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underlying processes of
fruit production
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It is widely accepted that the weight distribution of plant fruits conforms to a

standard normal distribution. However, some overlooked evidence suggests

that some fruits, including strawberries, exhibit positive skewness in fruit

weight distribution. This intriguing observation has received limited attention

thus far. To shed light on this phenomenon, we conducted a comprehensive

simulation study utilizing greenhouse-grown strawberries as our research

subject. We modeled the entire process from bee pollination to pollen

fertilization on the stigma and fruit growth. The experimental results

demonstrated the reliability of the proposed simulation model and

revealed that the positive skewness of the fruit weight distribution was the

result of the multiplication of several complex intermediate variable

distributions, which led to an approximately lognormal distribution. The

simulation model and the derived conclusions presented in this paper offer

a plausible explanation for the weight distribution patterns observed in

strawberry production systems. Furthermore, research results have the

potential to be applied to other berry plants that undergo similar bee

pollination processes, thereby expanding our understanding of fruit weight

distributions across different species.
KEYWORDS

fruit weight distribution, greenhouse strawberry, bee pollination, simulation
modelling, log-normal distribution
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1 Introduction

Strawberries (Fragaria × ananassa Duch) are grown extensively

worldwide and are mainly pollinated by bees (Abrol et al., 2019;

Menzel, 2023). Fruit weight is affected by intrinsic and extrinsic

factors such as genotype (Pereira et al., 2021), seed number within a

berry, and environmental factors (Dai et al., 2011). Seed number is

typically positively associated with fruit weight and is significantly

influenced by pollination efficiency (Gray and Coombe, 2009).

Precisely determining fruit weight is essential in horticulture for

estimating yield and the proportion of marketable fruits (Pathak

et al., 2016; Stanich et al., 2016). However, despite its significance,

there is a dearth of published research concerning the fundamental

distribution of strawberry fruit weights. Gaining a deeper

understanding of this distribution and why it forms is valuable for

expanding our knowledge regarding the interactions among various

factors and processes in ecological contexts. The exploration of plant

fruit weight distribution can provide valuable insights into the

reproductive strategies implemented by plants and their adaptability

within a particular environment. Moreover, by understanding the

factors that influence the distribution of fruit weight, strategies aimed

at optimizing strawberry cultivation practices (Cao et al., 2023) can be

devised for large-scale production systems.

Some researchers have analyzed fruit weights by assuming that

the weight follows a standard normal distribution. However, some

overlooked evidence suggests that some fruit weights do not

conform to a standard normal distribution and instead exhibit

positive skewness, that is, with a higher proportion of small fruits

than large fruits. For example, Menzel found that the strawberry

marketable yield ranged from 48 to 890 g per plant, with a median

of 321 g per plant and a positive skewness in weight distribution

(Menzel, 2023). Chen et al. found that the distribution of single fruit

weight in pears exhibited highly positive skewness characteristics

(Chen et al., 2016). Although the fruit weight distribution ranged

from 115 to 600 g, it was concentrated in the range of 200–300 g.

Webb et al. discovered that the weight distribution of apples was

slightly positively skewed since the distribution has been shown to

fit a normal curve (Webb et al., 1980). Marini et al. studied the

quality distribution of apple fruits in an orchard and found that the

fruit weight was basically normally distributed (Marini et al., 2019).

However, this distribution was slightly skewed to the right, with a

skewness value of 0.948. The authors believed that the reason for the

skewness was due to planting strategies. Naor et al. found that the

quality distribution of nectarine fruit also exhibited positive

skewness characteristics (Naor et al., 1999). Zhao et al. found that

the overall quality distribution of loquat fruit followed a positively

skewed normal distribution, with a skewness of 0.96 (Zhao et al.,

2021). Medda et al. found that the weight per fruit of myrtle ranged

from 0.15 to 0.50 g but was mainly concentrated in the range of 0.30

to 0.35 g, exhibiting positive skewness characteristics (Medda and

Mulas, 2021). Searle et al. found that the weight distribution of

buttercup squash exhibited an approximately normal distribution

that was skewed towards small fruits (Searle et al., 2003). Pereira

et al. analyzed tomato fruit weight and found that a high proportion

of the fruit weight was in the medium to small range and that the

proportion of high-quality fruit was relatively low (Pereira et al.,
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2021). The skewness in these distributions is relatively weak; thus, it

has not aroused strong interest from the scientific community. The

only interpretation (Marini et al., 2019) suggests that plants

encounter constraints such as nutrient deficiency, pests, and

diseases during their growth, leading to inhibited growth and a

higher proportion of smaller fruits. However, other factors and their

complex interactions during fruit production might also be

significant contributors to this phenomenon.

To investigate the interesting phenomenon of positive skewness

in fruit weight distribution, we used the Japanese strawberry cultivar

Beni hoppe in a greenhouse as the research object because of its

extensive history of study (Żebrowska, 1998; Hennessy et al., 2021).

According to the central limit theorem, when a multitude of

independent random variables are aggregated, their summation

tends to approximate a normal distribution (Bertsekas and

Tsitsiklis, 2008; D’Agostino, 2017). However, if one variable can be

regarded as the multiplicative product of multiple independent

factors, then this variable can be considered to have a lognormal

distribution. In the realm of natural sciences, the lognormal

distribution has frequently emerged as a compelling approximation

(Mouri, 2013), characterized notably by its positive skewness. A

lognormal process is the statistical realization of the multiplicative

product of many independent random variables, each of which is

positive. From an ecological standpoint, in the process of strawberry

growth, from bee pollination to final fruit ripening, there are many

complex intermediate processes, and pollination processes are driven

by the accumulation of these intermediate processes. Thus, in this

paper, the hypothesis that the positive skewness observed in the

distribution of fruit weights arises from the underlying lognormal

distribution, a consequence of the multiplication and accumulation of

diverse and intricate intermediate variable distributions throughout

the strawberry growth process, is proposed. These intermediate

processes chiefly encompass the pivotal interplay of bee pollination,

pollen fertilization, and fruit growth, entailing the participation of a

myriad of independent pollen grains.
2 Materials and methods

From a botanical standpoint, the growth process of strawberry

fruit can be divided into three independent stages: bee pollination,

pollen fertilization, and fruit growth. In this paper, we specifically

focused on investigating the growth of the Japanese cultivar Beni

hoppe within a greenhouse environment. The journey of an

individual strawberry pollen grain, originating from its production

to the ultimate transformation into achenes on the fruit, encompasses

a multifaceted process. The collective involvement of numerous

pollen grains ultimately determines the distribution of strawberry

fruit weight. In this paper, we developed a mathematical model to

describe this process.
2.1 Bee pollination process

The initial stage of pollinating greenhouse strawberries involves

the visitation of flowers by bees (Wietzke et al., 2018). Beni hoppe
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strawberry flowers typically bloom for a period of 5 days

(McGregor, 1976). Under favorable conditions, bees venture out

of their hives to forage daily and follow a specific pattern when

visiting strawberry flowers (Skorupski et al., 2006; Opstad and

Sonsteby, 2008). Drawing from data obtained from actual

greenhouse experiments and our previous simulation model

research (Cao et al., 2023), when the number of bees is basically

equivalent to the number of strawberry plants in a greenhouse, the

average frequency l of bee visits to one open strawberry flower is

approximately 4.5 times per day (Chagnon et al., 1989; Li et al.,

2006), with each visit lasting between 6 and 10 seconds (Chen et al.,

2011). It is important to note that the visit frequency l is influenced

by the bee density in the greenhouse during actual cultivation.

From this comprehensive view of the daily foraging process of

bees, it can be observed that the visitation of a flower by a bee is a

relatively rare occurrence, considering the gap between the overall

time bees spend foraging and the duration of their visits to individual

flowers. Although bees spend a considerable amount of time outside

their hives foraging daily (approximately 7 hours), the probability of

visiting a specific flower is low, and the duration of each visit is

extremely short (approximately 6 seconds) (Li et al., 2006).

Furthermore, each bee’s flower-visiting behavior is independent of

one another. Research has shown that the age of the flower does not

affect the bee’s visiting behavior, meaning that the probability of bees

visiting strawberry flowers of different ages is statistically the same.

Therefore, the number of times Xn that flowers are visited by bees on

the nth day (i.e., the age of the flower is n days) can be described using

the Poisson distribution Xn ~ P(l), and X1, X2, X3, X4, and X5 all

follow the same distribution pattern. The probability function of Xn is

shown in Equation 1. More validation processes are provided in the

Supplementary Materials.

P(Xn = k; n) =
lk

k !
e−l (1)

The anthers situated on the stamens of strawberry flowers bear

the pollen that is essential for pollinating the ovules. With each visit

to a strawberry flower, a bee extracts pollen from the anthers and

deposits a portion of it onto the stigma through its body. A

honeybee deposits approximately 25 active pollen grains per visit

(Chagnon et al., 1989). Hence, the number of pollen grains

deposited on the stigma of a strawberry flower on the nth day,

denoted as Yn, can be expressed using Equation 2. Notably, the

number of pollen grains deposited on the stigma is directly

proportional to the number of bee visits Xn.

Yn = 25*Xn (2)
2.2 Pollen fertilization process

After the deposited pollen successfully falls on the stigma

through bee foraging activity, the ovule fertilization process

begins, which is comprised of two stages: the receiving stage and

the accepting stage (Lata et al., 2018).

During the receiving stage, the probability of the stigma

receiving pollen grains is positively correlated with stigma
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receptivity (Zhang et al., 2019). Stigma receptivity is primarily

determined by the age of the flower, and its viability peaks within

three days of blooming and sharply declines after five days

(Vaissiere et al., 1996; Connelly et al., 2015). The possibility of

the stigma of a flower receiving pollen grain on the nth day can be

denoted as Pr
n, as shown in Equation 3.

Pr
n = e−0:01*n

3:6

(3)

During the accepting stage, the pollination process is primarily

influenced by the self-pollen compatibility of the strawberry

cultivar. It is widely accepted that strawberry flowers are

hermaphroditic and self-compatible to some extent but not

entirely (Dinh Dung et al., 2022). Therefore, even if the stigma

has high receptivity, it may not induce pollen tube growth. Relevant

research has shown that the pollen self-compatibility probability of

the Beni Hoppe cultivar is approximately 80% (Cao et al., 2023; Hsu

and Lu., 2018).

Only when the pollen satisfies both the receiving and accepting

stages can it combine with the ovules. In this model, the fertilization

possibility of a flower on the nth day is denoted as Pf
n, as shown in

Equation 4.

Pf
n = 0:8*e

−0:01*n
3:6

(4)

On the nth day, the Yn pollen grains placed on the stigma have a

fertilization probability of Pf
n, and each successful fertilization event

follows a binomial distribution. On the nth day, the number of

pollen grains that successfully fertilized the flower follow a binomial

distribution Zn ∼ B(Yn, P
f
n). It can be roughly estimated that when

n = 1, Y1 *P
f
1 ≈ 158, which is a statistically large value, Zn is

approximately a normal distribution. When n=5, the value of Pf
5

is extremely small, and Y1*P
f
5 ≈ 0:6; as a result, statistically, Zn is

approximately a Poisson distribution. Therefore, flower age is an

important factor that affects the distribution of daily fertilized

pollen grains.

Equation 5 illustrates that Zsum, the cumulative number of

fertilized pollen grains over a period of five days, is the sum of Z1,
Z2, Z3, Z4, and Z5. Upon successful fertilization of the ovule, each

pollen grain matures into an achene within the flower’s receptacle.

Achenes, resulting from fertilized ovules, are large and surrounded

by well-developed fleshy tissue, whereas the achenes resulting from

unfertilized ovules are less voluminous and closer together.

Therefore, the number of achenes produced is equivalent to the

number of pollen grains that have been successfully fertilized,

denoted as Zsum.

Zsum =o
5

i=1
Zi (5)
2.3 Fruit growth process

The development of the receptacle is significantly impacted by

the achenes, which have the ability to secrete hormones that

stimulate fruit growth. In practical cultivation, Beni Hoppe

strawberries typically weigh approximately 14–15 g, and it is
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widely accepted that fruits must weigh over 10 g to be considered

marketable (Cao et al., 2023). The weight of a berry is proportional

to the number of fertilized ovules (achenes), and the number of

stigmata per flower determines its potential weight (Abbott et al.,

1970). Drawing from our proposed simulation model and previous

research (Dung et al., 2021; Cao et al., 2023; Menzel, 2023), we

determined that there exists a linear correlation between fruit

weight W and the total number of achenes Zsum, which can be

represented by Equation 6.

W = 0:05*Zsum + 2:0 (6)

However, there are significant residuals between the actual fruit

weight and the linear fitting results that cannot be disregarded.

During simulation modelling, accurately describing the residuals

exhibited by fruit weight using only a fitting line is challenging,

making it even more difficult to simulate a more realistic

distribution of strawberry weights. To address this issue, we

introduced a residual term Bias to the fitting equation to account

for this deviation. In this paper, we assumed that Bias follows a

normal distribution with a mean of 0, that is, Bias ~ N(0,s2).
Assuming that the residual Bias follows a normal distribution is a

common technique in machine learning and has been widely used

in regression models (Maulud and Abdulazeez, 2020). More

validation and computing processes are provided in the

Supplementary Materials. The final fitting relationship for fruit

weight W is shown in Equation 7.

W = 0:05*Zsum + 2:0 + Bias (7)
2.4 Statistical methods

In this study, we employed the one-sample Kolmogorov

−Smirnov test to assess the distribution of the data. A p-value

greater than 0.05 indicated that the data conform to a Poisson

distribution. To evaluate if the differences between the simulated

data and the empirical data are different, we applied the

Kolmogorov−Smirnov test. A p-value exceeding 0.05 signified

that there was no significant difference between the two sets of

data. Moreover, a quantile−quantile (Q−Q) plot was used to verify

the normality of the distribution.

We utilized SPSS 26 software for basic data analysis and

hypothesis testing. Additionally, the stats package in Python

(Virtanen et al., 2020) was employed for data fitting and analysis.
3 Experiments and results

Due to the complexity of fruit weight W, which is the result of

the multiplicative product of intermediate variables Xn, Yn, Zn, and

Zsum, it is difficult to obtain the direct distribution function of W

through conventional means. In this study, we employed Monte

Carlo simulations to model and experiment with the growth process

of strawberries.
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The research comprised three experimental groups. The first

group investigated the distribution of bee visitation and the

associated pollen quantity during the intermediate stages. The

second group deeply examined the distribution of fruit weight W.

The third group conducted sensitivity analysis on crucial variable

parameters during the intermediate stages, aiming to identify

factors that could influence the distribution of fruit quality.

To mitigate the influence of randomness, we set the number of

simulated flowers to 10,000. This larger sample size is expected to

effectively reduce the impact of random variations in simulation.
3.1 Distribution of bee visitation and
pollen quantity

First, we investigated the distribution of bee visitation and the

associated pollen quantity during the intermediate stages. In the

simulation, it is assumed that the daily bee visit frequency Xn of

each flower follows a Poisson distribution with a parameter of 4.5

(Cao et al., 2023). The frequency histograms of Xn are shown in

Figure 1A. It can be observed that the frequency histograms are

almost identical over the five days, and the probability of visit

frequency of 4 is the highest. The frequency histograms of the pollen

quantity Yn on the flower head over the five days are shown in

Figure 1B. Since the pollen quantity Yn is directly controlled by the

bee visit frequency Xn, the histograms of the two variables are

basically the same when the grouping number is the same.

The frequency histogram of the pollen quantity Zn that

successfully fertilized the ovules over the five days is shown in the

first five small diagrams in Figure 1B. From these diagrams, it can be

observed that as the strawberry flowers age and the stigma activity

decreases, the probability of successful pollen fertilization decreases

significantly. The greatest probability of successful fertilization was

observed when a pollen quantity of approximately 60 was

distributed on the first two days, approximately 50 on the third

day, and approximately 20 on the fourth day. Nevertheless, the

probability of successful fertilization on the fifth day was

exceedingly low. The frequency histogram in the last small

diagram of Figure 1B displays the accumulated pollen quantity

Zsum that successfully fertilized the ovules over the five-day period.

The diagram indicates that the distribution of Zsum is positively

skewed. Analysis reveals that the mean of Zsum is 245.70, with a

skewness of 0.328 and a standard error of skewness of 0.024. The

skewness Z score is 13.67, indicating moderate positive skewness.
3.2 Distribution of the fruit weight W

Second, we investigated the distribution of fruit weight W with

empirical data. Figure 2 displays the distribution frequency histogram

of strawberry fruit weight W obtained from the simulation results

(green bar) and empirical data (orange bar). The diagram in Figure 2

indicates that the frequency of fruit weight is highest at approximately

15 g with a maximum of approximately 28 g, which is consistent with
frontiersin.org
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the actual planting data. Analysis of the simulation results revealed

that the mean of W is 14.6, with a standard deviation of 4.42 and a

skewness of 0.108. The standard error of skewness is 0.024, and the

skewness Z score is 4.5, indicating slight positive skewness. We

employed the Kolmogorov−Smirnov test to evaluate the difference

between the simulated data and the empirical data. The test results

gave a p-value exceeding 0.05 (P = 0.862). Based on this outcome, it

can be concluded that there is no significant difference in the weights

of the fruits between the two sets of data.

As previously stated, we proposed a hypothesis that the ultimate

weight of the fruit, denoted as W, follows a lognormal distribution
Frontiers in Plant Science 05
as a result of the multiplicative intermediate processes. To fit the

fruit weight W with the simulation results, we utilized the stats

package. The fitting equation comprises three parameters: s, scale,

and loc. The resulting probability density function obtained from

the fitting is shown in Equation 8:

f (x) = (
1

sy
ffiffiffiffiffiffi
2p

p e−  
log2(y)

2s2 )=scale (8)

where y = (x – loc)/scale. These results gave the parameters s =

0.0411, scale = 105.2339, and loc= -91.0223. Figure 3A displays the
B

A

FIGURE 1

(A) Frequency histograms of the number of bee visits Xn to one flower over the five-day period. (B) Frequency histograms of the pollen quantity Zn
over the five-day period and the accumulated pollen quantity Zsum during the blooming period.
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simulation experimental results for the lognormal distribution of

fruit weight. The Kolmogorov−Smirnov test was employed to

validate the hypothesis that the fruit weight W conforms to a

lognormal distribution with a result of P = 0.91, which is

considerably higher than 0.05. Hence, we can reasonably infer

that our proposed hypothesis is valid.

As the data exhibited skewness, we conducted another fitting

experiment using a normal distribution. The Kolmogorov−Smirnov

test was performed to verify the normal distribution, with a result of

p = 0.30, which is still higher than 0.05. The mean and standard

deviation were computed to be 14.3 and 4.42, respectively. The

experimental results suggest that the distribution of W can also be

approximated by a normal distribution N(14.3,4.422), as depicted

by the fitted curve in Figure 3B. It can be observed that although the

distribution of W can be modelled as either a lognormal or normal
Frontiers in Plant Science 06
distribution, the fitting result of the lognormal distribution is

evidently superior to that of the normal distribution.

We employed a quantile−quantile (Q−Q) plot to verify the

normality of the W distribution once again, and the experimental

results are depicted in Figure 4. The Q−Q plot reveals that the data

points (orange dots) are closely distributed around the straight line,

indicating robust normality of the fruit weight distribution.

Consequently, the distribution W of strawberry fruit weight can

be deemed a normal distribution with slight positive skewness.

Given the relatively small skewness value,W essentially conforms to

the normal distribution of N (14.3,4.422) when disregarding the

influence of positive skewness. It is commonly accepted that only

strawberry fruits weighing over 10 g are marketable, and this

proportion can be estimated to be approximately 83.40%, which

is consistent with the actual planting results.
BA

FIGURE 3

(A) Fitted curve of the lognormal distribution. (B) The fitted curve of the normal distribution. It can be observed that the fitting effect of the
lognormal distribution is better.
FIGURE 2

Distribution frequency histogram of strawberry fruit weight W obtained from simulations and empirical data. The Kolmogorov−Smirnov test revealed
that there was no significant difference between the two sets of data.
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P(W > 10) = 1 −   P
W − 14:3

4:42
≤  

10 − 14:3
4:42

� �
= f(0:97) =  83:4%
3.3 Sensitivity analysis

The distribution of final fruit weight W is a result of multiple

intermediate processes. Ultimately, a lognormal distribution is

observed. In this section, we conducted sensitivity analysis to

investigate the impact of three important variable parameters in

the intermediate processes on fruit quality, including average fruit

weight, marketable fruit ratio, and distribution skewness. Sensitivity

analysis is widely utilized in machine learning (Baghban et al., 2019)

and simulation (Kleijnen, 2010) to examine and predict the

influence of input variables by allowing them to vary within their

respective ranges. This method enables the study of how these

variables impact the output of the model.

The first parameter to investigate is the average daily visitation

number l, which represents the density of bees and their visiting

behavior towards plant flowers. The second parameter is self-pollen

compatibility, which varies among different plant cultivars.

Analyzing this parameter helps enhance model transferability.

The third parameter is the fitting equation between seed quantity

and fruit weight, which exhibits significant variations across

different plants. Analyzing this equation allows for a deeper

understanding of the positively skewed distribution, particularly
Frontiers in Plant Science 07
across different species. By comprehending the factors that

influence the distribution of strawberry fruit weight, we can

identify the most significant factors contributing to variations in

fruit quality. This enhances the interpretability of the model and

increases its potential for application to other berry plants that

undergo similar bee pollination processes.

We embarked on a sensitivity analysis of the average daily

visitation of one flower by bees, which was denoted by l. The value
of l, serving as the parameter of the Poisson distribution Xn ~ P(l),
is contingent upon the bee density in the greenhouse and visiting

behavior towards the flowers. In our simulation experiment, we set

l to 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5 and 6.0. Then, we observed the

average fruit weight, marketable fruit ratio, and the skewness of W

distribution in the simulation results.

As depicted in Figure 5A, the findings evince a positive linear

correlation between l and the average fruit weight, as well as a

positive correlation between l and the marketable fruit ratio.

Nevertheless, the skewness Z score remains unaffected by l, and
in each scenario, the distribution ofW manifests positive skewness.

Subsequently, we investigated self-pollen compatibility. Not

only does self-pollen compatibility vary among different plants,

but it also differs among different strawberry cultivars. Self-pollen

compatibility is a crucial factor that affects pollen fertilization and is

of great significance for plant genetic diversity. In this experiment,

we adjusted this value in the simulation, setting it to 0.5, 0.6, 0.7, 0.8,

0.9, and 1.0, and observed the average fruit weight, marketable fruit

ratio, and skewness of the W distribution.
FIGURE 4

Verification of the normal distribution using a Q−Q plot.
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As shown in Figure 5B, the results indicate a positive linear

correlation between self-pollen compatibility and average fruit

weight, as well as a positive correlation between self-pollen

compatibility and marketable fruit ratio. Moreover, the

experimental results also reveal that the degree of skewness in the

distribution increases with increasing self-pollen compatibility.

However, from the perspective of the change in skewness Z score,

the impact of self-pollen compatibility on skewness is relatively weak.

Finally, we conducted a sensitivity analysis on the relationship

between seed quantity and fruit weight by adjusting the coefficient

of Zsum when fitting Equation 6. This coefficient approximates the

proportion of fruit quality to seed quantity. It is worth noting that

the seed number and weight of strawberry fruits differ from those of

other fruits, such as apples (Webb et al., 1980; Raine et al., 2006;

Marini et al., 2019), which results in a significant variation in this

parameter among different crops.
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We adjusted the value of this parameter to observe changes in

the average fruit weight and distribution skewness. In the

simulation experiments, we set this parameter to 0.05, 0.15, 0.25,

0.35, and 0.45. The experimental results, as shown in Figure 5C,

indicate that the degree of skewness inW increases with the increase

in the proportion of fruit weight to seed quantity, and significant

differences can be observed.
4 Discussion

The results of the simulation experiments supported our

hypothesis that the positively skewed distribution of strawberry

fruit weight W can be attributed to the multiplicative effects of

various complex distributions resulting from intermediate processes

such as bee pollination, pollen fertilization, and fruit growth. Our
B

C

A

FIGURE 5

(A) Relationships between l and average fruit weight, marketable fruit ratio, and distribution skewness. (B) Relationships between self-pollen
compatibility and average fruit weight, marketable fruit ratio, and distribution skewness. (C) Relationships between the coefficient of Zsum in Equation
6 and the average fruit weight and distribution skewness.
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research rectified the misconception that plant growth is influenced

by factors such as nutrient deficiency, pests, and other

environmental conditions, resulting in a higher proportion of

smaller fruits and a positively skewed distribution of fruit weights.

These intermediate processes collectively lead to the

manifestation of a lognormal distribution. By examining the

intermediate processes of the model, we believe that the normal

distribution characteristics of fruit weightW stem from the fact that

the weight of the fruit is a result of the contributions of numerous

seeds, and the probability of each seed being fertilized by pollen is

independently and identically distributed.

The sensitivity analysis experimental results reveal that average

daily visitation l has no effect on the skewness of the distribution of

fruit weight W but has a significant impact on the average fruit

weight and the marketable fruit ratio. In addition to bee density, l is
also influenced by bee visiting behavior towards plant flowers.

Moreover, the frequency of bee visits varies for each type of

flower and is influenced by factors such as scent and nectar

availability (Laverty, 1994). Therefore, we believe that these

physiological factors of flowers are not the cause of the skewed

distribution of fruit weight. This result also indicates that bee

visitation behavior is an important factor affecting the weight of

strawberry fruits, and it is crucial for strawberry growers to ensure

an adequate number of bees in the greenhouse (Qu et al., 2017). The

degree of skewness of the distribution of fruit weight W increases

with increasing self-pollen compatibility. Based on the observed

numerical fluctuations, it appears that the extent of the effect of self-

pollen compatibility is limited and cannot fully explain the

variations in skewness of fruit weight distribution among different

plants. Therefore, we believe that although self-pollen compatibility

does have a significant impact on fruit weight, it does not have a

significant influence on the skewness of the distribution. The results

from the third experimental group indeed indicate that there is a

positive relationship between the proportion of fruit weight to seed

quantity and the skewness of the weight distribution. Furthermore,

based on the observed numerical fluctuations, this effect is more

significant. Relevant data suggest that apple fruit weight distribution

exhibits high skewness (Webb et al., 1980; Marini et al., 2019), with

apple weight surpassing that of strawberries, while the seed quantity

is significantly lower in apples compared to strawberries (Raine

et al., 2006). From a pollination perspective, we can conclude that

this is one of the reasons for the higher skewness in the distribution

of apple fruit weight compared to strawberries.

The proposed model exhibits high reliability and transferability.

We validated and refined the model using empirical data to model

the bee pollination process and the relationship between fruit

weight and seed quantity. The final average weight and

distribution of strawberry fruits in the simulation were consistent

with actual planting experience, indicating the reliability of the

proposed model. Moreover, the model has the potential to be

applied to other berry plants that undergo similar bee pollination

processes (Qu and Drummond, 2018). On one hand, while the time

that bees spend on different plant flowers may vary, the average

number of daily visits typically conforms to the requirements of an

approximate Poisson distribution (Malagodi-Braga and Kleinert,

2004; Woodcock et al., 2013). On the other hand, for many crops,
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although the number of seeds and fruit weight differ significantly

from strawberries, the relationship between seeds and fruit weight

can be fitted to a linear equation (Buccheri and Di Vaio, 2005; Raine

et al., 2006; Gray and Coombe, 2009; Dai et al., 2011). Therefore, we

believe that the model can be fine-tuned and applied to other crops.

However, the current model still has certain limitations. The

growth of strawberry fruits in the simulated environment is

idealized but neglects the effects of genotype and growth

environment factors. In an attempt to incorporate these crucial

factors into the model, we introduced the Bias variable in Equation

7. This addition aimed to simulate the inherent randomness

associated with genotype and growth environment, recognizing

their potential influence on fruit weight. However, we must

recognize that this simplified approach may not fully capture the

intricate relationships and complexities inherent in real-world

scenarios. Our future research focus encompasses two aspects:

incorporating genotype and growth environment factors into the

model and expanding the applicability of this model to other berry

plants that undergo similar underground pollination processes,

such as apples and blueberries.
5 Conclusion

This study delves into an intriguing and often overlooked

phenomenon in agricultural cultivation. To study this

phenomenon, we proposed a mathematical model with Monte

Carlo simulations to analyze the entire process of greenhouse

strawberry pollination and fruit growth using the Japanese

cultivar Beni hoppe as the research subject.

The proposed model demonstrates that the multiplication and

accumulation of complex intermediate variable distributions during

the growth process result in strawberry fruit weight following a

lognormal distribution. This lognormal distribution is a significant

factor that contributes to the positive skewness observed in the fruit

weight distribution. The model and simulation results presented in

this paper offer a reasonable explanation for the positively skewed

weight distribution of strawberries, and this model has the potential

to be applied to other bee-pollinated berry plants.
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