV Intel(R) Xeon(R) Gold

6330 CPU @ 2.00 GHz, with 45 GB of RAM and an NVIDIA

GeForce RTX 3090 GPU. The operating system is Ubuntu 18.04,

and PyTorch 1.9.0 and Python 3.8 are used as software support.
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3 Results and conclusions

3.1 Results

We selected several typically used CNN-based and ViT-based

networks for comparison with our model. These include lightweight

networks such as SqueezeNet (Iandola et al., 2016), ShuffleNetV2

(Ma et al., 2018), MobileNetV3 (Howard et al., 2019),

MobileFormer (Chen et al., 2022), EfficientNet (Tan and Le,

2019), and Deit (Touvron et al., 2021) models. We also chose

many heavyweight networks such as PoolFormer (Yu et al., 2022b),

CVT (Wu et al., 2021), TNT (Han et al., 2021), and ResNet (He

et al., 2016) for comparison. Additionally, we chose a wheat dataset

with multiple components (such as roots, stems, and leaves) to

evaluate model performance on images depicting diverse

conditions. The coffee dataset was employed to assess the

performance of our method when confronted with complex

backgrounds. Moreover, the rice dataset was used to investigate

the classical binary classification problem.

We chose the wheat dataset to verify the generalizability of

PMVT under a real crop growth cycle. We can see from Table 3 that

our proposed network achieved the best top-1 accuracy when

compared with networks with similar parameters. Among the

lightweight networks, MobileNetV3 achieved an accuracy rate of
TABLE 3 Comparison of the PMVT model with other backbone models on three datasets (the FPS indicator is calculated on the desktop computer,
and bold text highlights the best-performing network).

Methods Top-1 Accuracy(%) Parameters (M) FLOPs (G) FPS (img/s)

Wheat Coffee Rice

SqueezeNet-1.0 70.0 79.7 86.2 0.74 0.73 293.0

SqueezeNet-1.1 86.1 83.1 85.1 0.73 0.26 311.5

ShuffleNetV2-1.0 89.6 68.5 82.7 1.27 0.15 151.9

MobileNetV3-Small 92.0 66.3 89.7 1.54 0.06 170.2

PMVT-XXS (ours) 93.6 85.4 93.1 0.98 0.31 88.5

ShuffleNetV2-1.5 92.5 73.0 86.2 2.50 0.31 148.4

MobileFormer-26M 91.4 77.5 90.8 2.22 0.03 53.1

MobileFormer-52M 92.8 79.2 83.9 2.46 0.05 60.7

MobileFormer-96M 92.8 84.2 87.3 3.33 0.09 58.8

MobileNetV3-Large 92.8 72.0 91.9 4.22 0.23 141.0

EfficientNet-B0 94.1 84.2 88.5 4.03 0.41 109.9

PMVT-XS (ours) 94.7 86.5 97.7 2.01 0.85 85.3

ShuffleNetV2-2.0 93.6 70.0 91.4 5.38 0.60 146.2

MobileFormer-151M 94.4 75.3 88.5 6.34 0.10 42.3

EfficientNet-B1 94.4 79.8 90.8 6.53 0.61 75.3

EfficientNet-B2 93.3 83.1 87.3 7.72 0.70 76.6

Deit-Tiny 91.4 78.7 84.0 5.49 1.08 161.7

PoolFormer-S12 91.4 85.4 85.1 11.39 1.81 178.3

(Continued)
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92.0%, whereas EfficientNet-B0 achieved a higher accuracy rate of

94.1%. Our PMVT reached state-of-the-art accuracy with rates of

93.6 and 94.7, respectively. In comparing heavyweight networks, the

PMVT model achieved an accuracy rate of 94.9% using only 5.06 M

parameters, outperforming ResNet-101, which achieved an

accuracy of 94.1% but used 42.5 M parameters. This proves that

the proposed model is effective compared to the original

MobileViT. Figure 6 presents the confusion matrix of our

proposed model. Figure 7 depicts the precision of the PMVT

model, while Figure 8 illustrates its recall.

The coffee dataset was used to compare the performance of the

PMVT models in the field environment. As can be seen from

Table 3, the traditional lightweight networks did not achieve

acceptable accuracy rates. The XXS version of the PMVT model

achieved a top-1 accuracy rate of 85.4%, which was 3.5% higher

than that of the SqueezeNet-1.1 model. Compared with the

MobileFormer-96M model, the XS version of the PMVT model
Frontiers in Plant Science 08
improved accuracy by 2.3% to reach 86.5%. Finally, the S version of

the PMVT model achieved an accuracy rate of 87.6% on this

dataset; this was an improvement of 2.2% over that obtained by

the PoolFormer-S12 model. Figures 9 and 10 present the confusion

matrix, precision, and recall of the PMVT model. It can be seen

from the figures that our model does not achieve satisfactory results

in identifying red spider mite diseases.

We applied the rice dataset to simultaneously testing the fitting

ability of the PMVT model in a controlled laboratory environment

and in a real natural condition. Surprisingly, the XS version of

PMVT achieved 97.7% accuracy on this dataset, which was 5.8%

higher than the second-highest accuracy (obtained by the

MobileNetV3-large model). In addition, the XXS version attained

an accuracy of 93.1%, which was 3.4% higher than the baseline of

the MobileNetV3-small model. The S version of the PMVT model

performed the worst, with an accuracy of 92%; however, it still

outperformed the ShuffleNetV2-2.0 model with similar parameters
FIGURE 6

Confusion matrix of the PMVT model on the wheat dataset.
TABLE 3 Continued

Methods Top-1 Accuracy(%) Parameters (M) FLOPs (G) FPS (img/s)

Wheat Coffee Rice

CVT-Tiny 93.6 82.0 86.2 19.63 4.08 62.2

TNT-Small 92.8 80.9 88.5 23.40 4.85 67.3

ResNet50 93.9 70.8 90.8 23.53 4.13 125.1

ResNet101 94.1 63.0 88.5 42.50 7.86 66.3

PMVT-S (ours) 94.9 87.6 92.0 5.06 1.59 81.3
FIGURE 7

Precision of the PMVT model on the wheat dataset.
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by 0.6%. Upon comparing models with similar sizes, we found that

the PMVT model has achieved the best accuracy rate. This proved

that our model is very competitive on the classic binary

classification problem. Figures 11 and 12 depict the confusion

matrix, precision, and recall of the PMVTmodel on the rice dataset.

As seen in Table 3, our method does not excel in terms of FPS

and FLOPs metrics. This because the self-attention mechanism

computes the weights between image patches, resulting in

numerous matrix calculations and multiplication operations

during inference. Consequently, this increases the computational

time. Additionally, because of the current immaturity of deep

learning framework technology, numerous attention-weight

matrices must be stored and processed, thereby occupying a
Frontiers in Plant Science 09
significant amount of memory. Nevertheless, PMVT achieves the

best accuracy with only 0.98M parameters. This makes it low-cost

and high-accuracy for plant disease identification. As artificial

intelligence technology advances, ViT can be better applied to the

visual task of plant disease identification.
3.2 Ablation studies

The data given in Table 4, it demonstrates the effectiveness of

each module in our models. +Conv7 × 7 represents using a

convolution kernel of size 7 instead of the 3 × 3 convolution in

the CNN block based on the MobileViT model. +CBAM uses
FIGURE 8

Recall of the PMVT model on the wheat dataset.
FIGURE 9

Confusion matrix of the PMVT model on the coffee dataset.
FIGURE 10

Precision and recall of the PMVT model on the coffee dataset.
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channel attention and spatial attention integrated in the ViT block

based on the MobileViT model. PMVT represents a new backbone

network built on the basis of MobileViT using both 7 × 7

convolution kernels and CBAM modules. It can be seen that each

component can improve the accuracy of the model to

varying degrees.
Frontiers in Plant Science 10
3.3 Conclusion

In this paper, we constructed a computationally efficient vision

transformer (ViT) model, referred to as PMVT, for the identification of

plant diseases. Furthermore, larger convolution kernels and CBAM

modules enhanced the model’s feature extraction capability.
FIGURE 11

Confusion matrix of the PMVT model on the rice dataset.
FIGURE 12

Precision and recall of the PMVT model on the rice dataset.
TABLE 4 Ablation experiments investigating each component in the PMVT model (bold text highlights the best-performing network).

Methods Wheat(%) Coffee(%) Rice(%) Params(M) FLOPs(G)

MobileViT-XXS 91.4 83.1 92.0 0.96 0.27

+Conv7x7 92.2(+0.8) 84.0(+1.1) 92.8(+0.8) 0.97(+0.01) 0.30(+0.03)

+CBAM 92.5(+1.1) 84.1(+1.0) 92.6(+0.6) 0.97(+0.01) 0.27

PMVT-XXS 93.6(+2.2) 85.3(+2.1) 93.1(+1.1) 0.98(+0.02) 0.31(+0.04)

MobileViT-XS 93.3 84.2 94.2 1.94 0.74

+Conv7x7 93.9(+0.6) 85.3(+1.1) 95.8(+1.6) 1.99(+0.05) 0.84(+0.1)

+CBAM 93.6(+0.3) 85.6(+1.4) 96.5(+2.3) 1.95(+0.01) 0.76(+0.02)

PMVT-XS 94.7(+1.4) 86.5(+2.3) 97.7(+3.5) 2.01(+0.07) 0.85(+0.11)

MobileViT-S 93.9 84.3 89.7 4.95 1.46

+Conv7x7 94.4(+0.5) 85.4(+1.1) 90.9(+1.2) 5.02(+0.07) 1.59(+0.13)

+CBAM 94.4(+0.5) 84.7(+1.4) 91.1(+1.4) 4.98(+0.03) 1.47(+0.01)

PMVT-S 94.9(+1.0) 87.6(+3.3) 92.0(+2.3) 5.06(+0.11) 1.59(+0.13)
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Comparative experiments were conducted on multiple datasets

containing images of plant diseases, thus demonstrating that PMVT

outperforms both lightweight and heavyweight networks. Additionally,

PMVT outperforms both lightweight and heavyweight networks.

PMVT has more powerful generalization capabilities and can be

deployed on mobile devices for diagnosing plant diseases in field

environments. However, due to the shorter development time of

ViT, lightweight ViT models are comparatively slower than

traditional lightweight CNNs when processing images. The

advancement of deep learning framework technology enables ViT to

perform computer vision tasks more effectively.
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