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Introduction: As the third largest food crop in the world, maize has wide varieties

with similar appearances, which makes identification difficult. To solve the

problem of identification of hybrid maize varieties, a method based on

hyperspectral image technology combined with a convolutional neural

network (CNN) is proposed to identify maize varieties.

Methods: In this study, 735 maize seeds from seven half-parent hybrid maize

varieties were regarded as the research object. The maize seed images in the

range of 900 ~ 1700nm were obtained by hyperspectral image acquisition

system. The region of interest (ROI) of the embryo surface was selected, and

the spectral reflectance of maize seeds was extracted. After Savitzky-Golay (SG)

Smoothing pretreatment, Maximum Normalization (MN) pretreatment was

performed. The 56 feature wavelengths were selected by Competitive

Adaptive Reweighting Algorithm (CARS) and Successive Projection Algorithm

(SPA). And the 56 wavelengths were mapped to high-dimensional space by high-

dimensional feature mapping and then reconstructed into three-dimensional

image features. A five-layer convolution neural network was used to identify

three-dimensional image features, and nine (SG+MN)-(CARS+SPA)-CNN maize

variety identification models were established by changing the input feature

dimension and the depth factor size of the model layer.

Results and Discussion: The results show that the maize variety classification

model works best, when the input feature dimension is 768 and the layer depth

factor d is 1.0. At this point, the model accuracy of the test set is 96.65% and the

detection frame rate is1000 Fps/s in GPU environment, which can realize the

rapid and effective non-destructive detection of maize varieties. This study

provides a new idea for the rapid and accurate identification of maize seeds

and seeds of other crops.

KEYWORDS

hyperspectral imaging technology, maize, high dimensional feature mapping,
convolution neural network, non-destructive testing
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1 Introduction

As one of the three major food crops in the world, maize has a

wide cultivation area, large yield and strong adaptability, which is of

great strategic significance to the economic development and social

stability of China (Feng et al., 2022). In the actual agricultural

production process, cultivating suitable maize varieties is the crucial

aspect to achieving high yields. Different maize seeds are easily

confused due to various sorts and similar appearance, which brings

great inconvenience to farmers in purchasing varieties and market

supervision (Tu et al., 2021). Therefore, it is of great significance

and application value to achieve rapid, accurate and efficient

identification of maize varieties.

Traditional seed identification methods mainly include manual

detection methods, chemical identification methods and so on,

which have some defects such as intense subjectivity, great

destructiveness and complex operation process. And they are

challenging to meet the requirements of modern agriculture for

non-destructive and rapid seed production (Wang et al., 2021;

Wang and Wang 2021; Huang et al., 2022). Hyperspectral

imaging technology combines the advantages of image and

spectral technology, which can simultaneously reflect the image

information and spectral information of external characteristics,

internal physical structure and chemical composition of samples to

be tested. So hyperspectral imaging technology is widely used in

non-destructive testing research on crop seed varieties, quality and

vitality (Wu et al., 2021; Wu et al., 2022; Yang et al., 2022). Huang

et al. (2016b) used hyperspectral imaging technology to establish a

PLS-SVM model to identify four different years of maize seeds, and

the identification accuracy rate reached 94.4%. Fu et al. (2022)

identified four maize varieties based on hyperspectral imaging

technology, and the accuracy of the SSAE-CS-SVM model test set

reached 95.81%. Wang et al. (2022) used hyperspectral imaging

technology to establish a fusion model based on dual-band ratio

image and texture features to realize efficient non-destructive

identification of maize seeds of four different years, and the

accuracy rate of prediction set was 97.5%. Chivasa et al. (2019)

developed a PLS-DA model based on multi-temporal hyperspectral

data and multivariate techniques to identify 25 maize varieties at

specific phenological stages. Tu et al. (2022) used hyperspectral

imaging technology combined with machine learning to realize

non-destructive identification of 10 related maize varieties. Huang

et al. (2016a) established the LS-SVM maize variety classification

model based on hyperspectral imaging combined with spectral

features and fusion with image features to identify 17 maize

varieties with a test accuracy of more than 90%. Wu et al. (2016)

collected hyperspectral image data of four maize varieties based on

NIR hyperspectral technology, and established the SPA-PLS-DA

classification model to realize non-destructive identification of

maize varieties. The accuracy of the modeling set and prediction

set reached 78.5% and 70.8%, respectively. Shao et al. (2019)

collected hyperspectral images of three varieties of maize based

on hyperspectral imaging system, screened characteristic bands by

Boruta algorithm, and established a random forest classification

model, with an accuracy rate of 78.30%. Sun M et al. (2022)
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modeled and analyzed wheat seeds of different seven years based

on hyperspectral imaging technology, and predicted wheat seeds of

other four years with an accuracy rate of 100%. Zhang et al. (2019)

used hyperspectral image technology to obtain hyperspectral image

spectral information of the wheat varieties mainly planted in Henan

Province, and established PCA-SVM classification model, which

identified three wheat varieties with an accuracy rate of over 95%.

Sun Y et al. (2022) modeled and analyzed spectral information of

moldy and non-moldy grains of different wheat varieties collected

by hyperspectral imaging technology, and the prediction accuracy

of SPA-SVM model for moldy grains was more than 98%.

Existing research shows that a large number of scholars at

home and abroad have carried out research on crop seed variety

identification, most of which are based on two methods:

hyperspectral image information combined with deep learning

and modeling based on spectral data. The method based on

hyperspectral image mainly applies image features to identify

seed varieties, which is suitable for identifying seed varieties

with obvious shape and texture differences. While most seeds

have no noticeable appearance differences, therefore, this method

is difficult to be widely used in the identification of crop seed

varieties in practice. The modeling methods based on spectral

information are divided into two steps: feature band extraction

and model building. The feature bands are mostly extracted by

single extraction method such as SPA or CARS, which has some

problems such as incomplete feature band extraction and lack of

effective information. In addition, traditional machine learning

models such as SVM, PLS and PCA are primarily used in

modeling methods, which have the disadvantages of low

accuracy and poor robustness. The convolutional neural

network, as a kind of forward feedback network, can

automatically learn the features in the image with higher

accuracy and efficiency. Hybrid maize varieties are similar in

appearance and not easily distinguishable, and subtle differences

in the content of internal substances cause significant differences

in yield, insect resistance, disease resistance, stress resistance and

other indicators. Based on this situation, this paper was conducted

with seven hybrid maize varieties as the research object, using SPA

and CARS mixed feature band extraction method to improve the

utilization rate of effective feature information, and building a

convolution neural network (CNN) model based on data

reshaping to achieve accurate identification of maize varieties.
2 Materials and methods

2.1 Test materials

The maize seed samples used in the experiment are all from the

experimental field of Yanshi District, Luoyang City, Henan

Province. Seven half-parent hybrid maize varieties with good

appearance, uniform color and no mechanical damage were

manually selected, marked as categories 0, 1, 2, 3, 4, 5 and 6,

respectively. As shown in Figure 1, there were 105 seeds in each

category, with a total of 735 test samples.
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2.2 Instruments and equipment

The hyperspectral imaging system used in this test consists of a

hyperspectral camera (SPECIM FX17, Finland), a computer (Dell),

a mobile platform, a sample tray (40cm × 20cm) and six halogen

lamps. To eliminate the effect of ambient light, maize seed spectra

were collected in a dark box, as shown in Figure 2.

The parameters of the hyperspectral imaging system were set as

follows: wavelength range is 900 ~ 1700nm, spectral resolution is

8nm, the number of bands is 224, spatial sampling resolution is

640px/line, exposure time is 8.5 ms, the frame rate is 50Hz and

platform moving speed is 22.43 mm/s. Hyperspectral data of maize

seeds were obtained by using Lumo Scanner software. The data

analysis software is as follows: ENVI 5.3, The Unscrambler X10.4,

Excel 2019, Origin 2018, MATLAB R2018b and so on.
2.3 Hyperspectral image acquisition
and correction

Maize seed embryos are rich in nutrients such as starch and

protein, so the embryo surface image information of the sample was

collected in this experiment (Wang et al., 2019). To ensure the

accuracy of collected data and prevent maize seeds from moving on

the mobile platform, the samples were placed on sticky black paper

with their embryo face up. As shown in Figure 3, the images of 105

maize seeds of one variety were collected at a time, and a total of 735

single maize seed samples images were collected in the experiment.

Hyperspectral image is easily affected by nonlinear factors such

as uneven distribution of light sources and dark current. To

enhance the stability and reliability of the image, dark and white

reference calibration images were used to correct the original

hyperspectral image. The hyperspectral system was preheated for

30 minutes, the whiteboard (reflectivity 99%) was scanned and an
Frontiers in Plant Science 03
all-white calibration image was recorded as Iw, the lens cover was

installed to collect all-black image which was recorded as Id, and

finally the original image of maize sample was photographed and

recorded as Iraw. And the corrected image I is obtained by black-

and-white correction with ENVI 5.3 software.

I =
Iraw − Id
Iw − Id

(1)

After image correction, to reduce the influence of uneven

distribution of chemical components in seeds, the largest possible

rectangular ROI region was selected in the center of each seed

sample by ENVI 5.3 software, and the average of the spectra of all

pixel points within the ROI region was taken as the average

spectrum of the sample (Feng et al., 2012). The original spectral

average reflectance curve in the wavelength range of 935.61 ~

1720.23 nm is shown in Figure 4. Due to both ends of the

collected spectrum with low signal-to-noise ratio, the areas with

considerable noise of spectral signal are eliminated, and the spectral

data range of 949.43 ~ 1709.49 nm wavelength are selected for

analysis and modeling.
2.4 Spectral preprocessing and feature
wavelength selection

The noise, background and other useless interference

information mixed in the acquisition of spectra affected the

accuracy and stability of spectral data analysis and modeling, so it

is necessary to preprocess the data before modeling to reduce the

interference of irrelevant information and improve the modeling
FIGURE 1

Maize seed sample.
FIGURE 2

Hyperspectral image acquisition system.

FIGURE 3

Schematic diagram of maize grain placement.
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accuracy. In this study, Savitzky-Golay Smoothing (SG) and

Maximum Normalization (MN) were used to preprocess the data.

Firstly, the number of smoothing points was set to 3, and the

spectral data was pretreated by SG to improve the smoothness of the

spectral curve. After that, the spectral data were mapped to the [0, 1]

interval by MN, and the data unit restriction was removed to

eliminate the errors caused by different magnitudes. The

pretreated spectral average reflectivity curves are shown in Figure 5.

The Successive projections algorithm (SPA) was used to extract

the feature bands from the pretreated spectrum, the maximum

number of wavelengths was set to 20, and five wavelength variables

were extracted, as shown in Figure 6. As can be seen from

Figure 6A, with the increase of the number of variables, the root

mean square error (RMSE) value shows a trend of sharp drop at first

and then slow down. When the number of variables is 5, the RMSE

no longer decreases significantly and the RMSE value is 1.7221 at

this time. After that, although the REMSE value decreases, too

many dependent variables will increase the computation and
Frontiers in Plant Science 04
complexity of the model, so five variables are selected as the final

characteristic wavelengths.

When using Competitive adaptive reweighted sampling (CARS)

to extract feature wavelengths, the 5-fold cross-validation method

was selected, and the number of Monte Carlo samples was set to 50,

as shown in Figure 7. Figure 7A shows that the number of CARS

extracted feature wavelengths decreases sharply at first and then

decreases slowly with the increase of sampling times, which shows

the process from coarse to fine selection of feature wavelengths

extracted by CARS. Figure 7B shows that the root mean square

error of cross-validation (RMSECV) decreases slowly at the

beginning of the iteration because the useless information bands

are eliminated. And the RMSECV increases gradually after the 24th

sampling, which indicates that the over-selection of feature

wavelengths by CARS occurs after the 24th sampling and

sensitive wavelength variables containing valid information are

eliminated, resulting in the decrease of model prediction accuracy

and the increase of RMSECV value; Figure 7C indicates that the

RMSECV value is the smallest at the 6th and 16th sampling, when

52 characteristic wavelengths are extracted.

To solve the problem of missing effective information in the

single extraction of feature variables by SPA and CARS, the feature

wavelengths extracted by the two methods were taken as a

concatenated set in this study, and a total of 56 feature wavelengths

were preferentially selected.
2.5 Division of training set and test set

In this experiment, 735 samples were divided into training sets

and test sets according to the ratio of 2: 1, where each category of

training sets and test sets were 70 and 35 respectively. And seven

categories of training sets and test sets were 490 and 245 respectively

to analyze and calculate the discrimination accuracy of model

training sets and test sets.
3 Model construction

3.1 Establishment of maize variety
identification model

To solve the problem that the Convolutional Neural Networks

(CNN) cannot directly process the feature band data, the maize seed

feature wavelength data was mapped to the high-dimensional

features. Then the mapped feature wavelength data was reshaped

into high-dimensional image features making the CNN processable

for the reshaped data. The overall network structure is shown

in Figure 8. The CNN model consists of three parts: data

reconstruction, convolution layer extraction and result prediction.

In the data reconstruction part, the feature bands of maize seeds are

mapped into high-dimensional features with different sizes, and

then reshaped into image shapes. Considering the dimension of

maize seed characteristic band, it is not easy to build the

convolution layers too deep to avoid overfitting and poor

robustness of the model. Therefore, a 5-layer CNN maize variety
FIGURE 4

Reflectance curves of original spectrum.
FIGURE 5

Spectral average reflectance curves after pretreatment.
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discrimination model was constructed to improve the model

generalization performance and reduce the redundancy effect of

the model on spatial features. The specific model parameters are

shown in Table 1. It can be seen from Table 1 that the overall maize

variety identification model is built by 3×3 standard convolution.

To improve the spatial feature extraction effect of the model on

maize seed feature bands, the sampling method of raising

dimension first and then reducing dimension is adopted to fuse

the features effectively. In order to explore the influence of model
Frontiers in Plant Science 05
layers depth on the sampling effect of maize seed characteristic

band, three common scaling factors (d), 1.25, 1.0 and 0.75 were used

to scale the layers of maize variety identification model to different

degrees. And the related parameters are listed in Table 1. In

addition, to explore the influence of different high-dimensional

feature resolutions on the adaptability of maize variety

identification model and find the best adaptability resolution of

the model, three different feature mapping relationships of 192, 768

and 3072 were used to generate three corresponding spatial feature
BA

FIGURE 6

Extraction of feature wavelength by SPA. (A) Number of variables. (B) Location of variables.
B

C

A

FIGURE 7

Process of extracting characteristic wavelength by CARS. (A) Number of preferred characteristic wavelength variables. (B) The root mean square
error of cross-validation variation. (C) Regression coefficient path map.
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resolutions of 8×8×3, 16×16×3 and 32×32×3. For the prediction

part, adaptive maximum pooling operation and Softmax are mainly

used to output the prediction results.
3.2 Building and training of model
loss function

Because the maize variety classification model was a multi-

category model, the Cross Entropy Loss function was used to

regress training the maize variety identification model. The

specific formula is shown in formula (2). In the formula, yj
represents the unique thermal coding form corresponding to the

actual category, and oj represents the probability that the network

predicts a certain category.

Loss =o
q

j=1
yjlogo

q

j=1
exp (oj) −o

q

j=1
yjoj (2)

The classification model of maize varieties is constructed with

Pytorch framework. The hardware platform is Intel (R) Xeon (R)
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Silver 4210R, the main frequency is 3.5 GHz, and the memory is

32GB. The graphics card model is NIVIDIA GeForce RTX 2080Ti

GPU, and the video memory is 16GB. The software platforms are

Pycharm 2020.2, CUDNN 7.4. 1.5, Python 3.8 and Pytorch 1.2. The

training period of epoch is set to 10000, and the initial learning rate

is set to 0.01. The learning rate (lr) is adjusted periodically by

LambdaLR algorithm, and the model parameters are optimized by

SGD optimizer in one step to improve the training effect of

the model.
3.3 Model evaluation index

To comprehensively evaluate the detection performance of

maize variety classification model, training set accuracy (Train),

test set accuracy (Test), frames per second (FPS), model weight

(Weight), model computation (Flops), model parametric number

(Params), Precision and Recall are used as evaluation indexes, and

their specific calculation formulas are as follows.
TABLE 1 Parameter index of CNN model.

Fom Input Operator #out Stride Layer

0.75 322×3 162×3 82×3 Conv2d 3×3 12 1

11.0 322×3 162×3 82×3 Conv2d 3×3 16 1

1.25 322×3 162×3 82×3 Conv2d 3×3 20 1

0.75 322×12 162×12 82×12 Conv2d 3×3 24 1

21.0 322×16 162×16 82×16 Conv2d 3×3 32 1

1.25 322×20 162×20 82×20 Conv2d 3×3 40 1

0.75 322×24 16²×24 82×24 Conv2d 3×3 48 2

31.0 322×32 16²×32 82×32 Conv2d 3×3 64 2

1.25 322×40 16²×40 82×40 Conv2d 3×3 80 2

0.75 16²×48 8²×48 4²×48 Conv2d 3×3 24 1

41.0 16²×64 8²×64 4²×64 Conv2d 3×3 32 1

1.25 16²×80 8²×80 4²×80 Conv2d 3×3 40 1

0.75 16²×24 8²×24 4²×24 Conv2d 3×3 12 1

51.0 16²×32 8²×32 4²×32 Conv2d 3×3 16 1

1.25 16²×40 8²×40 4²×40 Conv2d 3×3 20 1
front
Fom represents depth factors of different sizes between model layers, Input represents 3D spatial feature matrices of different sizes, Operator represents corresponding convolution operations, out
represents the size of feature maps output between model layers, Stride represents the step size of convolution kernel scanning, and Layer represents the names of convolution layers in
different stages.
FIGURE 8

Overall network structure of CNN model.
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Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

In the formula, TP represents the number of positive samples

that the model prediction is consistent with the real label, FP

represents the number of samples that the model prediction is

inconsistent with the actual positive samples, FN represents the

number of samples that the model prediction is inconsistent with

the actual negative samples, and TN represents the number of

samples that the model prediction is consistent with the actual

negative samples.
4 Results and analysis

In this study, the maize variety identification model was trained

and tested by 3-fold cross-validation to verify the applicability of

maize variety identification model. When the characteristic

dimension is 768, the specific results of cross-validation of three

maize variety identification models, MVI0.75 D1, MVI1.0 D1 and

MVI1.25 D1, are shown in Table 2. As can be seen from Table 2, the

accuracy of training set and test set of MVI1.0D1 are 97.62% and

96.65% respectively, and the performance is the best. Compared

with MVI0.75 D1 and MVI1.25 D1, the accuracy of MVI1.0D1 model

test set is improved by 7.2% and 1.43%. The inference speeds of

MVI0.75D1, MVI1.0D1 and MVI1.25D1 are 666Fps/s, 588Fps/s and

526Fps/s respectively in CPU mode and 1000Fps/s, 1000Fps/s and

909Fps/s in graphics card environment, which shows that the three

models have real-time detection performance. Although

MVI0.75D1, MVI1. 0D1 and MVI1. 25D1 are inputted the same

spatial feature resolution the model detection results are

significantly different in Weight, Params and Flops due to the
Frontiers in Plant Science 07
influence of depth scaling factor of model layers. Weight, Params

and Flops of MVI0.75D1 model are 2.33M, 70.35k and 286k

respectively, which are the smallest among the three model.

Weight, Params and Flops of MVI0.75D1 and MVI1.25D1 models

are (4.05M, 6.25M), (90.73k, 116.86k) and (367k, 469k)

respectively. Although there are obvious differences in the

metrics of MVI0.75D1, MVI1.0D1 and MVI1.25D1, the parameters

and calculation amount are still small and negligible compared

with the classical CNN model. Therefore, it can be concluded that

the detection effect of MVI1.0D1 is the best among MVI0.75D1,

MVI1.0D1 and MVI1.25D1 three maize identification models.

To explore the influence of spatial feature dimension on the

training results of maize variety identification model, the test results

of maize variety identification model with two spatial feature

dimensions 192 and 3072 were listed. The specific results are

shown in Tables 3 and 4. The comparative analysis shows that

the overall performance of the maize variety discrimination model

MVI1.25D0 is better when the dimension is192 with the same width

scaling factor d. In addition, it can be found from Table 3 that when

the width scaling factor d is 1.25, the accuracy rate of maize variety

detection model in training set and test set is the best, which can

reach 99.20% and 95.34% respectively. This reflects that when the

feature space dimension is small, the maize variety identification

model searches for effective features less effectively. Therefore,

properly adjusting the depth scaling factor is helpful to improve

the feature extraction ability and generalization performance of the

model. According to the test results in Tables 2–4, it can be found

that when the spatial feature resolution is enlarged only by

improving the input feature dimension, the performance of the

maize variety identification model is not better with a larger input

feature dimension. Appropriate adjustment of the spatial feature

dimension is helpful to improve the detection effect of the model.

The best result is obtained when the dimension is 768, and the

accuracy of maize variety identification model is improved

obviously. In addition, the reasoning speed of CPU, Weight,

Params, and Flops of maize variety identification model increased

exponentially when the size of input feature dimension was
TABLE 2 The model results of cross-validation when dimension is 768.

N Model Train/% Test/% Params Flops Weight Fpsg/s Fpsc/s

1 MVI0.75D1 91.73 86.12 70.35k 2.33M 286k 0.001 0.0015

2 MVI0.75D1 97.14 89.95 70.35k 2.33M 286k 0.001 0.0015

3 MVI0.75D1 95.55 88.52 70.35k 2.33M 286k 0.001 0.0015

1 MVI1.0D1 97.62 96.65 90.73k 4.05M 367k 0.001 0.0017

2 MVI1.0D1 99.84 95.69 90.73k 4.05M 367k 0.001 0.0017

3 MVI1.0D1 99.5 94.73 90.73k 4.05M 367k 0.001 0.0017

1 MVI1.25D1 98.73 92.82 116.86k 6.25M 469k 0.0011 0.0019

2 MVI1.25D1 99.84 95.22 116.86k 6.25M 469k 0.0011 0.0019

3 MVI1.25D1 99.84 93.78 116.86k 6.25M 469k 0.0011 0.0019
fron
MVImDn represents different classification model of maize varieties. Among them, m represents the depth factor of model layer, m can be taken as 0.75, 1.0 and 1.25, n represents the input feature
dimensions of different sizes, and n can be taken as 0, 1 and 2 respectively, which respectively represent the three states that the input feature dimensions are equal to 192, 768 and 3072. Train
represents the accuracy of maize variety classification model in training set, and Test represents the accuracy of maize variety classification model in test set. Fpsg represents the frame detection
speed in GPU environment, and Fpsc represents the frame detection speed in CPU environment.
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changed, while the reasoning speed of GPU was basically stable at

1000Fps/s.

In order to further explore the influence of input feature

dimension and model layer depth on maize variety classification

model, the Recall and Precision indexes of nine maize variety

classification models were analyzed, as shown in Figure 9. It can

be seen from Figure 9 that the Recall and Precision of MVI1.0D1

model are the highest, respectively 96.7% and 96.8%, followed by

maize variety classification models with the same characteristic

dimension (dimension is768) and different model layer depths. The

Recall and Precision of MVImD0 model are more stable than

MVImD2, which also proves that the depth of model layer is not

positively correlated with the performance of model classification.

Appropriate adjustment of model layer depth is helpful to improve

the effective extraction of spectral features of maize variety

classification network. The variation of loss curves of nine models

in 10000 iteration periods is shown in Figure 10. The loss curve of

MVImD1 model converges fastest with the increase of iterations and

the overall fluctuation is slight. The loss curve of MVImD0 model

fluctuates more than that of MVImD1, but the general convergence

is faster. The loss curve of MVImD2 is more divergent and the
TABLE 3 The model results of cross-validation when dimension is 192.

N Model Train/% Test/% Params Flops Weight Fpsg/s Fpsc/s

1 MVI0.75D0 92.69 89.47 37.52k 582.04k 158k 0.001 0.001

2 MVI0.75D0 90.78 85.17 37.52k 582.04k 158k 0.001 0.001

3 MVI0.75D0 89.83 83.73 37.52k 582.04k 158k 0.001 0.001

1 MVI1.0D0 99.68 93.78 57.9k 1.01M 239k 0.001 0.0012

2 MVI1.0D0 94.28 86.60 57.9k 1.01M 239k 0.001 0.0012

3 MVI1.0D0 95.71 90.91 57.9k 1.01M 239k 0.001 0.0012

1 MVI1.25D0 98.57 92.83 84.03k 1.26M 341k 0.0011 0.0013

2 MVI1.25D0 99.20 95.34 84.03k 1.26M 341k 0.0011 0.0013

3 MVI1.25D0 99.52 94.26 84.03k 1.26M 341k 0.0011 0.0013
F
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TABLE 4 The model results of cross-validation when dimension is 3072.

N Model Train/% Test/% Params Flops Weight Fpsg/s Fpsc/s

1 MVI0.75D2 81.08 75.60 201.68k 9.31M 800k 0.001 0.0026

2 MVI0.75D2 84.89 79.43 201.68k 9.31M 800k 0.001 0.0026

3 MVI0.75D2 80.45 75.60 201.68k 9.31M 800k 0.001 0.0026

1 MVI1.0D2 88.87 82.78 226.06k 16.29M 880k 0.001 0.0032

2 MVI1.0D2 86.49 83.73 226.06k 16.29M 880k 0.001 0.0032

3 MVI1.0D2 90.62 86.60 226.06k 16.29M 880k 0.001 0.0032

1 MVI1.25D2 98.57 91.39 248.19k 24.99M 982k 0.0011 0.0037

2 MVI1.25D2 99.20 87.56 248.19k 24.99M 982k 0.0011 0.0037

3 MVI1.25D2 99.52 92.34 248.19k 24.99M 982k 0.0011 0.0037
FIGURE 9

Recall and precision results of different models.
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overall convergence is poorer with the increase of iterations,

indicating that when the input dimension is 3072, it is easy to

generate invalid feature redundancy, which is not conducive to the

extraction of effective features by maize variety classification model.

To explore the effects of MVImD0, MVImD1 and MVImD2 series

of maize variety classification models on seven kinds of maize seeds,

three maize variety classification models (MVI1.0D0, MVI1.0D1 and

MVI1.0D2) with layer depth scaling factor d=1. 0 were selected to

test the test set, and the correlation confusion matrix was drawn by

comparing the predicted results with the actual results, as shown in

Figure 11. It can be seen from Figure 11B that MVI1.0D1 is the best

in classifying seven maize seeds and there are no misidentifications

and omissions in category 1 and category 4. Although the MVI1.0D1

model shows misrecognition among categories 1, 3, 5 and 6, the

misidentification rate is lower compared with the confusion matrix

results of MVI1.0D0 and MVI1.0D2, and MVI1.0D1 only misidentifies

category 0 without misidentification. Compared with MVI1.0D1,

MVI1.0D0 and MVI1.0D2 show more misidentification and the

model classifiers are unbalanced.

In this study, seven hybrid maize varieties were taken as the

research objects, and the effects of different input feature

dimensions and model layer depth on the performance of the

maize variety classification model were discussed emphatically.

The results showed that the maize variety classification model

performs better when the input feature dimension is 768 and

worse when the input feature dimension is 3072. This

phenomenon may be attributed to the redundant and invalid

features easily produced by the higher feature dimension, which
Frontiers in Plant Science 09
indirectly affects the classification effect of the maize variety

classification model. Therefore, changing the dimension of input

features can effectively improve the ability of extracting effective

spectral features of maize variety classification model. In addition,

the effect of model layer depth on the performance of maize variety

classification model was also discussed in this study. From the

results, it can be found that there is no positive correlation between

the performance of maize variety classification model and the layer

depth of the model. When the layer depth factor d is 1.25, the

performance of the maize variety classification model is slightly

lower than that when d is 1. 0, so it is most appropriate to set the

layer depth factor d as 1. 0. Due to the small sample size, more

sample data will be collected in the future to further validate the

maize classification model whether the method of identifying maize

varieties by mapping characteristic bands to high-dimensional

spatial features is feasible.
5 Conclusion
(1) To solve the problem of less effective feature bands and lack

of information by single feature variable extraction method,

56 feature bands are selected by combining SPA and CARS

in this study.

(2) To solve the problems of poor effect and slow speed of

traditional machine learning method in maize classification,

a high-dimensional feature mapping method is adopted to
B CA

FIGURE 10

Loss curve of different models. (A) Dimension is192. (B) Dimension is 768. (C) Dimension is 3072.
B CA

FIGURE 11

Model confusion matrix when layer depth scaling factor d is1. 0. (A) MVI1.0D0. (B) MVI1.0D1. (C) MVI1.0D2.
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Fron
reshape the extracted feature bands into three-dimensional

image features after mapping them to a high-dimensional

space. And a five-layer convolution neural network is

constructed to identify three-dimensional image features.

(3) At the same time, the influence of the size of the input

feature dimension and the depth of the model layer on the

performance of the maize variety model are discussed in

this study. The test results show that when the dimension of

the input feature dimension is 768 and the depth factor of

the layer is 1.0, the performance of maize variety

classification model is the best. And the accuracy of the

test set is 96.65%, and the detection frame rate is 1000Fps/s

in GPU environment, which can realize rapid and effective

non-destructive detection of maize varieties.
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