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Wild rice, a natural gene pool for rice germplasm innovation and variety

improvement, holds immense value in rice breeding due to its disease-

resistance genes. Traditional disease resistance identification in wild rice

heavily relies on labor-intensive and subjective manual methods, posing

significant challenges for large-scale identification. The fusion of unmanned

aerial vehicles (UAVs) and deep learning is emerging as a novel trend in intelligent

disease resistance identification. Detecting diseases in field conditions is critical

in intelligent disease resistance identification. In pursuit of detecting bacterial

blight in wild rice within natural field conditions, this study presents the Xoo-

YOLOmodel, a modification of the YOLOv8 model tailored for this purpose. The

Xoo-YOLOmodel incorporates the Large Selective Kernel Network (LSKNet) into

its backbone network, allowing for more effective disease detection from the

perspective of UAVs. This is achieved by dynamically adjusting its large spatial

receptive field. Concurrently, the neck network receives enhancements by

integrating the GSConv hybrid convolution module. This addition serves to

reduce both the amount of calculation and parameters. To tackle the issue of

disease appearing elongated and rotated when viewed from a UAV perspective,

we incorporated a rotational angle (theta dimension) into the head layer's output.

This enhancement enables precise detection of bacterial blight in any direction in

wild rice. The experimental results highlight the effectiveness of our proposed

Xoo-YOLO model, boasting a remarkable mean average precision (mAP) of

94.95%. This outperforms other models, underscoring its superiority. Our

model strikes a harmonious balance between accuracy and speed in disease

detection. It is a technical cornerstone, facilitating the intelligent identification of

disease resistance in wild rice on a large scale.
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1 Introduction

Wild rice, which is closely related to cultivated Asian rice

(referred to as “rice” hereafter), serves as a valuable parental

material for rice breeding. It shares the same chromosome group

as rice and harbors exceptional genes that are either absent or lost in

rice. Consequently, wild rice acts as a fundamental germplasm

resource for genetic enhancement in rice (Yuan, 1986; Fan et al.,

2023; Shao et al., 2023). As the genetic background for disease

resistance in rice becomes increasingly limited, the screening of

superior disease resistance genes in wild rice, which have been lost

during the domestication of rice, and utilizing them in breeding

emerges as an effective and cost-efficient approach to mitigating rice

diseases. The identification of disease resistance in wild rice is one of

the key aspects of breeding disease-resistant varieties of rice. In the

process of identifying new genes with broad-spectrum and durable

disease resistance traits and resolving their molecular mechanisms

of resistance, different wild rice resources need to be identified and

validated for disease resistance in order to select high-quality

germplasm resources and breeding materials with high disease

resistance. The identification of disease resistance in wild rice is

instrumental in bolstering the construction, conservation, and

utilization of wild rice germplasm resources, as well as in

breeding superior rice varieties with enhanced disease resistance

(Yun and Han, 2014).

Rice bacterial blight, caused by Xanthomonas oryzae pv. oryzae,

is a highly detrimental bacterial disease that significantly affects the

growth of rice. This disease not only leads to a decrease in yield but

also negatively impacts the quality of rice (Chen et al., 2021). In

comparison to the utilization of fungicides, the utilization of

bacterial blight resistance genes from wild rice and the

development of genetic varieties with broad-spectrum resistance

to bacterial blight offer economic, environmentally friendly, and

safe alternatives. This approach is currently a prominent research

focus in the field of plant immunity and a crucial objective for crop

breeding worldwide (Xu et al., 2019). In the conventional process of

disease resistance identification, researchers are required to visually

observe and manually test the presence of diseases in wild rice

within relatively distant experimental fields, which is, however, both

time-consuming and subjective. Given the growing demand for

large-scale identification of disease resistance in wild rice, there is a

pressing need to develop a high-throughput and intelligent

approach for accurately identifying disease resistance in wild rice

on a large scale, which would enable automated disease resistance

identification in the field.

The method of field-based wild rice disease detection enables

precise localization of diseases affecting wild rice from an

unmanned aerial vehicle (UAV) perspective. It serves as a crucial

component in the intelligent identification of wild rice disease

resistance, providing fundamental support for post-processing

tasks such as wild rice disease segmentation, disease spot

measurement, and disease resistance identification. Deep learning

algorithms possess the ability to autonomously learn and represent

features, and they can partially replace manual disease detection

with their high robustness and accuracy (Liu and Wang, 2021; Shao

et al., 2022). It has been extensively utilized in the detection of
Frontiers in Plant Science 02
diseases in maize (Khan et al., 2023), potatoes (Dai et al., 2022),

strawberries (Lee et al., 2022), citrus (Qiu et al., 2022), and other

crops (Dai and Fan, 2022). In recent years, researchers have

employed deep learning techniques to detect rice bacterial blight.

For instance, Jia et al. (2023) utilized MobileNetV3 to substitute the

original YOLOv7 algorithm’s backbone network. They integrated

the coordinate attention (CA) module into the feature fusion layer

of YOLOv7 to impart richer semantic information. Additionally,

they incorporated SIoU to bolster precision and robustness,

mitigating overfitting concerns. This enhancement led to an

impressive average precision (AP) of 98%. To address the

challenges associated with the undefined value of “k” in the k-

means clustering algorithm, which often leads to suboptimal

solutions, Zhou et al. (2019) proposed the FCM-KM algorithm.

This innovative approach employs maximum and minimum

distances to determine both the optimal “k” value and the central

positions for clustering. To enhance the detection of rice disease,

they integrated the FCM-KM algorithm with the Faster R-CNN

model. This fusion yielded impressive results, with a detection

accuracy of 97.53% and a processing time of 0.62 s. In a similar

vein, Prasomphan (2023) utilized the YOLOv3 model, achieving a

notable AP of 89.6%. Kumar et al. (2023) introduced a multi-scale

YOLOv5 detection network. This innovation in detection accuracy

is achieved through the integration of the DAIS segmentation and

Bi-FAPN networks. Their approach also effectively reduces

computational costs by employing the principled pruning

technique. Remarkably, their model achieves a mAP of 82.8% on

the RLD dataset. On the other hand, Haque et al. (2022) employed

the YOLOv5 model, attaining an AP of 65%.

The efforts of the aforementioned researchers have certainly

propelled the progress of rice bacterial blight detection. They have

contributed valuable insights in areas such as dataset enhancement

and optimization of detection algorithms. However, there remains

room for further improvement in accurately detecting small and

densely clustered targets within the intricate field conditions.

Moreover, considering various angles of the disease under the

UAV viewpoint and acknowledging the subtle disparities in visual

features between wild and cultivated rice diseases, the current

methodologies are inadequate to meet the demands of disease-

resistant breeding applications for wild rice bacterial blight.

Furthermore, in the realm of object detection models, achieving

real-time wild rice bacterial blight detection from UAV necessitates

the integration of algorithms with swift inference capabilities. The

faster R-CNN model (Ren et al., 2017), representing a two-stage

detection model, demonstrates higher accuracy but slower speed.

On the other hand, the YOLO model, representing a one-stage

detection model, offers a significant advantage in speed compared to

the two-stage model, making it better suited for real-time detection

requirements (Pan et al). Hence, this study opts for the latest YOLO

series algorithm, YOLOv8, as the baseline model.

With a specific focus on wild rice bacterial blight, the research

introduces a novel approach built on the Xoo-YOLO model for

detecting bacterial blight in wild rice from the viewpoint of UAV

within field environments. This method is designed to address

challenges associated with low accuracy in detection under the

perspective of UAV in fields. It also addresses the inability of the
frontiersin.org
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horizontal bounding box detection to detect various angles of the

disease detected from the UAV viewpoint. The overarching aim is

to enhance the precision and robustness of bacterial blight detection

in wild rice when viewed from the UAV’s perspectives within

field conditions.

The important contributions of this paper are as follows:
Fron
(1) Images of wild rice bacterial blight were collected as a

dataset from the perspective of UAV in natural field

environments. These images were utilized for training,

validating, and testing the model.

(2) A method for wild rice bacterial blight detection in the field

from the UAV perspective, which is based on the Xoo-

YOLO model, is proposed to address the issue of poor

detection performance for dense or small-object disease

targets and balancing both the detection accuracy and

speed. This method meets the demand for wild rice

bacterial blight detection in breeding disease resistance.

The backbone network was introduced into the Large

Selective Kernel Network (LSKNet) to better achieve the

detection of disease targets under the UAV viewpoint by

dynamically adjusting its large spatial receptive field.

Simultaneously, the neck network is enhanced by

introducing the hybrid convolution module of the

GSConv to reduce the amount of calculation and

parameters of the model.

(3) An oriented bounding box detection method with rotating

angles (theta dimension) is proposed to address the issue of

inaccurate detection brought on by the wild rice bacterial

blight, which presents arbitrary angles from the UAV

viewpoint. This method achieves localized detection of

wild rice disease spots in arbitrary directions while

reducing the interference brought about by too much

background information introduced and improving the

network’s ability to extract disease.

(4) Through experiments, the proposed Xoo-YOLO model has

been validated on the dataset of wild rice bacterial blight.

Across metrics such as accuracy, recall, and F1 score, this

approach consistently outperforms. Notably, it achieves this

superiority while effectively reducing model parameters and

computational complexity. Striking a balance between

accuracy and efficiency, it is better poised to cater to real-

time detection requirements under resource-constrained

settings, such as UAV and other edge devices.
2 Materials and methods

2.1 Materials

2.1.1 Material preparation
Wild rice germplasm resources from the Institute of Crop

Science, Chinese Academy of Agricultural Sciences, were planted

at the Potianyang Base, Yazhou District, Sanya City, Hainan
tiers in Plant Science 03
Province, China (N: 18°39′84.13″, E: 109°17′51.68″). On 1 March

2023, a total of 120 wild rice samples were artificially inoculated

with the pathogen of rice bacterial blight. Following the “The

technique rules for identification of rice variety resistance against

bacterial blight (Xanthomonas oryzae pv. oryzae),” the inoculation

was performed using the pathogenic strain PXO99A of

Xanthomonas oryzae pv. oryzae, which is known to cause rice

bacterial blight. The inoculation method involved manually cutting

leaves during the tillering stage (Administration, A.P.M.S, 2017;

Tang et al., 2017).

2.1.2 Image acquisition and processing
The camera-equipped UAV was utilized to acquire RGB images of

wild rice at different times after infection with bacterial blight. The

image acquisition method of wild rice bacterial blight is shown in

Figure 1. The type of UAV equipment is Dji Mini2 (DJI Inc, Shenzhen,

China), the flying altitude is 0.6–1.5 m above the surface of the wild rice

field, the camera head pitch angle is −90° to −60°, and the output image

resolution is 1,920 × 1,080, which is saved in JPG format. Image

acquisition was conducted at different time intervals, specifically on the

fifth, seventh, ninth, 12th, 14th, 16th, and 18th days after infection. The

acquisition periods were from 8:00 AM to 11:00 AM and from 4:30 PM

to 6:30 PM. The weather conditions during image acquisition included

sunny, cloudy, and overcast days, with environmental temperatures

ranging from 22°C to 30°C. All images were captured in the natural

field environment, utilizing natural lighting without the use of flash.

The images contained various types of interference, such as different

levels of occlusion, water surface reflections, and overexposure, as well

as weeds, withered leaves, bird droppings, and field debris. Each image

contained one-fourth to two wild rice plants. In total, 750 images of

infected wild rice with bacterial blight were collected under the UAV

viewpoint. The days since inoculation, figures, and image samples in

the wild rice bacterial blight dataset are shown in Figure 2. These

images were further identified and confirmed by two experts

specializing in wild rice germplasm identification. The open-source

software roLabelImg (cgvict, 2017) was used to manually annotate wild

rice leaf blight spot areas, and the annotation information was saved as

a file in.xml format using this software. The dataset was divided and

split in the ratio of 6:2:2, with 450 images randomly selected as the

training set, 150 as the validation set, and 150 as the test set.

Furthermore, the inclusion of mosaic augmentation is notable during

training. Mosaic augmentation involves the random extraction of four

images, where each image contributes only a portion of its content and

corresponding detection box information. These fragments are then

combined into a single image, serving as input for the network. This

technique significantly diversifies the training data, effectively guarding

against overfitting by introducing greater variability into the

learning process.
2.2 Methods

2.2.1 Overall model
Given the intricate backgrounds inherent in wild rice paddies—

encompassing water, shadows, and reflections—and the dynamic
frontiersin.org
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alterations in the manifestation of visual disease attributes due to

the interplay of UAV propeller airflow and variable weather

conditions, the imperative for real-time detection underscores our

decision to employ YOLOv8 as the baseline model for this research.

In this context, Xoo-YOLO emerges as an enhanced iteration built

upon YOLOv8, specifically tailored for the task of detecting wild

rice bacterial blight from the UAV perspective in the field. The

architecture of Xoo-YOLO is visualized in Figure 3.

The model comprises four principal components: input,

backbone, neck, and head. The enhancements incorporated are

outlined as follows:
Fron
(1) Integration of LSKNet into the backbone: To better achieve

the detection of disease targets under the UAV viewpoint,

we introduced LSKNet into the backbone network, which

adopts the dynamic adjustment of its large spatial receptive

field, allowing the model to adaptively use different large

kernels and adjust the receptive field for each target in space

as needed.

(2) Construction of a lightweight model: In pursuit of a more

streamlined design, the neck network is enhanced by

introducing the hybrid convolution module of the

GSConv to reduce the number of calculations and

parameters of the model.

(3) Inclusion of an oriented bounding box detection method:

To detect the wild rice bacterial blight under the UAV

viewpoint with arbitrary angles, we introduce an oriented

bounding box detection method. This approach integrates

angle information (theta) within the head layer and loss

function, reducing the interference brought about by too

much background information and improving the

network’s ability to extract disease.
By amalgamating these advancements, Xoo-YOLO is equipped

to address the intricacies associated with wild rice bacterial blight
tiers in Plant Science 04
detection from the UAV viewpoint, offering improved accuracy and

robustness. The whole algorithm is summarized in the pseudo-

lcode in Algorithm 1.
Input: Image I, Confidence Threshold T

Output: Detected objects with oriented bounding boxes

and labels

1. Scaling and normalizing the input image I

2. Feed image I into the network to obtain the output

feature map

3. Prediction for each grid unit using the feature map:

a. Predict the presence of an object in each grid unit

using the BCE function

b. Predict the category of objects in each grid unit

using the BCE function

c. Predict the location and size of objects in each

grid unit using the KLD function

4. Post-processing of predicted bounding boxes:

a. Remove bounding boxes with confidence lower than

threshold T

b. Apply non-maximum suppression to remove

overlapping bounding boxes

5. Output final prediction results: Category,

confidence, and location information of wild rice

bacterial blight
Algorithm 1. Pseudocode of Xoo-YOLO Algorithm.

2.2.2 YOLOv8
YOLOv8, a prominent object detection algorithm, was

introduced by Ultralytics in January 2023. This algorithm has

exhibited commendable outcomes in both speed and accuracy

(Terven and Cordova-Esparza, 2023). The backbone of YOLOv8

centers around the C2f module, drawing inspiration from the ELAN
FIGURE 1

Using an unmanned aerial vehicle (UAV) to acquire image data of wild rice infected with bacterial blight.
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module. The C2f module is constructed from two Conv modules

and multiple Darknet BottleNeck modules, interconnected by Split

and Concat modules. Additionally, YOLOv8 incorporates the

Spatial Pyramid Pool Fusion (SPPF) module. This innovation

transforms feature maps of varying sizes into fixed-size feature

vectors, effectively preserving the original image’s features and

positional information to the maximum extent. The YOLOv8’s

neck network incorporates the Path Aggregation Network (PANet),

similar to YOLOv7 (Wang et al., 2023), which fuses three effective

feature layers obtained from the backbone network across layers of

features, with the three effective feature layers located in the middle,

lower middle, and bottom layers of the backbone network.

2.2.3 Improved backbone network structure
Owing to the intricate setting of wild rice paddies,

encompassing water, mud, algae, weeds, bird droppings, shadows,
Frontiers in Plant Science 05
and other intricate backgrounds, coupled with the relatively

diminutive size of wild rice bacterial blight as viewed from UAV,

relying on limited contextual information often triggers incorrect

detection. For instance, it may lead to the misinterpretation of white

streaks of debris within the wild rice paddies as instances of wild

rice bacterial blight. Simultaneously, the varying viewpoints and

distances of the UAV introduce distinct contextual information

requirements for accurate detection. However, introducing an

excess of contextual information can inadvertently obscure target

features’ specifics while exacerbating the model’s complexity.

To address the aforementioned challenges, the presented Xoo-

YOLO model incorporates the LSKNet (Li et al., 2023). LSKNet

dynamically adjusts its large spatial receptive field, enabling the model

to flexibly employ varying large kernels and modify the receptive field

according to the specific spatial requirements of each target. This

adaptability is especially vital for detecting wild rice bacterial blight

amid the UAV viewpoint and intricate conditions of the field.

LSKNet is implemented through a spatial selection mechanism,

which is implemented by effectively weighting the features

processed by a sequence of large depth-wise convolutional kernels

and spatially merging them. The weights of this kernel are

dynamically determined based on the input, allowing the model

to adaptively use different large kernels and adjust the receptive field

for each target in space as needed.

LSKNet mainly consists of two sub-blocks, Large Kernel

Selection (LK Selection) and Feed-Forward Network (FFN). FFN

is used for channel mixing and feature refinement and consists of a

sequence of a fully connected layer, a depth-wise convolution, a

GELU activation, and another fully connected layer; LK Selection

consists of a fully connected layer, LSK sub-block, a GELU

activation, and another fully connected layer.

The central component of LSKNet is the LSK sub-block, which

comprises a series of large kernel convolutions alongside a spatial

kernel selection mechanism. Larger kernel convolution constructs

by explicitly decomposing it into a sequence of depthwise

convolutions with a large growing kernel and increasing dilation.

To elaborate, the expansion of various parameters, such as kernel

size “k,” dilation rate “d,” and the receptive field “RF,” within the ith

depthwise convolution within the sequence, is characterized by the

following definitions:

ki−1 ≤ ki; d1 = 1, di−1 < di ≤ RFi−1,

RF1 = k1, RFi = di(ki − 1) + RFi−1 :
(1)

The increasing kernel size and dilation rate ensure that the

receptive field expands quickly enough, and at the same time, an

upper bound on the dilation rate is set to avoid the dilation

convolution introducing gaps between feature maps. This

approach makes the later kernel selection easier and also reduces

the number of parameters significantly. Simultaneously, a series of

decomposed depthwise convolutions with different receptive fields

are used to obtain features with contextual information at different

ranges, allowing channel blending for each spatial feature vector.

The calculation is shown in Eqs. (2) and (3).

U0 = X,Ui+1 = F dw
i (Ui) (2)
FIGURE 2

The days since inoculation, figures, and image samples in the wild
rice bacterial blight dataset.
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eUi = F 1�1
i (Ui),  for i in ½1,N� (3)

Based on the above, LSKNet employs a spatial kernel selection

mechanism to enhance the network’s ability to focus on the most

relevant spatial context regions, spatially selecting feature mappings

from large convolutional kernels of different scales.

The outlined implementation steps are as follows:

(1) Concatenate features obtained from different kernels with

different ranges of receptive fields:

eU = ½eU1;…; eUi� (4)

(2) Efficient spatial relation extraction using channel-based

average pooling and maximum pooling:

ally pooled features and use a convolutional layer F 2→N (·) to

transform the pooled features (with two channels) into N spatial

attention maps:

cSA = F 2→N (½SAavg ; SAmax�) (6)

(4) A sigmoid activation function is used to obtain a separate

spatial selection mask for each decomposed kernel:

gSAi = s (cSA i) (7)

(5) The features in the decomposed macronucleus sequence are

weighted with the corresponding spatially selective masks and fused

by a convolutional layer F (·) to obtain the attention feature S:

S = F o
N

i=1
(gSAi · ~Ui)

 !
(8)

(6) The final output of the LSK module is an element-by-

element product between input features X and S:
Frontiers in Plant Science 06
Y = X · S (9)

LSKNet fulfills the requirement for detecting bacterial blight in

wild rice from the perspective of UAV in the field while addressing the

necessity for a wider and adaptable contextual understanding without

bells and whistles. Therefore, we add LSKNet to the backbone network

to enhance the feature extraction capability of this model. The

structural diagram of LSKNet is illustrated in Figure 4.

2.2.4 Improved neck network structure
The standard convolution (SC) module used in YOLOv8

applies different convolutional kernels to multiple channels

simultaneously, which leads to an increase in the number of

parameters required and high FLOP. On the other hand,

although lightweight networks using depthwise separable

convolutions (DSC) such as MobileNet (Howard et al., 2017) and

ShuffleNet (Zhang et al., 2018) can effectively solve this problem

and greatly improve the detection performance, DSC separates

channel information from the input image during computation,

leading to a significant reduction in the feature extraction and

fusion capabilities and resulting in a decrease in the detection

performance of the model. It cannot meet the real-time

requirements of disease resistance identification for the detection

of wild rice bacterial blight.

To enhance computation speed without compromising

detection accuracy, the Xoo-YOLO model integrates the GSConv

hybrid convolution module (Li et al., 2022). This module

incorporates Shuffle to infuse information produced by SC into

the information generated by DSC. In contrast to DSC, the strength

of GSConv lies in its ability to maintain hidden connections while

operating with reduced complexity. This approach adeptly strikes a

model equilibrium between accuracy and speed, ensuring a

judicious trade-off between the two.
FIGURE 3

Overall model architecture diagram.
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The GSconv module is primarily composed of Conv, DWConv,

Concat, and Shuffle operations. This configuration is illustrated in

Figure 5A and is constructed as follows:
Fron
(1) The input feature map has a total of C1 channels.

(2) DSC is applied to half of the channels, while SC is applied to

the remaining half.

(3) The resulting two output feature maps are concatenated

along the channel dimension.

(4) The concatenated feature map is then subjected to a shuffle

operation, yielding the final output.

(5) The final output feature map possesses a total of C2

channels.
VoVGSCSP is an iterative integration of the GS bottleneck

utilizing the foundation of GSConv (Xu et al., 2023). The process
tiers in Plant Science 07
involves segmenting the input feature map’s channel count into two

segments. The initial portion traverses through convolution (Conv)

for processing, following which the features undergo extraction

through consecutively stacked GS bottleneck modules. On the

other hand, the remaining segment is utilized as residuals, engaging

in a single convolution operation. This module aptly harmonizes the

model’s accuracy and speed, resulting in a reduction of both

computational and complexity. Simultaneously, it sustains a

commendable degree of accuracy and significantly augments the

reutilization rate of extracted features. The structural representation

of VoVGSCSP can be observed in the diagram depicted in Figure 5B.

Ultimately, the neck network underwent refinement through the

amalgamation of GSConv and VoVGSCSP. These enhancements

served to diminish the model’s overall computational overhead,

resulting in swifter network operation and reduced information

processing time. This harmonious adjustment better balances the

trade-off between detection speed and accuracy. The augmented
FIGURE 4

Structural diagram of LSKNet.
A

B

FIGURE 5

Structural diagram of GSConv and VoVGSCSP module. (A) GSConv module. (B) VoVGSCSP module.
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configuration of the neck network is visually presented in the

provided Figure 6.
2.2.5 Oriented bounding box
The UAV was taken from above, and the target in its images

usually appears at any angle. The wild rice leaves are striped and

lanceolate in shape, and the bacterial blight is also striped on the

leaves. This makes the horizontal bounding box of the original

YOLOv8 model overlap too much and inevitably introduces too

much background information into the horizontal bounding box of

adjacent targets, which not only leads to the phenomenon of missed

detection and wrong detection at the same time but also increases the

difficulty of extracting features from the network (Zhang et al., 2021).

Recently, oriented bounding boxes, which include an angular

dimension, have been utilized to represent objects with different

orientations (Liao et al., 2018). For instance, Zhang et al. (2023)

utilized oriented bounding boxes to detect Fusarium head blight

(FHB) in wheat and achieved notably high accuracy and robustness

in predicting FHB levels. The use of oriented bounding boxes for

detecting crop diseases from a UAV perspective has proven to be

effective. In light of this, the model proposed in this study adopts

oriented bounding box detection. This approach involves angular

regression (Ren et al., 2015) and employs the long-edge definition

method (Ma et al., 2018) to regress the minimum bounding rectangle

of the target. This enhancement is crucial for ensuring reliable and

accurate wild rice bacterial blight detection in field conditions.

The horizontal bounding box parameters are expressed as (x, y,

w, and h). The four parameters indicate the horizontal and vertical

coordinates of the center of the horizontal bounding box, width,

and height, respectively. The oriented bounding box contains five

parameters (x, y, w, h, and q), with q indicating the angle of rotation
(Li et al., 2020). The structural diagram of the head is shown in

Figure 7. To prevent duality, the long-edge definition method

(Figure 8) is used, i.e., q is between −90° and 90°, w is the longest

edge, its neighbor is h, and q represents the range of angles through

which the x-axis is rotated to w. The model proposed in this paper

adds a new rotation angle prediction channel to the head structure

to implement the detection of the oriented bounding box, with a

dimension of 3 × (5 + 1 + C), where 3 represents that each grid will

be predefined with three predicted boxes of various aspect ratios, 5

represents that each predicted box will predict the parameter (x, y,

w, h, and q) of the border, 1 is used to determine whether each grid

contains the object, and the final C parameters is used to determine

the type of object each grid contains.

The loss function of the model proposed in this paper consists

of three parts: Reg part, Obj part, and Cls part. The Reg part is the
Frontiers in Plant Science 08
regression parameter judgment of the feature points, the Obj part is

the judgment of whether the feature points contain objects, and the

Cls part is the kind of objects contained in the feature points. In

order to avoid the differences between the angular parameter q and

other parameters to bring difficulties to the training of the model,

the Reg part uses KLD as the loss function (Yang et al., 2021), whose

core idea is to convert the oriented bounding box into a two-

dimensional Gaussian distribution, i.e. (x, y, w, h, and q) into a two-
dimensional Gaussian distribution of N (m,S), and the conversion is

shown in Eq. (10). The KLD between the Gaussian distribution is

calculated as the regression, the loss is calculated as shown in Eq.

(11), where the subscripts p and t denote the predicted distribution

results and the actual results respectively. The KLD loss function is

scale-invariant and can dynamically adjust the gradient weights of

the angle parameters according to the aspect ratio of the object, and

this self-modulation optimization mechanism effectively promotes

the accuracy of oriented bounding box detection. The Obj and Cls

parts, on the other hand, adopt a binary cross-entropy loss function

to reduce the computational complexity of training.
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3 Experiments and analysis of results
3.1 Training procedures

The operating environment for this experimental was a Dell

tower workstation (Dell, Inc) with an operating system

environment of Windows 11, a 12th-Gen Intel® Core™ i5-12500

3.00 GHz processor, 32 G of on-board running memory, a 1-TB

solid-state drive, and an NVIDIA GeForce RTX 3080 graphics card

with 10 GB of video memory and using GPU-accelerated
FIGURE 6

Structural diagram of the neck.
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computing. (Software environment: Python 3.7.16, PyTorch 1.7.0,

Torchvision 0.8.2, CUDA 11.0.)

The number of iterations in this experiment was 700, batch_size

was set to 2, and Adam was used as the optimizer. The initial

learning rate of the models was 1e−3, the maximum learning rate

was 1e−5, the momentum was 0.937, the weight decay was 0, and

the input image resolution was 640 × 640. The same training

parameters and dataset were used for all models during training.
3.2 Performance evaluation

To accurately evaluate the effectiveness of the method proposed

in the previous section, this paper uses several evaluation metrics,

including precision (P), recall (R), F1 score, mean average precision

(mAP), speed (FPS), number of parameters (Params), and GFLOPs.

These metrics are utilized to assess the performance of the model in

terms of its detection accuracy and efficiency.

The precision refers to the proportion of correctly classified

positive samples out of all the samples predicted. It is calculated

using the formula presented in Eq. (12).

Precision =
TP

TP + FP
  (12)

Where TP represents the number of true-positive samples

(correctly predicted positive samples), and FP represents the

number of false-positive samples (negative samples incorrectly

predicted as positive).

The recall quantifies the proportion of positive samples that are

correctly identified by the model out of the total number of actual

positive samples. It is calculated using the Eq. (13).
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Recall =
TP

TP + FN
(13)

The F1 score combines both precision and recall into a single

value. The equation for calculating the F1 score is shown in Eq. (14).

F1 = 2 ·
P · R
P + R

(14)

The mAP is calculated based on the precision–recall (PR) curve,

which only needs to detect a single disease; mAP is equivalent to

AP. The equation for calculating mAP is shown in Eq. (15).

mAP = AP =
Z 1

0
P(R)dR (15)

The Params reflects the model’s complexity and capacity to

learn and represent features. The equation for calculating Params is

shown in Eq. (16).

Params  = ½i · (k · k) · o� + o (16)

Where i is the input size, k is the convolution kernel size, and o

is the output size.

Speed is measured in frames per second (FPS). The equation for

calculating speed is shown in Eq. (17).

Speed = frames = time (17)

GFLOPS is the speed of the model based on computation costs.

The formula for calculating GFLOPS is shown in Eq. (18).

GFLOPS  = H ·W · params (18)

Where H × W is the size of the outputted feature map.
FIGURE 8

Long-edge definition method.
FIGURE 7

Structural diagram of the head.
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3.3 Ablation experiment

To offer a more comprehensive understanding of the

effectiveness of the proposed enhancement technique applied to

the Xoo-YOLO model, a series of ablation experiments were

conducted. YOLOv8 was employed as the baseline model for

comparison, and the results are detailed in Table 1.
Fron
(1) Effects of LSKNet: a comparative analysis between YOLOv8

and YOLOv8+LSKNet highlights the efficacy of integrating

LSKNet. Notably, the addition of LSKNet leads to a notable

enhancement in model accuracy. The metrics mAP@0.5,

precision, and recall show improvements of 2.26%, 4.60%,

and 4.27%, respectively. This substantiates that LSKNet

indeed contributes to improved model performance,

attributed to its dynamic adaptation of a large spatial

receptive field.

(2) Effects of GSConv: a comparison between YOLOv8 and

YOLOv8 + GSConv reveals that the incorporation of

GSConv contributes to a reduction in computational

costs, with GFLOPS and Params experiencing reductions

of 45.89% and 53.15%, respectively. Simultaneously, feature

extraction capabilities receive a modest boost, as evidenced

by increases of 0.18% in mAP@0.5, 3.80% in precision, and

4.42% in recall. While the GSConv module was integrated

into the neck with careful consideration, it was deliberately

excluded from the backbone to prevent an excessive

presence of GSConv modules. This decision aimed to

circumvent the overcomplication of the network

architecture, which could hinder spatial information flow

and significantly elongate inference times.

(3) Effects of both together: Xoo-YOLO harmoniously

amalgamates the strengths of both LSKNet and GSConv.

The result is a model with a 45.43% reduction in parameter

count, a 51.39% decrease in computational demand, a

10.96% enhancement in precision, a 4.34% improvement

in recall, and a noteworthy 7.80% advancement in

mAP@0.5 when compared to YOLOv8.
Collectively, Xoo-YOLO exemplifies a well-rounded synergy

between accuracy enhancement and model lightweightness, thus

affirming the significance of our proposed enhancements.
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3.4 Comparative experiment

To validate the advantages of the model, the wild rice bacterial

blight dataset, which includes 450 images in the training set, 150

images in the validation set, and 150 images in the test set, was used

to evaluate the model’s performance in terms of precision, recall, F1

score, mAP, speed (FPS), Params, and GFLOPs. All experiments

were conducted under identical experimental conditions to ensure a

fair comparison. Comparative experiments were conducted on the

proposed model with the YOLOv7 and YOLOv7-added Swin

Transformer module. The comparison results are shown in

Figure 9 and Table 2. The detection performance of the three

networks is different, and the mAP@0.5 of the Xoo-YOLO proposed

in this paper is 94.95%, which is 9.13% and 6.13% higher than the

original YOLOv7 and YOLOv7-added Swin Transformer module.

Furthermore, the Xoo-YOLO model outperforms the other

models in various metrics. There are two main reasons

contributing to this phenomenon. Firstly, in comparison to the

ELAN module in YOLOv7, the C2f module in YOLOv8

incorporates a parallel concatenating operation of the bottleneck

module, which allows for more branching quadratic links and thus

richer gradient flow information and thus possesses enhanced

feature extraction and fusion capabilities. Secondly, the LSKNet

module dynamically adjusts the spatial receptive field as needed,

effectively mitigating instances of false positives and false negatives.

These factors collectively reinforce the efficacy of the Xoo-YOLO

model in wild rice bacterial blight detection. In order to further

verify the performance of the proposed Xoo-YOLO model, we

randomly selected some detection results under different

environmental conditions from all testing samples, as shown

in Figure 10.

In terms of speed and model size, the Xoo-YOLO model

exhibits a significant reduction in parameter count and

computational complexity. This reduction is primarily attributed

to the introduction of the GSConv module, which has a lower

computation intensity. This module effectively accelerates feature

fusion while decreasing computational complexity. Additionally,

when compared to the YOLOv7 model, the C2f module and SPPF

module utilized in YOLOv8 are more lightweight, providing

advantages in terms of parameter and computational complexity.

Comparative results are presented in Figure 11.

To analyze the performance differences between the proposed

oriented box detection method and the original horizontal box
TABLE 1 Comparisons of ablation experiments.

Models Precision (%) Recall (%) mAP@0.5 (%) GFLOPS (G) Params (M)

YOLOv8 87.94 75.66 87.15 54.317 24.352

YOLOv8 + LSKNet 90.20 79.93 91.75 54.662 24.786

YOLOv8 + GSConv 88.12 79.46 91.57 29.347 11.404

YOLOv8 + GSConv + LSKNet (proposed model) 97.60 80.00 94.95 29.692 11.838
Bold values represent the model proposed in this paper, namely the Xoo-YOLO model.
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detection method for wild rice bacterial blight, 750 images were

annotated by the horizontal bounding box method and fed into the

same network for training. Comparative experiments were

conducted on the trained models, and the results are presented

in Table 3.

Compared to the original method of using horizontal bounding

boxes for detection, the model proposed in this study demonstrates

improvements in terms of recall, precision, and mAP.When dealing

with wild rice bacterial blight cases characterized by large aspect

ratios and varying orientations, the utilization of oriented bounding

box detection provides a better fit for the diseases. This approach

reduces the influence of the background and facilitates more

accurate feature extraction. Conversely, employing horizontal

bounding boxes for detection can lead to visual disturbances and

result in more pronounced instances of missed and false detections.

Such an approach is inadequate for addressing the requirements of

detecting wild rice bacterial blight from the UAV’s perspective in
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field conditions. Furthermore, it significantly hampers subsequent

research involving disease segmentation and disease resistance

identification for wild rice bacterial blight. The comparative

results of detection performance using both methods are

illustrated in Figure 12.
4 Discussion

Extensive research on rice bacterial blight detection using deep

learning has been conducted. However, prior studies by Haque et al.

(2022); Jia et al. (2023); Kumar et al. (2023), and Prasomphan

(2023) did not fully consider the complexities of field conditions

and the diverse angles at which diseases appear under the UAV

viewpoint. This study addresses these specific needs. Moreover,

there has been a scarcity of studies involving wild rice bacterial

blight detection utilizing deep learning methods. To our knowledge,

this is pioneering research to detect wild rice bacterial blight under

UAV viewpoints in field settings. The results underscore the

considerable potential of the Xoo-YOLOmodel in disease detection.

The advantages of the Xoo-YOLO model are as follows:
1. Efficiency and speed: Xoo-YOLO boasts lightweight

characteristics and enhanced processing speed, making it

suitable for deployment on UAV or edge devices.

2. Balance of accuracy and efficiency: The model strikes a

harmonious equilibrium between lightweight design and

detection accuracy, outperforming other common deep

learning models in detection accuracy.

3. Rotated bounding box detection: The Xoo-YOLO model

introduces a method for detecting wild rice bacterial blight

through oriented bounding boxes, leading to more accurate

disease detection and localization. This approach

minimizes interference caused by excessive background

information under UAV viewpoints, thus establishing a

robust foundation for subsequent disease segmentation and

measurement efforts.
However, the recall of the Xoo-YOLO model for detecting wild

rice bacterial blight stands at 80.0%, suggesting room for

improvement. This lower recall could be attributed to factors

such as wind interference and motion blur caused by UAV

propellers, as well as instances of closely clustered diseases leading

to missed detections. To address these, future experiments will

explore the use of adversarial generative networks. Additionally,

future endeavors should place a priority on including a wide range

of wild rice varieties in the research. This approach is essential

to ensuring the robustness and generalizability of the

proposed method.

While Xoo-YOLO has its limitations, it serves as a valuable

technical reference for detecting wild rice bacterial blight in field

environments under the UAV viewpoint. The application of the

Xoo-YOLO model to an intelligent assessment platform for wild

rice diseases holds the promise of validating its reliability.
TABLE 2 Comparison of detection performance of different models.

Models Precision
(%)

Recall
(%)

F1 mAP@0.5
(%)

FPS

YOLOv7 86.15 79.81 0.83 85.82 49

YOLOv7 +
Swin

Transform

93.13 68.59 0.79 88.82 24

Proposed
model

97.6 80.00 0.88 94.95 56
Bold values represent the model proposed in this paper, namely the Xoo-YOLO model.
FIGURE 9

Comparison of detection performance between different models.
TABLE 3 Comparison of the horizontal bounding box and oriented
bounding box detection performance.

Models Precision (%) Recall (%) mAP (%)

HBB 73.3 78.5 79.5

Proposed model 97.60 80.00 94.95
Bold values represent the model proposed in this paper, namely the Xoo-YOLO model.
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5 Conclusion

Wild rice disease detection is a crucial step in screening and

cultivating highly disease-resistant rice varieties. To achieve rapid

and accurate detection of bacterial blight in wild rice under natural

field conditions, this study establishes a dataset for field-based

disease detection. Addressing the unique characteristics of

detecting wild rice bacterial blight from UAV viewpoints, this

research builds upon the YOLOv8 model, introduces

enhancements, and proposes the Xoo-YOLO network

architecture. This is achieved by incorporating the LSKNet

network in the backbone, integrating the GSConv module in the

neck, and adopting oriented bounding box detection. These
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improvements enable real-time automatic detection of bacterial

blight in wild rice under UAV perspectives.

Experimental results reveal that the proposed model achieves an

impressive mAP@0.5 of 94.95%. It outperforms comparative models

in terms of precision, recall, and F1 score. The model demonstrates

superior computational complexity, parameter, and detection time

with values of 29.692 G, 11.838 M, and 17.78 ms, respectively. These

improvements compared to classic object detection models like

YOLOv7 and YOLOv8 are significant. The model is well-suited for

subsequent research focusing on disease segmentation and disease

resistance identification in wild rice bacterial blight.
A

B

C

FIGURE 10

Prediction results of the proposed method. (A) Under dense disease conditions. (B) Under the conditions of image blurriness generated during the
UAV flight collection process. (C) Under complex backgrounds such as weeds and debris in the field.
FIGURE 11

Comparison of different models in terms of computational
complexity, parameter, and detection time.
A B

FIGURE 12

Comparison of detection performance between horizontal
bounding boxes (HBB) and oriented bounding boxes (OBB). (A) HBB.
(B) OBB.
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Considering the requirements of disease resistance

identification standards, factors beyond disease detection, such as

disease length, need integration with other models like disease

segmentation. This study solely focuses on disease detection.

However, in future work, we plan to delve into disease

segmentation and disease resistance identification to enhance the

efficiency of disease resistance gene exploration in wild rice.
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