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Since ancient times, Azadirachta indica, or Neem, has been a well-known species

of plant that produces a broad range of bioactive terpenoid chemicals that are

involved in a variety of biological functions. Understanding the molecular

mechanisms that are responsible for the biosynthesis and control of terpenoid

synthesis is majorly dependent on successfully identifying the genes that are

involved in their production. This review provides an overview of the recent

developments concerning the identification of genes in A. indica that are

responsible for the production of terpenoids. Numerous candidate genes

encoding enzymes that are involved in the terpenoid biosynthesis pathway

have been found through the use of transcriptomic and genomic techniques.

These candidate genes include those that are responsible for the precursor

synthesis, cyclization, and modification of terpenoid molecules. In addition,

cutting-edge omics technologies, such as metabolomics and proteomics, have

helped to shed light on the intricate regulatory networks that govern terpenoid

biosynthesis. These networks are responsible for the production of terpenoids.

The identification and characterization of genes involved in terpenoid

biosynthesis in A. indica presents potential opportunities for genetic

engineering and metabolic engineering strategies targeted at boosting

terpenoid production as well as discovering novel bioactive chemicals.

KEYWORDS

terpenoid biosynthesis, transcriptomics, proteomics, genetic engineering,
metabolic engineering
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Introduction

Neem, or Azadirachta indica, belongs to the family Meliaceae. It

is native to India and Burma and has since been introduced to

several nations in Africa and North America. A. indica holds

significant importance in traditional medicine systems,

particularly in India and other parts of South Asia (Kumar and

Navaratnam, 2013; Moga et al., 2018; Blum et al., 2019).

Various biological actions have been discovered in A. indica,

and it has been investigated for its possible antibacterial, antiviral,

antifungal, molluscicidal, and antihyperglycemic characteristics

(Ufele et al., 2013; Ezeigwe et al., 2015; S. Abdelhady et al., 2015;

Ashfaq et al., 2016; Joy Sinha et al., 2017; Osman Mohamed Ali

et al., 2017; Altayb et al., 2022).

Furthermore, the SARS-CoV-2 (COVID-19) pandemic

(Kalasariya et al., 2022) has lately posed a challenge to humanity,

and different compounds have been investigated in silico to treat the

disease. Docking investigations of A. indica molecules have also

provided encouraging results for their inhibitory action against

various illnesses such as SARS-COV-2, malaria, and dengue

(Lavanya et al., 2015; Dwivedi et al., 2016; Khanal et al., 2019;

Adegbola et al., 2021; Baildya et al., 2021).

The A. indica has been thoroughly studied for its secondary

chemical compounds and for its potential application in the

discovery and synthesis of triterpenes, which are among the most

abundant and highly complex families of plant-derived

natural products.

A predominant focus of research in A. indica is the presence of

an important secondary metabolite compound known as

azadirachtin, which is a triterpenoid class of limonoids.

Azadirachtin, the principal insecticidal component contained in

the kernel of Neem seeds, displays high bioactivity against different

kinds of insects (Schmutterer, 1995; Schmutterer and Singh, 1995;

Hummel et al., 2015).

Growing concerns about the potential negative impacts of

chemical pesticides on human health, the environment, and non-

target organisms have led to an increasing preference for alternative

crop protection methods (Ajiboye et al., 2022). Consequently, there

is a greater focus on the development and utilization of plant- or

microbe-based biopesticides that are both bioactive and

biodegradable. Azadirachtin-based pesticides are environmentally

friendly, biodegradable, and non-toxic to wildlife, plants, and birds

(Raizada et al., 2001; Kilani-Morakchi et al., 2021). Azadirachtin has

shown very minimal toxicity to mammals and has great selectivity

for its target organisms (Mordue (Luntz) et al., 2005; Amaral et al.,

2019). Azadirachtin is the predominant compound responsible for

controlling of insects in agriculture (Vacante and Bonsignore,

2018). Over the past three decades, there has been an increase in

the utilization of Neem-based insecticides, primarily attributed to

the discovery and isolation of azadirachtin, the key bioactive

compound responsible for its insecticidal properties (Chaudhary

et al., 2017; Pasquoto-Stigliani et al., 2017). Azadirachtin has been

successfully commercialized, and it is still widely accepted as being

the most effective botanical pesticide that is in use in agricultural
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production all around the world (Isman and Grieneisen, 2014;

Chaudhary et al., 2017; Aribi et al., 2020).

The biosynthesis route of Neem, which is known to synthesize

physiologically and economically relevant triterpenoids with

extraordinarily complex carbon skeletons and diverse functional

groups, is of great interest among researchers. The first successful

synthesis of azadirachtin took 20 years to complete (Jauch, 2008;

Veitch et al., 2008) and comprises 71 steps; however, the yield is

merely 0.00015%, and thus the production of azadirachtin at the

industrial scale is not feasible.

The recent identification and functional characterization of

genes involved in the formation of these triterpenoid precursors,

which are responsible for the synthesize of limonoids, was made

possible by studies in transcriptomics and genomics. Thus, omics

research offers a useful technique for examining the biosynthesis of

secondary metabolites. While the biochemical constituents of Neem

have been widely investigated, its genetic, molecular, and genomic

resources are scarce.
Importance of metabolites from
Azadirachta indica

The ability of Meliaceae plants to metabolize structurally

diverse and physiologically relevant compounds is well

established (Lin et al., 2022). The massive amount of literature

available across several platforms makes it challenging to find

information on each Neem metabolite. Azadirachtin, the most

researched, has a challenging chemical structure that belongs to

the tetranortriterpenoid class and is present in several forms, the

most well-known of which are azadirachtin A, and azadirachtin B

((EFSA) et al., 2018; Fernandes et al., 2019).

The secondary metabolites found in various parts of the tree

endow Neem with an array of biological capabilities. Azadirachtin,

Azadirone, Gedunin, Nimbin, Salannin, and Vilasinin are some of

the major metabolites known to exhibit substantial pesticidal and/

or therapeutic properties (Dhar et al., 1998; Isman, 2006; Pravin

Kumar et al., 2007; Boursier et al., 2011; Gupta and Diwan, 2017).

Out of the several limonoids, azadirachtin accounts for most of its

metabolite pool. Table 1 shows the structures and properties of a

few secondary metabolites.
Biosynthesis of metabolites
(triterpenoids)

According to Verpoorte and Alfermann (2000), there are three

main classes of secondary metabolites that may be distinguished

from one another based on their biosynthetic pathways. These

classes include terpenoids, polyketides, and phenylpropanoids

(Verpoorte and Alfermann, 2000). Two major metabolic

pathways—mevalonate (MVA) and methylerythritol 4-phosphate/

deoxyxylulose 5-phosphate (MEP)—are used by plants for

synthesizing terpenoids (Shi et al., 2010).
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TABLE 1 Major Secondary metabolites of Azadirachta indica.

Compounds PubChem CID MF Structure References

Azadirachtin 5281303 C35H44O16 (Bartelsmeier et al., 2022)

Nimbosterol 222284 C29H50O (Shrirangasami et al., 2020; Wylie and Merrell, 2022)

Nimbolide 12313376 C27H30O7 (Sarkar et al., 2021)

Palmitic acid 985 C16H32O2 (Wylie and Merrell, 2022)

Oleic acid 445639 C18H34O2 (Pasquoto-Stigliani et al., 2017)

Linoleic acid 5280450 C18H32O2 (Kaur et al., 2022)

Margocin 21632833 C20H26O2 (Kumar et al., 2018; Kaur et al., 2022)

Nimbidiol 11334829 C17H22O3 (Juin et al., 2022)

Nimbione 189404 C18H22O3 (Alzohairy, 2016)

Azadiradione 12308714 C28H34O5 (Ponnusamy et al., 2015)

Fraxinellone 124039 C14H16O3 (Alzohairy, 2016; Fan et al., 2022)

(Continued)
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In higher plants, the traditional mevalonate pathway mostly

produces the precursors, which are essential for the synthesis of

sesquiterpenes, triterpenes, and sterols in the cytosol and

mitochondria, while the hemi-, mono-, sesqui-, and diterpenes

are produced by the non-mevalonic acid pathway.

Although the azadirachtin biosynthesis in Neem is not well

established, the initial step in triterpenoid biosynthesis involves the

cyclization of 2,3-oxidosqualene, which is catalyzed by

oxidosqualene cyclase (Figure 1). This cyclization reaction
Frontiers in Plant Science 04
represents the primary diversification level in the biosynthesis of

triterpenoids (Abe et al., 1993). In addition to this, tirucallol (C30

Triterpene), a steroid of triterpenoids, is a potential precursor of

Neem azadirachtin biosynthesis (Ley et al., 1993; Johnson et al.,

1996; Ley et al., 2008).

In A. indica, two different levels of biochemical complexity are

assumed to be involved in the production of azadirachtin from

tirucallol (Hansen et al., 1994; Ley et al., 2008). Initially, a reduction

of four atoms occurs in the lateral chain (Ley et al., 1993; Dewick,
TABLE 1 Continued

Compounds PubChem CID MF Structure References

Salannin 6437066 C34H44O9 (Zhu et al., 2018)

Salannol 157144 C32H44O8 (Garg and Bhakuni, 1984; Koul et al., 2004)

Vepinin 185552 C28H36O5 (Shrirangasami et al., 2020)

Azadirone 10906239 C28H36O4 (Drijfhout and David Morgan, 2010; Akihisa et al., 2021)

Gedunin 12004512 C28H34O7 (Brandt et al., 2008)

Nimbin 108058 C30H36O9 (Sarkar et al., 2022)

Desacetylgedunin 3034112 C26H32O6 (Baildya et al., 2021)

Quercetin 5280343 C15H10O7 (Rao et al., 2019)
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2002), followed by the cyclization of the residual atoms to generate a

furan ring. This leads to the formation of limonoids, namely

azadirone and azadiradione. Following this, the C-ring undergoes

an opening process, leading to the generation of C-seco-limonoids,

namely nimbin, and salannin, and the third ring of apotirucallol is

oxidized (Ley et al., 1993; Johnson et al., 1996; Puri, 1999; Ley et al.,

2008). Additional rearrangements and oxidations are necessary to

produce azadirachtin, which is classified as one of the most

extensively oxidized triterpenoids (Aerts and Mordue, 1997).
Identification of candidate genes
responsible for triterpenoid synthesis
in A. indica through genomics

Genome studies in A. indica

Genomic studies in Neem have focused on sequencing and

analyzing the complete set of genes and genomic elements present

in the species. The first draught genome was published by a team led

by Krishnan (Krishnan et al., 2012). The investigators reported

diverse insights from the genome of A. indica. The researchers

identified genes such as Terpene Synthase 21 (TPS21), 4-hydroxy-3-

methylbut-2-enyl diphosphate reductase (lytB), 4-hydroxy-3-
Frontiers in Plant Science 05
methylbut-2-en-1-yl diphosphate reductase ( ispH) , 4-

diphosphocytidyl-2-C-methyl-D-erythritol kinase (ispE) ,

Geranylgeranyl diphosphate synthase (GGPS) , Farnesyl

diphosphate synthase (FDPS), squalene synthase (FDFT1), and

Squalene epoxidase (SQLE) that are involved in terpenoid

production and are also associated with steroid biosynthesis

pathways. These genes were observed to be more abundant in

Neem compared to Arabidopsis thaliana, Oryza sativa, Citrus

sinensis, and Vitis vinifera. According to their report, it was found

that the genome of A. indica is characterized by a high AT content, a

low abundance of repetitive DNA sequences, and a mean gene

length of 1.69Kb. Additionally, A. indica was observed to be

phylogenetically related to Citrus sinensis (Krishnan et al., 2012).

However, in another study, the genome published by Kuravadi

and their group reported the presence of about 87 megabases (Mb)

of repetitive DNA sequences in the Neem genome, accounting for

approximately 33% of the total genome size. This percentage is

higher than what was previously reported, suggesting a significant

presence of repetitive elements in the Neem genome. Furthermore,

the study identified molecular markers such as SSRs (Simple

Sequence Repeats), SNPs (Single Nucleotide Polymorphisms), and

InDels (insertions and deletions) within the Neem genome. These

markers can serve as genetic signposts, allowing researchers to

identify and study elite Neem genotypes with desirable traits. The

genome was also compared with the citrus genome, which revealed
FIGURE 1

Overview of Triterpenoid Biosynthesis in A. indica. IPP and DMAPP are the fundamental building blocks for isoprenoid synthesis. They can combine
in different ways to form larger molecules like FPP (farnesyl diphosphate). FPP can then be converted to squalene via the enzyme SQS (squalene
synthase). Squalene undergoes an epoxidation reaction to form 2,3-oxidosqualene, catalyzed by the enzyme SQLE (squalene epoxidase). 2,3-
oxidosqualene is then converted to different triterpenoids, such as tirucall-7,24-dien-3b-ol, through the action of the enzyme OSC (oxidosqualene
cyclase). Further modifications, including oxidation reactions by various CYP (cytochrome P450) enzymes, can lead to the production of various
seco-C-ring and seco-A,D-ring limonoids. (The comprehensive chemical structures for each compound have been provided in Supplementary
Table 1).
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extensive syntenic blocks between Neem and citrus chromosomes,

indicating genetic relatedness (Kuravadi et al., 2015).

A recent study conducted by Du and their groups successfully

reported the genome of A. indica at a chromosome-scale level. The

assembled genome had a size of approximately 281Mb, covering

around 73.2% of the estimated total genome size. This achievement

of chromosome-scale assembly provides a comprehensive

understanding of the Neem genome. Moreover, they reported

that the Neem genome exhibited a high level of heterozygosity

(0.896%), indicating significant genetic diversity within the species.

They also reported that A. indica possesses a higher number of

terpene-related gene clusters compared to other species, and

chromosome 13 played a central role in the evolution of

terpenoid biosynthesis in A. indica. They observed that a lot of

genes linked to terpenes were clustered on this chromosome. This

shows that chromosome 13 may have gone through certain types of

evolution that led to the accumulation and organization of genes

related to terpenes in the Neem genome (Du et al., 2022).

According to Du and their team, there are 70 terpene synthase

(TPS) genes and 355 cytochrome P450 (CYP) genes that were

responsible for terpenoid biosynthesis. The abundance of TPS

genes in A. indica was consistent with other terpenoid-rich plant

species. Notably, the A. indica TPS and CYP genes were mostly

found in the terpene-related groups on chromosome 13, which

further suggests that they might be involved in the biosynthesis of

azadirachtin (Du et al., 2022). Table 2 shows a comparison of the

different genomes of A. Indica.
Transcriptomic studies in A. indica: genes
involved in azadirachtin biosynthesis

Transcriptomic studies have been performed to examine gene

expression patterns and identify differentially expressed genes in

various tissues and under different conditions (Figure 2). RNA-seq
Frontiers in Plant Science 06
technology has been utilized to analyze the transcriptomes of A.

indica leaves, flowers, seeds, and other tissues, providing valuable

information on gene expression dynamics and regulatory networks.

Krishnan and their group published the first draught genome

and Transcriptome from various parts of A. indica. They conducted

phylogenetic studies that confirmed the taxonomic closeness

between Neem and citrus, which also belong to the same order.

Also, Neem was found to be related to Melia species, which is

another plant that has terpenoid chemicals. This suggests that these

chemicals are made in the Meliaceae family by a similar

evolutionary process (Krishnan et al., 2012; Krishnan et al., 2016).

The tissue-specific variation was also identified in triterpenoids

(Pandreka et al., 2015). Their findings indicated that the mature

seed kernel and pericarp of A. indica during the early stages

contained the highest levels of triterpenoids. Furthermore, as

compared to other tissues, the kernel contained a diverse range of

triterpenoids, particularly C-seco triterpenoids. They identified and

functionally characterized the genes which are involved in the initial

steps of isoprenoid biosynthesis, such as AiGDS, AiFDS, and AiSQS.

They also examined the levels of 15 triterpenoids in various Neem

tissues, including flowers, leaves, stem, bark, and different

developmental stages of pericarp and kernel. Using solvent

partition for extraction and UPLC-ESI(+)-HRMS for analysis,

they observed that the concentration of these triterpenoids varied

among the tissues. Notably, kernel displayed the highest

triterpenoid content. This experimental aspect was aimed at

corelates with the omics data with actual triterpenoid levels in

various tissues. In another study conducted by (Bhambhani et al.,

2017), various developmental stages of the fruit (FS1, FS2, FS3, FS4)

and leaves of A. indica were sampled from a five-year-old tree.

Upon conducting a phytochemical analysis focused on

tetranortriterpenoids, several observations were made.

Azadirachtin displayed a fruit-specific accumulation, reaching its

peak in the FS3 stage. While nimbin was present in the leaves, it

accumulated more significantly in the fruit stages. Notably, both

azadirachtin and salannin were absent in the leaf tissue.

Furthermore, only a trace amount of nimbin was found in the

leaves, underscoring the observation that the fruit, particularly the

FS3 stage, is richer in these phytochemicals compared to the leaves

(Bhambhani et al., 2017).

An important enzyme was functionally characterized in a

significant study by a team led by Hodgson. The researchers

characterized the tirucalla-7,24-dien-3b-ol synthase, which is an

Oxidosqualene Cyclase (OSCs), from three distinct plant species: A.

indica, Melia azedarach, and Citrus sinensis. They also identified

three cytochrome P450 (CYP) sequences, namely AiCYP71BQ5,

AiCYP72A721, and AiCYP88A108, which showed high co-

expression with AiOSC1. The study suggested that certain

Cytochrome P450 enzymes (CYPs) could potentially be

responsible for oxidizing the tirucalla-7,24-dien-3b-ol scaffold

generated by AiOSC1. Furthermore, it was observed that AiOSC1

showed the highest expression in the fruit, aligning with a previous

report that highlighted elevated levels of ring-intact limonoids, such

as azadiradione and epoxyazadiradione, in the fruit of A. indica

(Hodgson et al., 2019). A Group led by Pandreka, also cloned and

functionally characterized tirucalla-7,24-dien-3b-ol synthase
TABLE 2 Comparison of the A. indica genomes.

(Du et al.,
2022)

(Kuravadi
et al., 2015)

(Krishnan
et al., 2012)

Sequence
technology

Illumina +
PacBio + Hi-

C
Illumina

Illumina +
PacBio

Assembly Chromosome Contig Scaffold

Genome size
(Mb)

281 261.2 216

GC% 32.2 32 31.9

no. of Scaffold 70 126,142 25,560

Scaffold n50
(bp)

1,95,42,739 3,491 26,29,187

Number of
contigs

870 142,701 48,555

Contig n50 (bp) 60,39,544 3,310 25,406

BUSCO 91.70% 79.90% 91.40%
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(AiTTS1), an enzyme responsible for the synthesis of tirucalla-7,24-

dien-3b-ol. Additionally, they cloned and characterized squalene

epoxidase (AiSQE1), cycloartenol synthase (AiCAS), and two

cytochrome P450 reductases. Through comparative tissue

expression analysis, the researchers also identified genes involved

in terpenoid synthesis and found higher levels of expression for

AiFDS (farnesyl diphosphate synthase), AiSQS (squalene synthase),

AiSQE3 (squalene epoxidases), and AiTTS1 (triterpene synthases)

in the kernel (Pandreka et al., 2021).

In another study, Wang et al. (2020) used a novel hybrid-

sequencing approach using Illumina HiSeq and Pacific Biosciences,

and they identified five different types of genes potentially involved in

azadirachtin biosynthesis. They identified 22 unigenes encoding

enzymes, including the oxidosqualene cyclase (OSC), alcohol
Frontiers in Plant Science 07
dehydrogenase (ADH), cytochrome P450 (CYP450), acyltransferase

(ACT), and esterase (EST). Table 3 shows the comparisons of different

attempts taken by various researchers (Wang et al., 2020).
Discussion

Omics is a potent tool for identifying essential genes for

significant traits, clarifying physiological event mechanisms, and

revealing unknown metabolic pathways. A whole genome sequence

provides a complete overview of how the functional elements of the

genome are structurally organized. These structural elements carry

the knowledge of the evolutionary history of an organism

(Subramanian et al., 2020).
FIGURE 2

Identification of genes involved in Terpenoid Biosynthesis.
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In addition to genomes, transcriptomes have also been shown to

be essential in deciphering the molecular mechanisms and

metabolic pathways underpinning a wide range of biological

functions. High-throughput sequencing technologies such as RNA

sequencing (RNA-seq) are utilized to create extensive

transcriptome atlases, and these technologies also contribute to a

better knowledge of the functional components that make up the

genome of any species (Jiang et al., 2015).

Considering the advantages of omics technology can aid in

identifying the unexplored pathways across different species, and

the integration of transcriptome data with other omics approaches,

such as proteomics and metabolomics, can provide a more

comprehensive understanding of the biology of any given species

(Yan et al., 2022). By correlating gene expression with protein

abundance and metabolite levels, researchers can unravel the

complex interactions and regulatory networks underlying

physiology and biochemistry.

In the case of A. indica, the biosynthetic pathway for

triterpenoid production was not well studied until the publication

of the first genome and transcriptome of A. indica. These studies

helped in identifying the repeat elements, the nucleotide

composition of nucleotides, and expression profiles of initial

genes involved in terpenoid production in different tissues of

Neem. A. indica was the first Meliaceae family member to be

sequenced genome-wide (Krishnan et al., 2012).

The Relative expression of HMGR (HMG-CoA reductase) was

higher when compared to the MEP pathway, confirming that the

Mevalonate pathway might contributes to the isoprene units of
Frontiers in Plant Science 08
triterpenoids. The distribution of limonoids varies across different

tissues reported (Pandreka et al., 2015; Aarthy et al., 2018).

Some of the critical enzyme like oxidosqualene cyclase

(AiOSC1) involved in the pathway for the synthesis of

triterpenoid was reported by (Hodgson et al., 2019), but they

failed to mention triterpene synthase (TTSs), including tirucalla-7,

24-dien-3b-ol synthase, which were functionally characterized by

different researchers (Pandreka, 2018; Thulasiram et al., 2018).

These Triterpene Synthases (TTSs) work on 2,3-oxidosqualene to

create cyclic compounds, which is the crucial step for steroid and

triterpenoid biosynthesis (Volkman, 2005). Later, Triterpene

synthase (TTS1), was also functionally characterized by a team

led by Pandreka (Pandreka et al., 2021).

These clusters of genes mentioned by the various authors from

2012 to 2022 have paved the way for the identification of genes

responsible for the production of industrially and medically

important triterpenoids in A. indica. The integration of omics,

bioinformatics, and genetic engineering technologies holds a great

deal of promise for expanding our understanding of the process and

locating any missing links in the chain of events that led to the creation

of azadirachtin (Kumar et al., 2021). Although there aren’t any well-

established genes involved in the numerous processes leading from

tirucallol to azadirachtin, utilizing these methodologies can

nevertheless yield really helpful insights.

Researchers are able to conduct an exhaustive investigation of

the genetic and molecular components that are associated with a

pathway by making use of omics tools such as genomics,

transcriptomics, and proteomics. Tools and techniques from the
TABLE 3 Detailed comparison of transcriptomes by various authors.

Tissue/Condition
Methodology/
Sequencing
Platform

Assembly
approach

Annotation
approach

Author/Ref-
erences

Root, Leaf, Stem, and Flower
WGS and RNA Seq
Solexa sequencing-by-

synthesis

SOAPdenovo,
Trinity

BLAST2GO,
GlimmerHMM,
PASA, KEGG

(Krishnan et al.,
2012; Krishnan
et al., 2016)

Fruit, flower, and leaf RNA-seq Velvet BlastX, and KEGG
(Pandreka et al.,

2015)

Flower and bud, fruit coat and pulp, developing endosperm, mature
fruit, seedling root, drought root, drought shoot, albino root, albino

shoot, leaf callus
WGS and RNA-seq

Velvet, 454 reads
were assembled
using MIRA

BlastX, GO, KEGG,
Enzyme

Commission

(Kuravadi et al.,
2015)

Adventitious root and leaf RNA-seq Trinity
TAIR and NCBI NR

database, GO
Annotation

(Wang et al., 2016)

Mature leaf (ML) and fruit RNA-seq – BlastX, TAIR
(Bhambhani et al.,

2017)

Root, leaf, stem, flower, and fruit containing seed RNA-seq Trinity
BlastX, Swiss Prot,
COG, KEGG,
HMMER 3.0

(Wang et al., 2020)

Kernel, pericarp, leaves, and flower RNA-seq Trinity Blastx, and KEGG
(Pandreka et al.,

2021)

Leaves WGS
Canu, RACON,
Pilon, ALLHIC,

HiC-Pro

NR, InterPro, Swiss-
Prot, EggNOG

(Du et al., 2022)
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field of bioinformatics can be used to assist in the processing and

interpretation of huge amounts of biological data, which can in turn

facilitate the discovery of candidate genes and probable enzymes

involved in this class of triterpenoids.

The discovery of the missing link in the biosynthesis of

azadirachtin in A. indica presents a significant difficulty because

the biosynthesis of azadirachtin involves a complicated network of

processes, with metabolites serving as both substrates and products

and gene products acting as enzymes that catalyze the appropriate

reactions. Once the underlying molecular mechanisms are

understood, new opportunities arise for altering and optimizing

the production of azadirachtin, which may result in increased yields

or novel applications in the pharma and agriculture industries.
Conclusion and future perspectives

A. indica is classified as a high-value medicinal tree and a great

source for azadirachtin, which is known for its insecticidal activity.

Along with these molecules, A. indica also synthesizes several other

biologically active compounds with demonstrated pharmacological

attributes. Despite extensive research on A. indica’s enzymatic

pathway machinery, the downstream genes responsible for

azadirachtin production have not yet been identified. This

knowledge gap highlights the need for in-depth studies that

employ an integrated omics approach. By combining various

omics technologies, such as genomics, transcriptomics,

proteomics, and metabolomics, researchers can gain a

comprehensive understanding of the biosynthesis of different

alkaloids and their analogs present in A. indica. Identifying and

isolating these compounds is crucial for their industrial and

pharmacological applications. With the help of omics tools, the

biosynthesis pathways of several bioactive substances in A. indica

can be mapped out and can provide more useful genetic

information about A. indica. The potential of omics research in

A. indica appears to be promising, presenting prospects for

enhancing our understanding of Neem’s biosynthesis pathways,

identifying new bioactive compounds, evaluating genetic variability,

expediting functional gene discovery, directing breeding endeavors,

and implementing systems biology methodologies. These

advancements can have significant implications for the

development of Neem-based applications in the medical,

agricultural, and industrial sectors.
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