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Mapping QTL associated
with resistance to Pseudomonas
syringae pv. actinidiae
in kiwifruit (Actinidia
chinensis var. chinensis)

Casey Flay 1,2*, V. Vaughan Symonds1, Roy Storey2,
Marcus Davy 2 and Paul Datson2,3

1School of Natural Sciences, Massey University, Palmerston North, New Zealand, 2The New Zealand
Institute for Plant and Food Research Limited, Te Puke, New Zealand, 3Kiwifruit Breeding Centre, Te
Puke, New Zealand
Pseudomonas syringae pv. actinidiae (Psa) is a bacterial pathogen of kiwifruit.

This pathogen causes leaf-spotting, cane dieback, wilting, cankers (lesions), and

in severe cases, plant death. Families of diploid A. chinensis seedlings grown in

the field show a range of susceptibilities to the disease with up to 100% of

seedlings in some families succumbing to Psa. But the effect of selection for field

resistance to Psa on the alleles that remain in surviving seedlings has not been

assessed. The objective of this work was to analyse, the effect of plant removal

from Psa on the allele frequency of an incomplete-factorial-cross population.

This population was founded using a range of genotypically distinct diploid A.

chinensis var. chinensis parents to make 28 F1 families. However, because of the

diversity of these families, low numbers of surviving individuals, and a lack of

samples from dead individuals, standard QTL mapping approaches were unlikely

to yield good results. Instead, a modified bulk segregant analysis (BSA) overcame

these drawbacks while reducing the costs of sampling and sample processing,

and the complexity of data analysis. Because the method was modified, part one

of this work was used to determine the signal strength required for a QTL to be

detected with BSA. Once QTL detection accuracy was known, part two of this

work analysed the 28 families from the incomplete-factorial-cross population

that had multiple individuals removed due to Psa infection. Each family was

assigned to one of eight bulks based on a single parent that contributed to the

families. DNA was extracted in bulk by grinding sampled leaf discs together

before DNA extraction. Each sample bulk was compared against a bulk made up

of WGS data from the parents contributing to the sample bulk. The deviation in

allele frequency from the expected allele frequency within surviving populations

using the modified BSA method was able to identify 11 QTLs for Psa that were

present in at least two analyses. The identification of these Psa resistanceQTLwill

enable marker development to selectively breed for resistance to Psa in future

kiwifruit breeding programs.
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Introduction

Many cultivars of kiwifruit are devastated by the bacterial

pathogen Psa (Pseudomonas syringae pv. actinidiae biovar 3), also

known as the virulent form of Psa (Psa-V)(Everett et al., 2011;

McCann et al., 2013; Dwiartama, 2017). This disease is particularly

destructive to A. chinensis var. chinensis (Datson et al., 2015)

genotypes, but also affects A. chinensis var. deliciosa (Takikawa

et al., 1989). It has been reported that Psa spread from Asia, where

up to four biovars were present (Koh et al., 1994). Each of the non-

virulent biovars had different pathogenesis and molecular

characteristics on different kiwifruit genotypes, but they did not

cause the pathogenesis observed in the virulent Psa-biovar-3. This

biovar, first reported in 2010 in New Zealand, is now widespread in

the north island of the country, where kiwifruit is widely cultivated.

Infected plants show symptoms such as leaf-spotting, cane dieback,

wilting, or oozing a clear, brown or white liquid in spring or autumn

from cankers (lesions). In highly susceptible genotypes, these

symptoms occur on multiple canes leading to whole vine death.

On more resistant genotypes, symptoms can involve flower bud

browning, bud drop, flower wilting, and leaf spotting (Everett et al.,

2011). To manage the outbreak, regulations were established by the

national agency, Kiwifruit Vine Health (KVH), which required the

removal of plants with severe symptoms such as cankers, or

multiple dead canes. with severe symptoms such as cankers, or

multiple dead canes, were removed.During the initial outbreak in

2011, the leading yellow-fleshed A. chinensis var. chinensis cultivar

in New Zealand, named ‘Hort16A’, along with its pollenisers, were

particularly susceptible to Psa. This susceptibility led to a significant

decrease in gold kiwifruit production (Dwiartama, 2017). To

address this decline, a gold-fleshed A. chinensis var. chinensis

cultivar with the PVR name ‘Zesy002’ (fruit marketed as Zespri™

SunGold) was utilised to replace gold fruit production that was

previously reliant on ‘Hort16A’ (Everett et al., 2011; Dwiartama,

2017). This replacement cultivar exhibits greater resistance to Psa.

As Psa is such a ubiquitous and damaging pathogen,

incorporation of resistance to Psa is required for any kiwifruit

exposed to field conditions. Current breeding programmes that are

based on crossing Psa-resistant families retain moderate resistance.

However, due to the highly polygenic nature of resistance to Psa,

strong resistance has not yet been achieved in the gold-fleshed A.

chinensis var. chinensis (Tahir et al., 2018; Tahir et al., 2019). QTLs

for resistance to Psa have been identified in two families of A.

chinensis resulting from a resistant by susceptible cross, but

identifying these QTL required large replicated trials from a

single family and detailed phenotyping (Tahir et al., 2019). The

phenotyping requirement, and the requirement of large, replicated

families to generate QTL for resistance to Psa, could be overcome by

identifying alleles remaining in breeding populations after the

selective sweep caused by severe Psa infection.

When Psa spread within kiwifruit families established at Plant

& Food Research, Kerikeri, New Zealand, notable differences in the

extent of seedling removal emerged among these families due to Psa

(personal communication Paul Datson).

The selective sweep caused by Psa presented a chance to

investigate allele loci that persisted within the diverse families that
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made up this population. This investigation was carried out by

using a technique called bulk segregant analysis (BSA), which aimed

to gain insights into the genetic makeup related to resistance and

susceptibility to Psa. BSA operates by assessing alterations in allele

frequencies between populations that have segregated due to the

pressures of selection, resembling a selection map (Michelmore

et al., 1991; Wisser et al., 2008; Magwene et al., 2011; Li and Xu,

2022; Shen andMesser, 2022). The BSA technique has been used for

the detection of QTL for target traits in various species, including

dwarfing in watermelon (Dong et al., 2018), cotyledon colour in

soybean (Song et al., 2017), cold resistance in rice (Sun et al., 2018),

resistance to ascochyta blight in chickpea (Deokar et al., 2019), and

kernel length-width ratio in wheat (Xin et al., 2020). A typical BSA

investigates loci that differ between sample bulks segregating for a

trait of interest, combining ideas from linkage mapping and GWAS

(Michelmore et al., 1991; Li and Xu, 2022; Shen and Messer, 2022).

Like classical linkage mapping, most BSA trials are designed using

two parents with different phenotypes. The two parents are crossed

to generate an F1 population which is back-crossed or interbred for

several generations to generate sufficient recombination to break up

linkage from parents (Michelmore et al., 1991). Individuals from the

last generation are selected to form two bulks that segregate for the

phenotype of interest. Thus, alleles affecting the target phenotype

should show a significant difference in frequency between the two

bulks, while unselected alleles should remain in both bulks at

similar frequencies (Michelmore et al., 1991; Shen and Messer,

2022). Diverging from the typical BSA, bulks can be analysed with

BSA directly from F1 populations (Dai et al., 2018; Guan et al.,

2019). Similarly, selection mapping approaches compare a shift in

allele frequency between two bulks created from samples of the

population before and after a selection event altered the

population’s allele frequency (Wisser et al., 2008; Johnsson, 2018).

The DNA that contributes to each of the bulks in BSA and selection

mapping approaches is typically quantified for each individual, and

an equivalent amount of DNA added to the bulk from each

individual (Song et al., 2017; Dong et al., 2018; Munjal et al.,

2018; Wang et al., 2021). While this approach ensures that a

precise quantity of DNA is added from each individual, tracking

samples and extracting DNA from individuals is costly and time-

consuming. Moreover, both methods will include signal noise from

a shift in allele frequency not caused by the target selection pressure.

These unintended shifts in allele frequency can be caused by the

genetics of the founding parents (James, 1970; Conolly et al., 2008;

Chen et al., 2019).

An alternative approach to bulking DNA samples after

extraction would be to bulk leaves of different individuals prior to

DNA extraction. This approach would simplify sampling and

reduce the cost and workload involved with DNA extraction by

extracting DNA directly from a bulk of leaf samples. To help

standardise the DNA contribution from each sample, the leaf

sample growth stage and the amount of leaf material would need

to be kept consistent. Samples from each individual then could be

ground together for DNA extraction as a bulk. However, this

approach precludes a precise balance of each individual’s DNA

contribution to the pool and may introduce greater variance into

the bulks; therefore individuals that potentially contribute a greater
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amount of DNA would make a greater contribution to the allele

frequencies than others with less DNA extracted. This may decrease

the power to identify allelic differences between bulks and thus

QTL. Prior to applying such a modified method to an experimental

population, a test of the approach to detect selection at a known site

would need to be performed to determine its accuracy.

Testing the level of precision of the modified method of bulk

sampling would require a population segregating for a simple

control trait that is determined by a single well-characterised

locus, and ideally with low interaction between the gene and the

environment. To this end, within the dioecious A. chinensis, plant

sex is a suitable trait as it is easy to phenotype and it is controlled by

a single well-characterised dominant gene that is not affected by the

environment (Akagi et al., 2018). This kiwifruit sex gene, named

Shy Girl (SyGl) exists on the male Y chromosome and suppresses

flower feminisation, producing males in plants possessing it (Akagi

et al., 2018). It was assumed that if a shift in allele frequency could

be detected using these methods in the monogenic Shy Girl gene,

polygenic loci of strong influence on the population would also be

able to be detected.

This study aimed first to test whether pooling leaves from

multiple individuals prior to DNA extraction enables a BSA to be

effectively carried out on the resulting DNA pool. This was done

using a series of bulked pools that varied in the ratio of male and

female A. chinensis individuals that contributed to the pools and

investigated whether the QTL for plant sex could be identified on

chromosome 25. Part two of this work aimed to identify any

changes in allele frequency between bulks of sample pools of

seedlings that had survived in the field following a Psa selective

sweep and a bioinformatically generated bulk of data from parents

contributing to each sample bulk. Regions of the genomes where

alleles have a greater sample depth in the WGS of sample bulk data

than expected from their parental bulk of data should highlight the

regions of the genome under strong selection from Psa.
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Materials and methods

Population

A diverse population of diploid A. chinensis var. chinensis, named

“12x18”, was identified at Plant & Food Research, Kerikeri, New

Zealand as a suitable population tomeet the objectives of both aspects

of this study. The parental seedling vines for this population were

initially planted in 2015 and cultivated using a T-bar system, with a

spacing of 0.75 m between each plant and 3 m between rows. The

population was strategically distributed across three blocks, each

spanning 4000 m2, with 6-m high hedging shelter belts serving as

dividers and boundaries around the blocks. This population was

naturally exposed to Psa, which was present in the Kerikeri orchard at

the time of seedling planting. The exposure to Psa led to the

development of symptoms in certain individuals including tip

dieback, cane death, oozing from infected cankers, and in highly

susceptible cases, complete plant death. To manage Psa symptoms,

canes were removed if tip death or cane death was observed on a

single cane. When more than three canes were infected with cankers

or experienced cane dieback the entire vine was removed from the

orchard. The structure of the 12x18 population was established by the

crossing a diverse set of 12 female and 18 male parents fromActinidia

germplasm, employing an incomplete factorial design that resulted in

63 families. A variable number of seedlings (33, 48, or 56) from each

family were planted in the field after their initial establishment in

pots. Fifty-nine families had individuals remaining after 4 years

(Figure 1, Table 1, Figure 2). Between 2015 and 2019, severe Psa

infections led to the removal of individuals from various families with

a range from 63% to 100%. Of the families that had surviving

individuals, only 25 had sufficient a sufficient number of

individuals to be included in the current study. However, it was

necessary to pool families based on their parentage due to the

relatively low numbers in individual families.
FIGURE 1

The crossing structure of 25 families with surviving individuals from the 12x18 population. For part two of this work, eight bulks were made by
sampling leaves from all surviving plants within families which shared the parent indicated in the blue columns and salmon rows. Female parents
(P9-P22) are shown on the left-hand side with male parents (P1-P8) at the top. Percentages in cells indicate the number of individual F1 seedlings
remaining after being exposed to Psa (Pseudomonas syringae pv. actinidiae) for four years in the field. The numbers in brackets are the number of
individuals remaining from the total number of individuals that were planted from the family. For example, 4%, or two of 56 plants survived after four
years in the field from the cross between P1 and P10.
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Sample collection, DNA extraction
and sequencing

The field sampling, DNA extraction processes, and sequencing

methods were the same for both parts of this work. Sampling of

plant material was done by placing a single leaf from each plant,

destined for a bulk, into a plastic bag labelled with the bulk’s name.

Leaf samples were taken from the third leaf from the growing cane
Frontiers in Plant Science 04
tip and kept cold in a chilly box with ice while sampling. After field

collection, the bulks of leaves were stored in a -80°C freezer before

processing. A 10-mm diameter leaf disc was collected from the

lamina of each leaf while frozen. All leaf discs from a bulk were

finely ground together in liquid nitrogen with a pestle and mortar.

DNA was extracted from the ground material with a Qiagen

DNeasy® Plant Maxi kit. To remove pectin from samples, DNA

was precipitated by adding 1/10 volume sodium acetate (3 M, pH
FIGURE 2

Percentage of each parent’s theoretical contribution to sample bulks. Bulks were based on the parents in columns, with parents contributing to the
sample bulk in rows. Families from parents with grey-filled parent names were represented twice where the family was used in bulks based on male
and female sample bulk parents. Parents with whole-genome sequence (WGS) data have cells filled in green, and those without WGS are filled in
salmon. Parent bulks contained DNA only from the parents with green shading. The total theoretical DNA contribution missing from parents without
WGS data in parent bulks is shown in the bottom row.
TABLE 1 The number of males and females contributing to bulks in part one of this work.

Bulk
Number of males

in bulk
Number of females

in bulk
Total individuals

in bulk
Percentage of males

in bulk
Percentage of females

in bulk

1 2 17 19 10.5 89.5

2 4 15 19 21.1 78.9

3 6 13 19 31.6 68.4

4 9 11 20 45 55

5 10 10 20 50 50

6 12 8 20 60 40

7 15 5 20 75 25

8 16 4 20 80 20

9 18 2 20 90 10
The percentage of males within each of the nine bulks ranged from 10.5% to 90%.
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5.2) to two times the volume (calculated after addition of sodium

acetate) of at least 95% ethanol. Samples were incubated on ice

overnight, then centrifuged at 14000 g for 30 min at 4° C.

Supernatant was removed and rinsed with 70% ethanol, then

centrifuged at 14000 g for 15 min. The supernatant was

discarded, and the pellet dissolved in TE buffer (pH 8.0). TE

buffer was made by adding 100 mL of 1M Tris-Cl (pH 8.0) to 20

uL of 0.5 M EDTA (pH 8.0) to 9.880 mL of reverse-osmosis water.

DNA quality and quantity were checked using a Qubit® 2.0. In

samples with a low DNA quantity, extraction was repeated. In

samples with low-quality DNA, identified by a 260/280 value of

under 1.6, DNA was cleaned of pectin using a second ethanol

precipitation step. In this step, DNA was precipitated in 98%

ethanol and the DNA pellet was lightly massaged with a spatula

against an Eppendorf tube wall to remove pectin within the DNA

precipitate. A minimum of 1400 ng of DNA from each bulk was

sent to the Australian Genome Research Facility (AGRF) for PCR

free library preparation and whole-genome sequencing at 30x

coverage with 150 bp paired-end reads using the Illumina

NovaSeq 6000 platform.

Using this method of bulking leaf samples forgoes the step of

extracting DNA from individual plants, quantifying the DNA from

each extraction and adjusting the amounts so that each bulk

contains an even amount from each contributing individual.

However, it also introduces the risk of having a variable quantity

of DNA added from each individual to a bulk and may therefore

increase the error associated with analysing allele depth.
Comparing the genomic difference
between the parents contributing to bulks

Because the methods used in part two of this work could be

influenced by the similarity of parents, the genomic distance

between parents needed to be tested. The genomic distance

between individuals can be analysed with principal component

analysis by transforming genomic data into a Boolean vector, as

described in Konishi et al. (2019). The variants from parents were

used to identify the genomic distance between each parent with

whole genome sequence (WGS) data.
Bulking samples for part one of this study

The sensitivity of the sampling and bulk segregant analysis

methods to detect a shift in allele frequency was investigated. This

was achieved by using male and female F1 individuals from a mix of

families from the 12x18 population that had parent P8 as the father

(Figure 1, Figure 2). Female parents of these families included P10,

P14, P15, and P17. The shift in allele frequency at the sex locus on

chromosome 25 was tested between the nine bulks of DNA

containing about 10%, 20%, 25%, 40%, 50%, 55%, 68.4%, 78.9%

or 89.5% male contribution to the bulk from 19–20

individuals (Table 1).
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Bulking samples for part two of this study

Part two of this work investigated WGS data from bulks to

detect whether there was a shift in allele frequencies within bulks of

individuals that remained in families after exposure to Psa. This

work was complicated because severe Psa infection had led to the

removal of many individuals from all the families in the population.

Because some families had very few individuals remaining, each of

the eight sample bulks included resistant individuals from up to six

families. These were bulked based on a single parent that

contributed to all the families in the bulk (Figure 1, Figure 2). For

example, the bulk B1 contained F1 families from crosses P1 x P10,

P1 x P12, P1 x P18, P1 x P21, and P1 x P22.

Part two of this work differed from a typical BSA because there

was no DNA from individuals that were removed because of Psa.

Instead, the frequency of alleles in surviving individuals was

compared against a bioinformatically generated bulk of data from

parents contributing to the sample bulk. The bioinformatically

generated parent bulks were used in place of bulks of individuals

susceptible to Psa. Bulks like this can be used because the alleles in

the parental bulks were representative of the families included in the

bulks without selection. This methodology is similar to that done

for selection mapping (Wisser et al., 2008; Matsumoto et al., 2017),

but it has the drawback of assuming no other influences on allele

transmission. The bioinformatically generated parent bulks were

made by merging parental BAM files before variant call files (VCF)

were made. However, not all parents that contributed to the families

used in parental bulks had WGS data available (Figure 2, Table 2).

As a result, the bulks of parents that contained some parents

without WGS data would give a less accurate representation of

the population before selection. The loss of information was

particularly apparent in the bulk of B9, which had 29.5% of its

theoretical DNA contribution missing from its P6 parent and 9.1%

missing from the P7 parent (Figure 2). The missing data from

parents would have resulted in some alternate alleles present in

these parents not being included in the analysis. Unfortunately,

once the pools were established during field sampling, the families

with missing WGS data could not be removed from pools.
Bulk segregant analysis part one

To test the limits of the methods used to bulk samples and

extract DNA to determine the architecture for Psa tolerance, WGS

data for part one of this work were analysed with the QTLseqR

package v0.7.5.2 (Mansfeld and Grumet, 2018). The analysis

included nine bulks, with a varying number of males added to

each bulk, were each compared with each other for 36 separate

analyses, described further below. These comparisons were

expected to present a QTL peak in the bulk segregant analysis at

1.6 Mb on chromosome 25. QTLs were expected on chromosome

25 because it contains the heterozygous dominant sex-determining

Shy Girl gene that suppresses the feminisation of flower production

to generate male flowers and thus a male plant (Akagi et al., 2018).
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But detection of QTL at the Shy Girl gene locus could only occur if

the methods used were tolerant enough of the sampling and bulking

methods, the effect of Psa on the families, and the relationship

between the samples for the bulks, since these would have an

influence on frequency of alleles between bulks. For example, if

bulks with a 5% difference in male number were compared and QTL

were consistently detected in comparisons with different

backgrounds, and with a similar difference in male percentage

between pools, it could be assumed that the methodology added

5% of error to the analysis.

Bulks of males were compared with each other because WGS

data were unavailable for two of the five male bulk parents, P14 and

P17. Thus, a bulk of these parents would not accurately represent

the bulks of parental data. Instead, data from each of the nine bulks

with a known percentage of males were compared with each other,

resulting in 36 separate analyses that compared pairs of bulks. The

difference between the percentages of males between bulk pairs

varied between 5 and 79.5%.

Binary alignment files (BAM files) of WGS data were generated

from compressed FASTQ formatted sequence files containing single

read sequence output by aligning reads to an unpublished in-house

reference genome of parent P8 by Roy Storey using BWA-MEM (Yao

et al., 2020). The author completed the subsequent bioinformatics

analyses using the R coding language. BAM files from separate flow

cell lanes were merged with Picard “MergeSamFiles”. Samtools was

used for sorting and indexing BAM files. Variant call files were

generated using BCFtools mpileup with options including setting a

minimum base quality of 20 and disabling probabilistic realignment

to help reduce false SNPs caused by misalignments. Indel calls were

excluded. Optional tags included the depth at each site, the depth of

each allele, and the Phred-scaled strand bias P-value. Uncompressed

output was piped to BCFtools call, which included the genomic

quality and genotype posterior probability format fields and the

multiallelic caller option. The resulting variant call files were

indexed using BCFtools index. BCFtools query was used to split

data into separate comma-separated value text files for each

chromosome and exclude sites with a depth of less than 20 or

greater than 200, and data were read into R/datatable.
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The SNP index for each bulk pair to be analysed was calculated

by dividing the alternate allele depth by the total read depth. The

reference allele frequency was calculated by summing the reference

allele depth of bulks being compared and dividing the result by the

sum of the total depth of the bulks being compared. The delta-SNP

index was calculated by subtracting the SNP index of the sample

bulk from the parental bulk. The modified G statistic was calculated

for each SNP based on the observed and expected allele depths

(Magwene et al., 2011) and smoothed using a tricube smoothing

kernel (Watson, 1964) in QTLseqR (Mansfeld and Grumet, 2018).

The Gprime value was calculated from the tricube smoothed G

statistic by taking the average weight of the physical distance across

the neighbouring SNPs within the 1-Mb window. This approach

accounted for linkage disequilibrium and minimized the noise

attributed to SNP calling errors (Magwene et al., 2011). SNPs

were filtered using the QTLseqR package selecting a reference

allele frequency of 0.05, a minimum total depth of 60, a

maximum total depth of 160, an allele depth difference of less

than 50 between bulks, a minimum sample depth of 10 and a

minimum genomic quality of 100. The QTLseqR analysis package

had the bulk size set to 20 individuals with the Gprime window size

set at 1 Mb. Because the adjusted p statistic threshold failed to detect

peaks with a low difference in allele frequency, the genomic position

of the top 0.5% of SNPs were used as the peak locus.
Bulk segregant analysis part two

Part two of this work used the same bioinformatics pipeline as

part one of this work to generate VCF files of sample bulks.

However, part two of this work differed from part one because a

modified BSA approach was used for bulk creation and sample

bulks were compared against the bioinformatically generated bulk

of WGS data from parents that contributed to the bulked families

(Table 1). Bulks were selected for analyses based on the presence of

WGS data for parents and having greater than ten individuals

available for sampling. These parent bulks were created by merging

BAM files from parents using samtools-merge. VCF files were
TABLE 2 Depth filter settings applied to data before Gprime analysis.

Sample
bulk

Refence allele
frequency

Minimum total
depth

Maximum total
depth

Depth dif-
ference

Minimum
sample depth

Minimum
genomic quality

B1 0.05 40 85 50 10 100

B2 0.05 35 85 50 10 100

B3 0.05 20 85 50 10 100

B4 0.05 40 150 50 10 100

B9 0.05 40 130 50 10 100

B10 0.05 40 90 50 10 100

B11 0.05 60 170 50 10 100

B12 0.05 30 100 50 10 100
Sample bulks B1-B12 retained the same reference allele frequency, allele depth difference, minimum sample depth and minimum genomic quality, but varied in the minimum total allele depth
and maximum total allele depth depending on the distribution of depth data in each sample bulk.
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created with BCFtools-mpileup using the same options as in part

one of this work.

Before the sample bulks and parent bulks could be compared,

calculations based on SNP data from VCF files were performed.

VCF files were read into R/datatable, and a SNP index was

calculated for each bulk by dividing the alternate allele depth by

the total read depth. The reference allele frequency was calculated

by summing the reference allele depth of the sample bulk and the

parent bulk, and dividing the result by the sum of the total depth of

the bulks being compared (Mansfeld and Grumet, 2018). The delta-

SNP index was calculated by subtracting the SNP index of the

sample bulk from the parental bulk (Mansfeld and Grumet, 2018).

The data preparation for analysis in QTLseqR was done

similarly to that done in part one. First, BCFtools-query split data

into separate.csv files for each chromosome and excluded sites with

a depth of less than 20 or greater than 200. The SNP index per bulk

was calculated by dividing the alternate allele depth by the total read

depth. Unlike in part one, in part two the reference allele frequency

was calculated using the sum of reference allele depths of sample

bulks and the result was divided by the sum of the total depth of the

parental bulks. The delta-SNP index was calculated by subtracting

the SNP index of the sample bulk from the parental bulk.

Data from each of the eight sample bulks were compared with

their parent bulk using the Gprime analysis portion of the QTLseqR

package (Mansfeld and Grumet, 2018). Gprime analysis was used

because the average G values across SNPs in the 1-Mb sliding

window reveal the signal of divergence in allele frequency between

bulks that are conserved between closely linked sites (Magwene

et al., 2011; Mansfeld and Grumet, 2018). Using the G value reduces

the influence of random noise due to variable sequencing read

coverage (Mansfeld and Grumet, 2018). Within the QTLseqR

package, SNPs were filtered by depth for each comparison
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depending on the data distribution. Minimum and maximum

total depth were set to remove SNPs of extremely low and

extremely high frequency (Table 2) (Mansfeld and Grumet, 2018).

Filtering SNPs by read depth helps remove SNPs with low

confidence due to low coverage, or remove SNPs in repetitive

regions that would have an artificially inflated read depth

(Mansfeld and Grumet, 2018). Settings for the Gprime analysis

method were as follows: the sliding window size was set at 1 Mb, the

outlier filter was set as “deltaSNP”, and the filter threshold was set at

0.4. The resulting Gprime values for each SNP site were plotted with

the top 0.5% of Gprime values and peak loci for each bulk plotted

in Figure 3.
Results

The PCA comparing the parents that contributed to bulks that

also had WGS data showed a close relationship among the half-

sibling individuals P8 and P9, with a greater distance between P8

and P9 and the other individuals at PC1. PC2 showed an even

distribution of genomic relationship between the remaining

individuals with the exception of P1 and P2, which had minimal

genomic distance on PC2 (Figure 4).

The methods used for the BSA in this work differed from the

standard methods used for BSA in QTLseqR (Mansfeld and

Grumet, 2018). Therefore, the sensitivity of these methods to

detect QTL in bulks of A. chinensis var. chinensis needed to be

tested. Part one of this work tested the resolving power of the

methods by making 36 pairwise comparisons at the sex loci on

chromosome 25 among the nine bulks of individuals with a

differing percentage of males. However, QTLs were detected in

only 12 of the 36 bulk comparisons when using the adjusted p =
FIGURE 3

BSA QTL peak positions for Psa resistance between all analyses. Thirty QTLs were detected among the eight bulks analysed. The BSA presenting the
most unique QTL were B2, B9, and B10. The BSA presenting no unique QTL were B11 and B12. A single QTL site was common between four BSA on
Chromosome 11 at 16.95 Mb from B1, B3, B10 and B12. Four QTL sites were common between three BSA on chromosome 2 at 5.35 Mb,
chromosome 4 at 13.02 Mb, Chromosome 17 at 11.31 Mb, and Chromosome 22 at 8.07 Mb. Six QTL sites were found in common between two BSA
on Chromosome 9 at 7.55 Mb, Chromosome 10 at 10.89 and 12.92 Mb, Chromosome 14 at 11.13 Mb, Chromosome 17 at 11.31 Mb, Chromosome 18
at 17.01 Mb, Chromosome 22 at 4.97 Mb, and Chromosome 23 at 13.44 Mb. The 17 remaining QTL sites were found in a single BSA.
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0.05 threshold (Figure 5). Increasing the threshold to adjusted p =

0.1 included more QTL peaks, but also significantly increased the

signal-to-noise ratio. Because the adjusted p-value based threshold

could be caused by the alternative method of bulking multiple

families or lack of inclusion of some parents in the bioinformatically

generated bulk of parents, the significance threshold was changed to

use the top 0.5% of Gprime values. Using the top 0.5% of Gprime

values allowed QTL detection from BSA with greater accuracy in

bulks, detecting QTL at the sex-linked gene locus in 19 of the 36

bulks analysed. However, using the top 0.5% of Gprime values as a

threshold of significance for QTL detection also has the

disadvantage of missing smaller peaks for QTL in BSA plots

where the signal for selection for some QTL was strong and

covered a large range of loci. For example, the P3 bulk may have

signal for selection on chromosomes 25 and 29, but the peaks on

chromosomes 11 and 12 hold the top 0.5% of Gprime values.

To determine the effect of Psa on A. chinensis var. chinensis

alleles in an incomplete factorial population, in part two of this

work, samples that survived Psa were assigned to bulks based on

families with a parent in common (Figure 1, Figure 2). Using BSA,

the eight sample bulks were compared against bioinformatically

created bulks of parental WGS data. The eight resulting BSA,

presented in Supplementary Material, identified sites of higher

frequency in the sample bulk compared to the parent bulk,

potentially caused by selection for resistance to Psa. The QTL

presented as higher Gprime values in the resulting BSA plots,

with the top 0.5% of Gprime values considered significant QTL.

These significant QTL were summarised between bulks in Figure 3.

In theory, the variants for resistance to Psa had a maximum

potential selection of 50%. For example, in the case of a cross ab x cc

with resistance associated with the ‘a’ variant, if there was strong

selection for the ‘a’ variant in all seedlings, the resulting family

containing ac variants would have a variant frequency 50% higher
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than if there was no selection producing ac and bc variants. The b

variant will also decrease in frequency by 50%.
Discussion

Psa is one of the most destructive diseases affecting kiwifruit,

with a broad range of susceptible and tolerant A. chinensis var.

chinensis genotypes. However, QTLs for Psa resistance have been

published within only two families to date (Tahir et al., 2019; Tahir

et al., 2020), potentially leaving many alleles for resistance to Psa

undiscovered. Typically, QTL mapping methods would be used to

investigate loci for a polygenic trait such as Psa (Jansen, 1996;

Lefebvre and Palloix, 1996). However, accurately identifying traits

influenced by more than one locus with QTL mapping is a costly

and resource-intensive process requiring large replicated families

specially developed for this purpose (Wisser et al., 2008; Soto-Cerda

and Cloutier, 2012; Tahir et al., 2018; Gupta et al., 2019; Tahir et al.,

2019). The work presented here overcame the limitations of the

typical QTL mapping process by using bulks of diverse F1 families

in a modified BSA. This approach further increased the utility and

cost-effectiveness of the typical BSA methods by analysing multiple

small families in a single bulk, decreasing the sampling complexity,

reducing the DNA extraction time and cost, reducing sequencing

costs, and increasing the breadth of Psa resistance alleles that could

be detected within a bulk.

Bulked DNA has been analysed using BSA methods for a wide

range of species and traits (Michelmore et al., 1991; Song et al.,

2017; Dong et al., 2018; Sun et al., 2018; Xin et al., 2020; Li and Xu,

2022; Shen and Messer, 2022). The approach taken here used BSA

analysis methods to identify alleles for Psa resistance by measuring

the shift in allele frequency of an A. chinensis var. chinensis

population that had many individuals removed from established
FIGURE 4

The genomic distance between parents that contributed to bulks analysed by principal component analysis. A close relationship among the half-
siblings P8 and P9 was found with a greater distance between P8 and P9 and the other individuals at PC1. The close relationship between P8 and P9
remained at PC2, with a close relationship between P1 and P2.
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families due to Psa. The selective sweep of susceptible individuals

provided a prime opportunity to measure the effect of this selection

on the alleles that remained within those A. chinensis var. chinensis

families. However, because susceptible plants were not sampled

prior to loss, DNA was not captured from susceptible individuals,

which a typical BSA would use as the comparison bulk (Michelmore

et al., 1991; Li and Xu, 2022). The lack of a susceptible bulk was

compensated for in this modified BSA by using a bulk of parent

WGS data as a population not exposed to selection pressure for Psa

resistance. To our knowledge this is the first time a bulk of parents

has been used as a substitute for a bulk in a BSA analysis and the

first time QTL for kiwifruit resistance to Psa have been identified

within a diverse range of families.
Testing the sensitivity of
the modified methods

Part one of this work tested the ability of the modified BSA

method to analyse the effects of Psa in kiwifruit by identifying a

known locus through detecting a shift in allele frequency between

bulks. This test was required because the families were sampled and

extracted as bulks in a unique way (Figure 1). The modified method
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involved sampling leaves for a bulk from the field into a single bag

and extracting DNA from all leaf samples within the bulk by first

grinding them all together before DNA extraction. This significantly

increased the speed of sampling, sample tracking and DNA

extraction, but variance among leaves could still occur due to

differences in the number and size of cells, ratio of mitotic to

interphase nuclei, or differing structures or biochemical

composition of the plant cells (Marsal et al., 2013). As a result,

changes in allele frequency could have been created between

samples due to a variable amount of DNA extracted from each

leaf sample. Testing the effect of the sampling methods and their

integration with the analysis methods on allele detection found that

the detection of an allele frequency shift of over 10% was effective

for detecting alleles under strong selection for Psa resistance for part

two of this work. The detection accuracy was enhanced by

modifying the threshold of detection for QTL. The modified

thresholds allowed the detection of a 20–40% shift in male allele

frequency with an accuracy above 71% (Figure 5), and a shift in

allele frequency above 60% could be detected with 100% accuracy.

This confirmed that the modified technique could detect large

changes in allele frequency. Because strongly selected alleles can

cause a shift in allele frequency of up to 50% within a family (Miko,

2008), this increased the confidence that sites of strong selection
FIGURE 5

The detection of QTLs on chromosome 25 from pairwise comparisons between nine bulks with a different percentage of males added to each bulk.
This figure presents only QTL from chromosome 25, but the analysis was completed over the whole genome. Using the top 0.5% of SNPs over the
whole genome (top) to detect QTL peaks gave fewer false-negative results than QTL peaks, which were deemed statistically significant using an
adjusted p-value of greater than 0.05. When using the top 0.5% threshold, the detection accuracy was estimated to be 33%, 71%, 78%, and 100% for
an expected difference in allele frequency between bulks of 0–20%, 20–40%, 40–60%, and 60–80%, respectively. When using the adjusted p=0.05
threshold, the detection accuracy was estimated to be 0%, 21%, 67%, and 100% for an expected difference in allele frequency between bulks of 0–
20%, 20–40%, 40–60%, and 60–80%, respectively.
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could be detected in part two of this work. However, these methods

may not detect small shifts in allele frequency.
QTL for resistance to Psa

A typical BSA groups together loci that differ in allele frequency

between sample bulks segregating for a trait of interest (Michelmore

et al., 1991; Li and Xu, 2022). However, part two of the approach

taken here modified the bulking strategy of a typical BSA. Each

sample bulk was made up of multiple diverse families that had DNA

extracted from all individuals in the bulk simultaneously as a single

sample. Part two of this work also differed from a typical BSA

because no individuals culled due to Psa infections were sampled to

make a comparison bulk. Instead, a bulk of parental alleles was

bioinformatically generated using WGS data from parents of the

families under investigation. The alleles with a higher frequency in

the sample bulk compared to the parent bulk were assessed against

the significance thresholds established in the preliminary trial to

identify alleles for Psa resistance. Between the eight sample bulks

that each contained three to seven families, 30 QTLs for resistance

to Psa were identified. Twelve of the 30 QTLs were detected in more

than one bulk, with one locus on Chromosome 11 at 16.95 Mb

detected among four bulks (Figure 6).

Alleles for Psa resistance have previously been published in a

large diploid A. chinensis var. chinensis family (Tahir et al., 2019).

That study identified two QTL using field scores for Psa resistance.

One of the loci identified was in an identical location to the locus

found in this work on Chromosome 22 at 4.967790 Mb from two
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bulks, B10 and B12. Because the parent P8 was used in the bi-

parental population by Tahir et al. (2019), and bulk B10 from this

work also contained the parent P8, it seems likely that this locus for

resistance to Psa is coming from parent P8. The other locus for Psa

resistance detected by Tahir et al. (2019) using field scores, found on

Chromosome 27 at 4.305319 Mb, was not detected in this study.

The lack of detection of this locus may have been because the

cultivar ‘Hort16A’ that identified as the parent that contributed Psa

resistance to the bi-parental family was not included in this study. A

parent of ‘Hort16A’, included in this study, named parent P13, was

included in bulk B3 but the contribution of P13 to this bulk was low

at 5.4%. It would be expected to have a peak if the resistance allele

was strongly selected for in the B3 bulk, but it is more likely that the

other parent of ‘Hort16A’, named CK15_01 by Tahir et al. (2019),

was the contributor of the resistance QTL found by Tahir et al.

(2019) on Chromosome 27 at 4.305319 Mb.

The commonality of resistance allele sites among some of the

different BSA bulks may reflect the inclusion of common parents

that contributed to those bulks. This commonality of QTL sites can

give insight into which of the parents were likely to be contributing

the alleles under selection at some of the QTL. Looking at the peaks

that are at the same site on the same chromosomes in different bulks

(Figure 6) allows us to infer the most likely parents that were

contributing the alleles to those QTL. For example, the QTL on

Chromosome 2, at 5.35 Mb, is shared between bulks B1, B2, and

B12, indicating that parent P12 is likely to be the source of alleles in

higher frequency in those bulks (Figure 6). Similarly, the parent P4

is likely the source of the QTL on Chromosome 22 at 8.07 Mb and

the parent P1 is likely the source of the QTL on Chromosome 4 at
FIGURE 6

Chromosomes and sites with more than one QTL for resistance to Psa in common between analyses. The parents contributing alleles to each QTL
can be determined for some peaks by analysing the families that contribute to each bulk. The QTL, highlighted in green, from Chromosome 4 was
likely from the parent P1. But the indication of parent P1 being the main contributor to QTL peaks on Chromosome 14 at 11.13 Mb and
Chromosome 22 at 4.97 Mb may be misleading as the bulk B10 had a low contribution from parent P1. This may not have had a strong enough
signal to present as a peak unless the loci were shared with another parent such as P12. The QTL on Chromosome 2 at 5.35 Mb was likely from
parent P12, and the peak on Chromosome 22 at 8.07 Mb was likely from parent P4. Other parents contributing to QTLs in light green had two
individuals that could have contributed to the QTL. Chromosome 11 had no parental contributors to bulks in common with the QTL at that position,
despite four bulks presenting QTL at that site. It is possible that the parents, P1 and P18, contained the same alleles for Psa resistance on
Chromosome 11 at 16.95 Mb.
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13.02 Mb. The parent P1 also appears to be the contributing parent

to the QTL on Chromosome 22 at 4.97 Mb. However, this

prediction of the P1 parent contribution to QTL at 4.97 Mb on

Chromosome 22 may be inaccurate as the P1 parent makes up only

a small proportion of the bulk B10 (5.6%). Instead, both the parents

P6 and P8 may have contributed this QTL to these bulks. Parent P8

was used as one of the parents in a biparental mapping family for

Psa resistance in a study by Tahir et al. (2019) and parents P6 and

P8 are related. Tahir et al.’s study (2019) also identified the same

QTL at 4.97 Mb on Chromosome 22 derived from parent P8. Eight

other QTLs could have their parent contributors narrowed down to

only two parents since both were shared between bulks and

sites (Figure 6).

In cases where a QTL was detected in only one bulk, the allele

responsible may have been contributed by a parent unique to that

bulk (Figure 7).

Therefore, the QTL peaks on Chromosomes 11 at 0.36 Kb, 13 at

11.55 Mb, 26 at 9.12 Mb, 27 at 8.46 Mb and 29 at 10.68 Mb from

bulk B9 were likely contributed by the parent P7. The remaining

QTL sites from bulks B2, B3, B4 and B10 each had two unique

parents that likely contributed to the detected QTL: namely, parents

P16 or P17 contributed to Chromosomes 3 at 18.56 Mb, 6 at 12.65

Mb, 8 at 12.07 Mb, 19 at 23.56 Mb, 21 at 7.45 Kb, and 27 at 4.76 Kb,

parents P13 or P17 to Chromosomes 11 at 7.97 Mb and 12 at 13.65

Mb, parents P13 or P20 to Chromosomes 7 at 16.92 Mb and 13 at

13.65 Mb from bulk B3, and parents P5 or P8 likely contributed to

resistance alleles on Chromosomes 5 at 10.95 Mb, 17 at 13.31 Mb

and 24 at 9.12 Mb from bulk B10. It was reassuring that the B11 and

B12 bulks, which had no parents unique to the bulk, had no unique

resistance allele sites attributed to them.

Further information about parent contributors to resistance

alleles can be gained by identifying the parents in common among

bulks that contributed to these alleles. This approach identified the

likely parental contributors to three resistance alleles on

Chromosomes 2, 4, and 22 from parents P1, P4 and P12,

respectively (Table 3).
Effects of the selective sweep for Psa
tolerance alleles

Within each sample bulk, the families that had more individuals

surviving Psa contributed more DNA to the bulk compared to those

with fewer surviving individuals included in the same bulk. When

performing the BSA, bulks with a skewed family representation may

have preferentially identified loci from the families with more
Frontiers in Plant Science 11
individuals in the bulk. This is likely because a higher amount of

DNA contributed to a site from a particular parent increases the

read depth of a locus unique to that parent compared to the bulk of

parents. This is what was expected for the resistant alleles, but the

families that had fewer surviving individuals would be under-

represented in the bulk and therefore the Gprime value may be

lower for these loci. The lower Gprime value may be excluded at a

locus of interest due to families with greater representation

presenting higher Gprime values over a greater number of loci.

The individuals that contributed to bulks all survived the

selective sweep caused by Psa. The selective sweep would have

exerted strong selection for alleles linked to resistance loci, such as

those at 16.95 Mb along Chromosome 11 in bulks 1, 3, 10, and 12.

Conversely, the selective sweep would have significantly reduced the

frequency of alternative alleles at those loci (Nielsen et al., 2005).

With strong selection pressure for an allele from a parent

contributing to the family, the other allele would be effectively

eliminated from the population at that locus. However, changes in

allele frequency can also be indirectly caused through genetic

correlations from linkage disequilibrium (Barrett and Hoekstra,

2011; Kemppainen et al., 2017) and genetic drift (Conolly et al.,

2008). The Gprime method of BSA was implemented to adjust for

the effects of linkage disequilibrium (Magwene et al., 2011), but

genetic drift could have skewed the results, particularly in families

with poor representation in the bulk. This is because the families

with poor representation in the bulk are also a poor representation

of that family, which will predispose the alleles from these families

to genetic drift (Magwene et al., 2011). Similar effects will have

occurred at genomic regions linked to the alleles for Psa resistance

(Robertson, 1970). However, because the effects of genetic drift are

assumed to be random throughout the genome (Conolly et al.,

2008), the effect of genetic drift on the results from this work are

assumed to be minor and resistance alleles detected in multiple

bulks are unlikely to be caused by genetic drift.

Identifying the parents that contributed the Psa resistance loci

to each bulk will help with family-based breeding strategies (Hinds

et al., 2005). Although the families that contributed the largest

number of individuals to bulks are likely to be those that are

contributing the alleles for resistance in each bulk, these

resistance alleles could be coming from one or many parents. An

attempt was made to identify the parents contributing resistance to

the sample bulks analysed, but a combination of the missing

parental WGS data and the way the bulks were constructed

limited the information available. This could be overcome by

developing markers to target the loci with high Gprime values.

The markers could then be used on DNA from parents to identify
FIGURE 7

Bulks with parent contributors unique to each bulk. Parents that were represented in a single pool are highlighted in green.
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which parents contributed these resistance alleles and enable

marker-assisted selection for Psa resistance in families related to

these parents. Identifying parents that contributed causal resistance

alleles to a bulk could also be done by identifying alleles of higher

frequency from the BSA under the QTL that were private to a single

parent (Hinds et al., 2005). However, this was not possible in this

work because many of the parents did not have WGS data available

(Figure 2). Identifying haplotypes for each parent would also be

beneficial by allowing the haplotype sequence of each parent to be

matched with loci with high Gprime values under QTL. This would

be informative for the parents of bulks B1, B4 and B11, but WGS

data from parents P5, P6, P7, P16, P18, P19 and P22 would still be

needed to generate haplotype sequences to identify the parents

contributing to QTL in bulks B2, B3, B9, B10, and B12.
QTL detection accuracy of loci from
parents that contributed a small or large
percentage of DNA to bulks

Accurately detecting loci for resistance to Psa in part two of this

work was dependent on the percentage of alleles that each family

contributed to the bulk. Families that contributed more than 20% to

a bulk and had strong allelic selection pressure on alleles unique to

that family are likely to have those alleles present as a QTL in 72% of

analyses (Figure 5). But, families that had strong selection pressure

on alleles unique to that family and contributed 10–20% to a bulk

were likely to present as a QTL in only 40% of analyses. Families

that contributed less than 10% to a bulk were unlikely to present any

QTL in the BSA, even with strong selection pressure on alleles

unique to that family (Figure 5). Therefore, it is unlikely that

families with poor representation in the sample bulk contributed

to QTL in part two of this work. However, these families with low

contribution to bulks may contribute the same resistance loci as

other parents included in the bulk, adding to the significance of

those sites. The lack of representation from the families

contributing less than 10% to a bulk was due to the dilution

created by other families that made up a bulk. For example, if an

individual contributed 10% to a bulk and 50% of alleles were from

one heterozygous parent under strong selection for Psa resistance,
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the resistance allele might be in all the individuals sampled from

that family. Conversely, where resistance alleles are shared between

families contributing to a bulk, their contribution to the sample bulk

would stack, making their representation in the sample bulk 50%

higher than in the parental bulk.
Future research

Future projects could improve upon the methods used in part

one of this work. Sampling of individuals for the bulks containing

different sex ratios should have been done on families where parental

WGS data were available for all of the parents contributing to the

families used in each bulk. If this were done when sampling in part

one this work, the sample bulks with a differing number of males and

females in each bulk could have been compared against the

bioinformatically created bulk of parents to match part two of this

work. However, this was not done because some of the parents that

contributed to these bulks did not have WGS data. Having an

accurate test of the methods would alleviate the concern that the

inferences made in part one of this experiment reflect only the allelic

variance included in the sampling and DNA extraction methodology

and may not accurately reflect the influence of the BSA methods on

identifying alleles for Psa resistance in part two of this work. If part

two of this work were repeated, collecting leaf material from plants

before being culled would create a better match to a typical BSA (Li

and Xu, 2022) and allow the creation of a bulk of alleles that were

being selected against instead of using a pool of parental WGS data as

the comparison bulk. Also, collecting leaf samples from all plants

before they were affected by Psa would enable the creation of an

unselected bulk, a negatively selected bulk, and a positively selected

bulk. Comparing the positively selected bulk of individuals resistant

to Psa against the unselected bulk may allow the identification of

alleles associated with resistance to Psa. Comparing the negatively

selected bulk of individuals that were removed because of Psa against

the unselected bulk may allow the identification of alleles associated

with susceptibility to Psa. Integrating the crossing and sampling plans

would increase the accuracy of analyses because the unselected bulk

would be a better representation of the alleles within the family than

that of bulks of WGS data from parents.

The two parts of this work showed that finding multiple alleles

for resistance to Psa can be achieved using BSA of bulks containing

multiple families while greatly simplifying field sampling, DNA

extraction, and reducing sequencing costs. To our knowledge, this is

the first time DNA has been extracted as a bulk for a BSA instead of

quantifying DNA from each individual separately and bulking the

resulting DNA. This is also the first time BSA has been applied to

bulks of families, where the comparison bulk was made up of a

bioinformatically generated bulk of parental WGS data to identify

loci affecting the target trait. Utilising the alleles for Psa resistance

found in this work as selection criteria in breeding programmes

may enable faster breeding of cultivars with greater resistance to Psa

than without marker-assisted selection and provide an opportunity

to stack resistance loci to create a more robust resistance to Psa in

future cultivars.
TABLE 3 The commonality of parents contributing resistance loci
among bulks.

Parent contributing
to bulks

P1 P4 P12

Bulks containing parents

B1 B4 B1

B10 B9 B2

B12 B11 B12

QTL position
Chr. 4, 13.02

Mb
Chr. 22, 8.07

Mb
Chr. 2, 5.35

Mb
The parents that contributed specific alleles can be inferred where multiple bulks have
resistance alleles at the same site that shared parents among those bulks. Parent P1 was the
likely contributor to the resistance allele on Chromosome 4. Parent P4 was the likely
contributor to the resistance allele on Chromosome 22, and Parent 12 was the likely
contributor to the resistance allele on Chromosome 2.
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