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Upland cotton (Gossypium hirsutum L.) is a major fiber crop that is cultivated

worldwide and has significant economic importance. India harbors the largest

area for cotton cultivation, but its fiber yield is still compromised and ranks 22nd

in terms of productivity. Genetic improvement of cotton fiber yield traits is one of

the major goals of cotton breeding, but the understanding of the genetic

architecture underlying cotton fiber yield traits remains limited and unclear. To

better decipher the genetic variation associated with fiber yield traits, we

conducted a comprehensive genome-wide association mapping study using

117 Indian cotton germplasm for six yield-related traits. To accomplish this, we

generated 2,41,086 high-quality single nucleotide polymorphism (SNP) markers

using genotyping-by-sequencing (GBS) methods. Population structure, PCA,

kinship, and phylogenetic analyses divided the germplasm into two sub-

populations, showing weak relatedness among the germplasms. Through

association analysis, 205 SNPs and 134 QTLs were identified to be significantly

associated with the six fiber yield traits. In total, 39 novel QTLs were identified in

the current study, whereas 95 QTLs overlapped with existing public domain data

in a comparative analysis. Eight QTLs, qGhBN_SCY_D6-1, qGhBN_SCY_D6-2,

qGhBN_SCY_D6-3 , qGhSI_L I_A5 , qGhL I_S I_A13 , qGhL I_S I_D9 ,

qGhBW_SCY_A10, and qGhLP_BN_A8 were identified. Gene annotation of

these fiber yield QTLs revealed 2,509 unique genes. These genes were

predominantly enriched for different biological processes, such as plant cell

wall synthesis, nutrient metabolism, and vegetative growth development in the

gene ontology (GO) enrichment study. Furthermore, gene expression analysis

using RNAseq data from 12 diverse cotton tissues identified 40 candidate genes
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(23 stable and 17 novel genes) to be transcriptionally active in different stages of

fiber, ovule, and seed development. These findings have revealed a rich tapestry

of genetic elements, including SNPs, QTLs, and candidate genes, and may have a

high potential for improving fiber yield in future breeding programs for

Indian cotton.
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1 Introduction

Cotton is one of the most important cash crops used for natural

textile fibers and oilseeds. It is cultivated worldwide as the primary

raw material for the textile industry (Chen et al., 2007). It is derived

from the Arabic word “quotn,” “gutum,” or “kutum”meaning those

crops which possess spinnable fibers on their seed coat (Lee, 1984).

Among the plant species commonly used by people, fiber-yielding

crops hold the second position after food crops. Cotton serves as an

excellent model for studying various aspects, such as plant

cell elongation, evolution, cellulose biosynthesis, and plant

polyploidization (Qin and Zhu, 2011; Huang et al., 2021). It

belongs to the genus Gossypium in the family Malvaceae and is

one of the largest genera in the Gossypieae tribe owing to its high

species diversity. It encompasses approximately 44 diploid (2n = 2x

= 26) and seven tetraploid (2n = 4x = 52) species (Grover et al.,

2015; Ditta et al., 2018).

Cotton is cultivated in more than 123 countries, encompassing

regions ranging from arid to semi-arid areas in the tropics and

subtropics. Among the four cultivated species, upland cotton

(Gossypium hirsutum) constitutes ~95% of the global cotton

production because of its high adaptability to various

environments and significant yield (Chen et al., 2007). Thus,

compared with other cultivated species, most breeding and

improvement programs related to fiber yield, fiber quality, insect

resistance, and drought tolerance, are mainly focused on upland

cotton. Genetic improvement for high cotton fiber yield has always

remained the primary focus of cotton breeders to increase their

productivity. With progress and advancement in the textile

industry, the demand for high fiber yield and quality is growing

exponentially. Although fiber quality is an essential trait in cotton

breeding programs (Rong et al., 2007; Said et al., 2013), enhancing

cotton fiber yield using Indian cotton varieties is still a primary goal.

In comparison to the rest of the world, India has the largest land

area under cotton cultivation (12,150 thousand hectares), yet its

productivity is greatly compromised (only 457 kg/ha) by 2022 (US

Department of Agriculture, https://usda.library.cornell.edu/). In

India, most cotton cultivars are released using conventional

breeding techniques based on morphological traits that are

affected by agronomic practices and environmental changes.

Consequently, the diversity and quality of elite cotton are reduced

daily because of the narrow genetic background, domestication, and
02
selection of elite cotton cultivars (Iqbal et al., 2001; Rungis et al.,

2005; Abdurakhmonov et al., 2012); thus, genetic improvement in

cotton fiber yield and other quality traits is still challenging.

Cotton fiber yield is a multifaceted quantitative trait influenced

by various traits, including boll weight (BW), boll number (BN),

seed cotton weight (SCW), lint percentage (LP), lint index (LI), seed

index (SI), first fruit branch position (FFBP), plant height (PH),

flowering period (FP), fruit spur branch number (FSBN), and many

others (Li F. et al., 2018; Sun et al., 2018). Such quantitative traits are

governed by both quantitative trait loci (QTLs) and environmental

factors, which are difficult to concurrently improve using traditional

breeding techniques. However, the advancement of applied

genomics research has introduced the use of QTL-linked or QTL-

associated molecular markers in marker-assisted selection (MAS)

and/or genomic selection programs. These emerging techniques

offer promising avenues for enhancing the efficiency of cotton

breeding and simultaneously targeting specific traits. QTL

mapping has been extensively employed to analyze the genetic

variations underlying complex traits in cotton, including fiber

quality and yield component traits (Rong et al., 2007; Said et al.,

2013; Said et al., 2015). Over the last 20 years, biparental linkage

mapping in upland cotton has led to the identification of numerous

QTLs associated with cotton yield (Zhang et al., 2005;

Abdurakhmonov et al., 2007; Shen et al., 2007; Wan et al., 2007;

Liu et al., 2012; Yu et al., 2013a; Yu et al., 2013b; Wang et al., 2014;

Liu D. et al., 2015). Nevertheless, biparental QTL mapping

encounters two main challenges: limited allelic diversity and

restricted genomic resolution due to the relatively low number of

recombination events that occur throughout the development of the

mapping population (Jannink et al., 2001; Flint-Garcia et al., 2005;

Hall et al., 2010).

To overcome these limitations of bi-parental QTL mapping,

association mapping offers an alternative approach for mapping

QTL, which relies on linkage disequilibrium (LD). It determines

whether particular alleles in a population are more frequently

associated with specific phenotypes than expected, thereby

providing insights into the genetic basis of complex traits (Flint-

Garcia et al., 2003). In addition, this analysis can be applied to a

large natural population, allowing the identification of traces of

genetic crossovers and loci responsible for traits at a much higher

resolution than previously reported techniques. In recent years,

genome-wide association studies (GWASs) have emerged as a more
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precise and cost-effective method for identifying significant QTLs or

genes linked to complex traits than linkage mapping. The first

association mapping study in cotton focusing on fiber quality was

reported in G. arboretum (Kantartzi and Stewart, 2008).

Subsequently, association mapping has been extensively applied

in upland cotton to investigate crucial economic traits, including

fiber quality (Abdurakhmonov et al., 2008; Nie et al., 2016; Liu et al.,

2020; Song et al., 2021), seed oil content (Liu G. et al., 2015; Yuan

et al., 2018; Zhao et al., 2019), fiber yield (Ademe et al., 2017; Sun

et al., 2018; GUO et al., 2021; Niu et al., 2023), and biotic and abiotic

stresses (Fang et al., 2010; Bardak et al., 2021; Xu et al., 2021; Zhang

et al., 2021; Zhao et al., 2021), as well as those associated with

epistasis and environmental interactions (Jia et al., 2014).

To date, studies on association mapping using Indian

germplasm are scarce and were first reported by Handi et al.

(2017), who used a cotton 63 K SNP chip to associate fiber yield

and fiber quality traits in 201 upland cotton germplasm lines.

Owing to their limitations, SNP chip-based studies only fetch

SNPs at a specific location in the genome (where relevant

information is gathered), and genotyping-by-sequencing (GBS)

methods, on the other hand, proved to be an attractive approach

for discovering and genotyping high-density SNPs. Although other

marker classes can also be used for this study (for example, Kumar

et al. (2021) used SSRs), SNPs demonstrated higher resolution in

revealing genetic relatedness as well as delineating population

structure in crops. Additionally, since SNP markers are abundant

and primarily derived from genes, genetic diversity studies using

these markers can reveal the functional variation that can be used in

association mapping studies for specific traits (Singh et al., 2013).

Therefore, the specific goals of the present study were to (a)

examine the phenotypic variability within the upland cotton

germplasm released from different cotton growing belts in India;

(b) explore the QTNs (qualitative trait nucleotides) or SNP markers

underlying fiber yield traits; (c) compare identified QTLs with

previously reported QTLs for yield traits, if available; and (d)

identify and validate through expressional profiling of putative

candidate genes found within the genomic regions controlling

yield traits. Our results using 117 diverse Indian germplasms and

2,41,086 SNPs identified many stable and novel QTL/genes that

may offer crucial information on the genetic control of fiber yield

traits in cotton. This information will aid in improving cotton yield

and the development of elite Indian cotton varieties through

marker-assisted breeding programs.
2 Materials and methods

2.1 Plant material

An association panel consisting of 117 Indian upland cotton (G.

hirsutum L.) germplasm was procured from All India Coordinated

Research Project (AICRP) on Cotton, ICAR-Central Institute for

Cotton Research, Regional Station, Coimbatore, India. These

materials were selected based on their phenotypic expression with

reference to fiber yield. The germplasms used in this study
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constitute the varieties released from diverse cotton-growing belts

(Northern, Southern, and Central) of India. Out these, 31, 43, and

32 germplasms were from the northern, southern, and central

zones, respectively, and information was unavailable for 11

germplasms zones (Supplementary Table S1).
2.2 Field experiment locations

Field experiments for precise phenotyping were conducted in

two different natural environments in India’s cotton-growing

regions: the northern and southern zones. In the northern zone,

the investigated plant materials were evaluated at the Punjab

Agriculture University, Regional Research Station, Faridkot (30°

40’32.4”N 74°44’57.3” E; hereafter referred as E1) and in the

southern zone, it was grown at Tamil Nadu Agriculture

University, Coimbatore (11°07’3.36”N 76°59’39.91” E; hereafter

referred as E2). There was a significant disparity in the agro-

climatic conditions between the two cotton-growing regions,

including variations in the soil type, rainfall, temperature, and

growing season. Cotton cultivation in E1 was done in alluvial soil

during May–November 2021 (under high temperatures), while in

E2, plant materials were grown under red soil at relatively

lower temperatures.
2.3 Experimental design and phenotypic
trait measurements

The plants comprising the association panels were sown

following a randomized block design (RBD) with ten biological

replicates of each germplasm accession. The plant-to-plant spacing

was 45 cm, whereas the row-to-row spacing was 90 cm, and there

were 10 plants in each row.

The cotton crop in E1 was established following regular

practices such as field preparation with fine tilth, sowing with a

single seed/hill, fertilizer applications (basal: 150 kg of urea and 50

kg muriate of potash, and top dressing: 50 kg urea and 25 kg

diammonium phosphate). Imidacloprid was applied to control

mites and sucking pest infestation that was noticed during the

early period of the cropping program (25th DAS). In E2, cotton

cultivation was supplemented with 12 kg/acre of phosphorus as a

pre-planting application, followed by separate applications of 15 kg/

acre of nitrogen during both the thinning and flowering stages.

Osheen 20 SG (dinotefuran) was applied to safeguard the cotton

crop against sucking pests such as whiteflies and jassids to maintain

healthy crops.

At maturity, all opened bolls were harvested from the surviving

healthy individual plants to estimate the fiber yield traits, such as

BN, BW(g), LI (g), LP (%), SCY(g/plant), and SI (g). For BN, the

total number of bolls was counted from each plant, BW was

measured as the average weight of 10 mature healthy bolls from

each plant, and SCY per plant was the total weight of the seed along

with the lint. Other traits were subsequently measured after ginning

the cotton bolls; LP (Ginning Out Turn) is defined as the percentage
frontiersin.org

https://doi.org/10.3389/fpls.2023.1252746
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Joshi et al. 10.3389/fpls.2023.1252746
of lint weight obtained from a given weight of seed cotton and was

calculated using the formula given below; LI is the weight of the lint

produced by the 100 seeds and it was calculated using the formula

given below; SI was measured as the weight of 100 healthy seeds.

Lint% (GOT) =
Lint weight in a sample
Seed cotton weight

� 100

Lint Index(LI) =
SI� Lint%
100 − Lint %
2.4 Phenotypic data analysis

The mean, coefficient of variation (CV), standard deviation

(SD), Pearson’s linear correlation coefficients, variance components,

Broad sense heritability (h2), and BLUP-based prediction of the

mean for the multi-environment trait (two locations) were

calculated using the “METAN,” “Phenotype,” and “corrplot”

packages in R environment (Team, 2016). GWAS analysis was

performed using the individual mean of the two locations and the

BLUPed mean of two location trait data of 117 germplasms.
2.5 Genomic DNA extraction, GBS library
preparation, genotyping, and SNP call

Genomic DNA was extracted from fresh young leaves using a

modified cetyltrimethylammonium bromide (CTAB) method

(Shukla et al., 2021). To ensure the accuracy and reliability of the

DNA samples, stringent quality control (QC) procedures were

performed using agarose gel electrophoresis, NanoDrop® 2000

spectrophotometer, and Qubit® 2.0 fluorometer. For library

preparation, 0.3–0.6 0mg of high-quality genomic DNA was

digested completely with the in silico optimized restriction

enzyme set MseI (frequent cutter) and HaeIII_MspI (rare cutter)

followed by efficient adapter ligation. After library preparation,

high-throughput paired-end DNA sequencing was performed using

the Illumina® HiSeq 2500 platform. Variant calling was performed

using the Genome Analysis Toolkit (GATK package, version

4.2.6.1) (Van der Auwera et al., 2013). In brief, the fastq files

were converted into uBAM (unmapped BAM) format, followed

by Marking of I l lumina adapter sequence wi th the

MarkIlluminaAdapters function. The marked uBAM files were

converted back to fastq format and aligned to the G. hirsutum

TM-1 reference genome (https://www.ncbi.nlm.nih.gov/assembly/

GCF_007990345.1/) using BWA-mem, and then a clean BAM file

was created using MergeBamAlignment (Li, 2013). Clean BAM files

were sorted using Picard Sort Sam and marked for duplicate reads

using a mark-duplicate function. Single genotype variant

identification was performed with Haplotype Caller, and 117 VCF

generated was used to create a variant database using

GenomicsDBImport, followed by joint genotyping of 117

genotypes. The variants were filtered for QD< 2.0, FS > 60.0,

MQ< 40.0, MQRankSum< −12.5, ReadPosRankSum< −8.0, SOR

> 3.0, indel, minor allele frequency >0.05 and max-missing 0.1
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for SNP trait association analysis (Van der Auwera and

O’Connor, 2020).
2.6 Population structure, PCA, and genetic
diversity analysis

To estimate the genetic differences between these 117 Indian

cotton germplasms, population structure, molecular phylogenetic

(neighbor-joining), principal component analysis (PCA), and

kinship (k) analysis were performed. The filtered variants were

pruned based on linkage disequilibrium (indep 50 5 0.5) using

Plink (version 1.9) for PCA and population structure analysis

(Purcell et al., 2007). The pruned variants were converted to a

structure format using PGDSpider_2.1.1.5 (Lischer and Excoffier,

2012). STRUCTURE software (version 2.3.1) (Falush et al., 2007) was

used to investigate the presence of subgroups in our association panel

using Bayesian clustering. The Structure parameters used were 1–10

k, 10 replicates at each k, 100,000 burn-in, and 100,000 MCMC reps

after burn-in, after which, the structure harvester was used to

calculate the delta k value and prepare the Clumpp individual file.

Clumpp was used to calculate the consensus membership coefficient

value from the 10 replicates of the k run, and the inferred

membership from Clumpp was used for further analysis and

cluster visualization (Earl and VonHoldt, 2012). These links were

used for principal component analysis (PCA). TASSEL5 was used for

tree construction using the neighbor-joining method based on a

modified Euclidean distance matrix (Bradbury et al., 2007).
2.7 SNP trait association analysis

The Genome Association and Prediction Integrated Tool

(GAPIT), an R package was used for SNP (marker) trait

association analysis. Three single-locus models (GLM, MLM, and

CMLM), and three multi-locus models (MLMM, FarmCPU, and

BLINK) were used (Wang and Zhang, 2021). The kinship coefficient

matrix calculated in TASSEL5 was used as co-variables in the

GWAS model and the PCA based on the Bayesian Information

Content parameter implemented in GAPIT was used to account

for population stratification for each trait with setting

“model.selection=TRUE” to reduce the false discovery. The

Manhattan and QQ plots were drawn using a significance

threshold of p<0.000031 (−logP >4.5) using the ‘CMplot’ R package.
2.8 Identification of trait-associated QTLs
and annotation of candidate genes

Following previously reported methods (Song et al., 2019; Sun

Z. et al., 2017), LD sizes of ±200 kb upstream and downstream

regions of significant SNPs were defined as QTLs, and SNPs within

these regions were of the same locus. The co-location study of our

GWAS-identified loci and previously reported results was

implemented using the following steps: (1) all the previously

reported QTLs and GWAS signals for yield-related traits were
frontiersin.org
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obtained from the http://cotton.zju.edu.cn/Qtl_phe.html database

and association mapping reports; (2) the physical location/genomic

coordinates of the SNPs in the QTL loci were retrieved through

BLASTn (250 Bp flanks) against the G. hirsutum genome (Zhang

et al., 2015; Hu et al., 2019); and (3) the coordinates of previous

QTLs were compared with the QTLs identified in this study.

Haplotype analysis was performed using the geneHapR package

(Zhang et al., 2023), where haplogroups detected in five or more

germplasms were considered for association analysis. The

phenotypic value of each haplotype was assessed by calculating

the average phenotypic value across the germplasm with each type

of SNP locus linked to a specific target trait. In this study, favorable

haplogroups were defined as the haplotype (combination of SNPs)

that showed the highest average values over the other haplotypes.

The gene located within the identified QTL region was mined and

functional annotation was performed using BLAST2GO. Gene

ontology enrichment analysis of the identified genes for

individual traits was performed using the clusterProfiler package

in R (Wu et al., 2021).
2.9 Expression analysis of genes in the
associated region

RNA-Seq datasets obtained from various cotton tissues,

including root, stem, leaf, torus, seed, cotyledon, ovule, fiber at 5

days post-anthesis (DPA), fiber at 10 DPA, fiber at 20 DPA, and

fiber at 25 DPA, were downloaded from NCBI BioProject with the

accession number PRJNA248163.The data were preprocessed for

quality and adapter trimming using the Trimmomatic tool in the PE

mode (Bolger et al., 2014). Alignment with the cotton genome was

performed using the splice-aware aligner Hisat2. StringTie was used

for count gene-level fragments per kilobase per million mapped

read (FPKM) (Pertea et al., 2016). The FPKM count was normalized
Frontiers in Plant Science 05
to zFPKM transformation with the zFPKM package of R, and genes

with zFPKM values of ±3 in at least one sample were considered as

expressed genes (Hart et al., 2013). The R package “pheatmap”

(Kolde, 2019) was used to generate heat maps depicting the

expression patterns of potential candidate genes.
3 Results

3.1 Phenotypic variability

The present study evaluated the phenotypic variability of six

yield-related traits for an association panel of 117 Indian upland

cotton germplasms in two environments, E1 and E2. A significant

and extensive range of phenotypic variation was observed for all

investigated traits (Table 1). BN, BW, LI, LP, SCY, and SI, exhibit

values ranging from 17–39.2 (per plant), 2.24–5 (g), 3.44–5.89 (g),

31.2–46.2 (%), 45.8–177 (g/plant), and 5.55–10.3 (g), with an

average of 24.6 g, 3.56 g, 4.54 g, 36.2% 88.1 (g/plant), and 7.87 g

in E1, while for E2, all the six traits ranged from 15.3–30 (per plant),

2.12–4.8 (g), 3.4–6.53 (g), 32–44.3 (%), 42–120 (g/plant), and 5.65–

10.8 (g), with an average of 22.9 g, 3.03 g, 4.52 g, 37.6%, 69.6 (g/

plant), and 7.35 g, respectively.

The coefficient of variance (CV) and heritability (h2) ranged from

6.32% to 24.7% and 63.3% to 90.6%, respectively for E1, whereas in

E2 the same was ranging from 6.17% to 20.1% and 46.6% to 78.3%,

respectively for all six yield-related traits (Table 1). When compared

with E1, E2 had lower heritability for all traits, indicating that the

environmental conditions of E2 critically influence all six traits. The

highest heritability was exhibited for SCY (90.6%) in E1, whereas the

lowest was exhibited for LP (46.6%) in E2. The distribution pattern,

box plot and phenotypic correlation analysis for yield-contributing

traits were also calculated using the mean data of both environments

as well as the data obtained from the BLUP analysis. Box plots and
TABLE 1 Description of phenotypic traits in two environments (E1 and E2).

Traits Environment Maximum Minimum Average STDEV CV
(%)

Skewness Kurtosis Heritability
(h2)

BN
(per
plant)

E1 39.2 17 24.6 4.01 16.3 0.507 -0.145 0.878

E2 30 15.3 22.9 3.37 14.7 0.591 -0.476 0.783

BW (g) E1 5 2.24 3.56 0.477 13.4 0.028 0.941 0.863

E2 4.8 2.12 3.03 0.426 14.1 0.725 2.365 0.69

LI (%) E1 5.89 3.44 4.54 0.443 9.76 0.116 1.057 0.748

E2 6.53 3.4 4.52 0.576 12.7 0.296 2.044 0.643

LP (g) E1 46.2 31.2 36.2 2.29 6.32 0.658 0.007 0.906

E2 44.3 32 37.6 2.32 6.17 2.964 0.089 0.711

SCY
(g/plant)

E1 177 45.8 88.1 21.8 24.7 0.955 0.729 0.696

E2 120 42 69.6 14 20.1 2.183 1.18 0.466

SI (g) E1 10.3 5.55 7.87 0.954 12.1 0.277 0.981 0.633

E2 10.8 5.65 7.35 0.992 13.5 -0.201 1.401 0.515
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frequency distribution plots were drawn using BLUPed data

(Figures 1A, B) and the trait mean data from two environments,

E1 and E2 (Supplementary Figures S1, S2) to better understand the

distribution pattern of the phenotypic data. All traits exhibited an

approximately normal distribution pattern indicating that they were

quantitative traits influenced by multiple genes. The correlation

analysis among traits of the BLUP data (Figure 2) showed that

SCY had a strong positive correlation with BN (0.80) and BW

(0.74), a moderate positive correlation with SI (0.26), a weak

positive correlation with LI (0.16), and a weak negative correlation

with LP (−0.13). In addition, LP exhibited the highest negative

correlation with SI (−0.56) and BW (−0.29). Moreover, a similar

trend of correlation pattern was observed with the trait data obtained

from E1, E2, and BLUPed-treated data (Supplementary Table S2).
Frontiers in Plant Science 06
The effects of genotype (G), environment (E), and genotype-

environment interaction (G × E) for all six traits were assessed using

analysis of variance (ANOVA). Significant variation (P<0.001) was

observed, indicating that adequate variability was present for all six

quantitative traits and was controlled by G, E, and G × E effects

(Supplementary Table S3). Thus, the phenotypic data showed

significant variation among the Indian cotton germplasms for

yield-related traits, some of which were strongly correlated with

others and were suitable for association mapping studies.

3.2 SNP genotyping and its data analysis

The GBS library constructed from 117 upland cotton

germplasm, generated a vast amount of data of ~1,003.22 million
A

B

FIGURE 1

Phenotypic value distribution of 117 individual cotton genotypes using BLUP breeding values. (A) Box plot and (B) frequency distribution of six yield-
related traits; the x-axis has trait labels and the y-axis contains the phenotypic value of each trait. BN, Boll Number; BW, Boll Weight; LI, Lint Index;
LP, Lint Percentage; SCY, Seed Cotton Yield; SI, Seed Index.
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pair-end reads (approximately 144.46 GB data, equates to an

average of 8.574 million reads per sample) using Illumina® HiSeq

2500 platform. Details of the sequence read statistics are provided in

Supplementary Table S4.

The SNP call performed with the GATK pipeline resulted in a

total of 14,46,969 SNPs, of which 2,41,086 high-quality SNPs were

retained after filtering (heterogeneity<0.3, missing<0.1, and MAF

>0.05), which was used further for genetic variation and GWAS

analysis. SNPs had transitions (A/G or C/T) of 5,549,405 bp and

transversions (A/C, A/T, C/G, or G/T) of 2,339,098 bp, with a Ts/Tv

ratio of 2.37%. The SNP distribution across the genome was not

evenly distributed, depending on the genome content and gene

density, with 1,47,347 and 93,739 SNPs in the At and Dt sub-

genomes, respectively. The number of markers varied among the

chromosomes, with a maximum number of SNPs (31,550) in Chr

A08 and a minimum number of SNPs (2,860) found in Chr D03.

The average SNP density throughout the genome was

approximately one SNP per 11.36 kb (Table 2, Figure 3A). The

density plot of SNPs for the 5 Mb region is represented as a heat

map in Figure 3B.
3.3 Population structure and kinship

This study employed multiple approaches to analyze the

population structure, including Bayesian clustering using

STRUCTURE software, principal component analysis (PCA),

neighbor-joining (NJ) phylogenetic analysis, and kinship

coefficient analysis. Understanding population structure is crucial
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in genome-wide association studies (GWAS) because the presence

of a structure can influence the reliability of the association found.

The LnP(K) value continuously increased from K = 1 to 10

(Figure 4A) with no inflection point in this panel. Moreover,

Evanno’s DK showed a sharp peak at K = 2 (Figure 4B),

suggesting that our population was divided into two subgroups

(Figure 4C) designated as CPG1 and CPG2. CPG1 contained 65 and

CPG2 contained 13 genotypes of cotton while 39 genotypes could

not match the membership probability cut-off (0.8) of any cluster

and were considered an admixture. CPG-1 consists of 12 (central),

20 (northern), 28 (southern), and five (unknown) genotypes,

whereas CPG-2 consists of seven (central), one (northern), four

(southern), and one (unknown), with an admixture containing 13
FIGURE 2

Correlation analysis of six yield-related traits. The color legend at
the top shows the Pearson’s correlation coefficient value, and at the
bottom, the significance level based on the p-value is given in which
ns represents non-significant. BN, Boll Number; BW, Boll Weight; LI,
Lint Index; LP, Lint Percentage; SCY, Seed Cotton Yield; SI, Seed
Index.
TABLE 2 Chromosome-wise distribution of SNPs.

Chr Chr
Length
(bp)

Number of
SNPs (bp)

SNP density
(kb/SNP)

A01 119761559 8916 13.43220716

A02 108141443 8933 12.10583712

A03 113693209 7826 14.52762701

A04 89180822 4041 22.06899827

A05 111098753 7703 14.42279021

A06 128195338 18852 6.800092192

A07 98902531 7089 13.95154902

A08 127495948 31550 4.041076006

A09 85335976 6509 13.11045875

A10 118182687 10527 11.22662553

A11 124181751 9012 13.77959953

A12 109474314 5549 19.72865633

A13 111646624 20840 5.357323608

D01 65205008 9523 6.847107844

D02 72186496 8343 8.652342802

D03 54956272 2860 19.21547972

D04 58229188 4128 14.10590795

D05 66484719 7321 9.081371261

D06 66684206 10934 6.098793305

D07 59440927 8758 6.787043503

D08 69427147 10410 6.669274448

D09 54445796 8158 6.673914685

D10 68089194 6633 10.26521845

D11 72823778 5526 13.17838907

D12 63255146 5012 12.62073943

D13 65099798 6133 10.61467438

Whole
Genome

2281618630 241086 11.36011914
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(central), 10 (northern), 11 (southern), and five (unknown)

genotypes (Supplementary Table S5).

The STRUCTURE results were substantiated by principal

component analysis (Figure 4D), a neighbor-joining (NJ) tree

(Figure 4E), and a kinship matrix (Figure 4F). The first two

principal components accounted for 14.34% of the total genetic

variation, with PC1 and PC2 explaining 7.75% and 6.59%,

respectively. The neighbor-joining (NJ) tree based on Nei’s

genetic distances also demonstrated a division of the population

into two main clusters, consistent with the STRUCTURE analysis.

In addition, the kinship relatedness matrix showed two distinct

subpopulations among 117 germplasms in this population. The

kinship matrix revealed a relatively low degree of genetic

relatedness, as indicated by the average pairwise relative kinship

coefficient of 0.049. Among the cotton genotypes, most pairs

(63.56%) exhibited estimated kinship values of zero.

Approximately 31.05% of the kinship values ranged from 0 to 0.1,

3.66% ranged from 0.1 to 0.3, and the remaining pairs of genotypes

(1.72%) displayed kinship values exceeding 0.3 (Supplementary

Figure S3). This result indicates that the 117 Indian cotton

germplasms are distantly and weakly related.
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3.4 Genome-wide association mapping of
fiber yield traits

To identify the most suitable model for conducting GWAS

analysis of our datasets (BLUPed traits and 2,41,086 SNPs), six

statistical models (GLM, MLM, CLMM, MLMM, FarmCPU, and

Blink) were compared using a quantile–quantile (Q–Q) plot

(Supplementary Figure S4). From the Q–Q Plot, MLMM has the

best fit followed by FarmCPU and Blink, whereas the GLM, CLMM,

andMLMmodels deviated early from the expectation line. Based on

the Q–Q plots, the MLMMmodel was selected as the best model for

identifying significantly associated SNPs for the six studied yield-

related traits. This underscores the importance of choosing an

appropriate model for GWAS to avoid false positives and to

increase the accuracy of the results. In total, 205 SNPs or

quantitative trait nucleotides (QTNs) with 90, 67, and 48 in E1,

E2, and BLUP, respectively were identified to be significantly

associated with six traits above the significance threshold of −logP

>4.5 (Figure 5, Supplementary Figures S5, S6; Supplementary Table

S6). All SNPs were scattered unevenly, with 98 and 107 significant

SNPs in the A and D sub-genomes, respectively. The maximum
A

B

FIGURE 3

Genomic distribution of SNPs (A) Bar plot showing the total number of SNPs in 26 chromosomes of cotton; (B) Density plot of SNPs in the cotton
genome, the horizontal bar indicates chromosomal length, and the color depicts the SNP density in the 5-Mb window. The color legend represents
SNP density.
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number of markers associated with the traits was found in Chr D06

(23), followed by Chr A08 (21), while Chr D13 did not contain any

SNPs, and D03 had only one significant SNP. For BN, 28 significant

SNPs were distributed on chromosomes A06, A08, A12, D01, D05,

D06, D08, and D11, with the highest number in D11 (nine SNPs).
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Among these SNPs, NC_053442.1_45198190 had the highest

positive phenotypic effect (3.107), with a −log10(P) value of 4.99,

and NC_053441.1_63281905 had a negative effect (−3.606) with a

−log10(P) value of 5.08. For BW, 27 significant SNPs were located

on chromosomes A06, A08, A09, A10, A11 A12, A13, D04, D06,
A B

D E

F

C

FIGURE 4

Population structure of the 117 cotton germplasms. (A) Mean LnP(K) values plotted from 1 to 10; (B) Ln(DK) values plotted from 1 to 10, for each
value of K ten independent run was considered; (C) Population structure based on STRUCTURE where K = 2, the colored subsection within vertical
bar represents membership coefficient value; (D) Plot of Principal component analysis showing genetic variation in cotton genotypes using first
three principal component, the color label is based on STRUCTURE derived membership coefficient. Genotypes with ≥80% membership coefficient
value were labeled as CG1 and CG2, the other were labeled as admixture; (E) NJ tree based on Nei’s genetic distances, the whole population was
divided into two clusters; (F) Heatmap of Kinship coefficient matrix revealing the relationship between 117 individual Indian cotton genotypes.
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D07, D09, D10, D11, and D12, with the maximum number in A11

(five SNPs). Of these SNPs, NC_053432.1_54551322 showed a

positive phenotypic effect (0.430) with a −log10(P) value of 5.49,

and NC_053433.1_116352175 showed a negative effect (−0.465)

with a −log10(P) value of 7.36. For LI, 50 significant SNPs were

detected on chromosomes A01, A03, A04, A05, A06, A07, A11,

A13, D01, D04, D06, D08, D09, D10, and D12 with six SNPs in A06.
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The phenotypic effect size of these SNPs ranged from 0.480

(NC_053429.1_20687114) to −0.47 (NC_053442.1_33992120)

with −log10(P) values of 5.75 to 5.47, respectively. For LP, 40

significant markers were observed in 14 chromosomes of the

cotton genome, with the maximum number in Chr D10 (nine

SNPs). They explained the −2.072 (NC_053444.1_64810245) to

2.285 (NC_053441.1_58365634) range of phenotypic effect size
A B

FIGURE 5

Summary of GWAS results for six yield-related traits (BN, BW, LI, LP, SCY, and SI) using BLUP data. (A) Manhattan plot for all six traits. The X-axis
represents the chromosomal position of the SNPs in the cotton genome, and the Y-axis represents the −log10 of the P-values. The red dashed line
indicates the significance threshold (−logP>4.5); (B) Q–Q plots for all six traits. The Y-axis represents the observed −log10 P-values, and the X-axis
represents the expected -log10 P-values. The red points indicate significant SNP.
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having a P-value of 5.1 to 5.89. A total of 28 significant markers

were observed for SCY located on 12 chromosomes, with the

highest occurrence at D06 (nine SNPs), contributing 16.696 to

−15.449 phenotypic effect size. Loci NC_053427.1_2009750 and

NC_053431.1_72867934 had positive and negative effects on SCY,

respectively, with −log10(P) values of 6.66 to 4.53, respectively.

Similarly, SI had a total of 32 significant markers distributed

on chromosomes A02, A05 (six SNPs), A07, A08, A10, A13,

D01, D02, D07, D08, D09, and D12, explaining −0.876 to 0.959.

The −log10(P) values of the loci contributing to positive

effects (NC_053428 .1_79218940) and adverse e ffec ts

(NC_053431.1_70272704) were 5.45 to 4.99, respectively.
3.5 Identification and comparison of QTLs

According to the definition of QTLs from the previous methods

(Sun Z. et al., 2017; Song et al., 2019), a total of 134 QTLs were

obtained from 205 significant markers in this study, out of which

maximum QTLs were identified for LI (30) followed by LP (25),

SCY (21), SI (20), BW (18), and BN (12) traits (Supplementary

Table S7). Similar to the significant markers, these candidate loci

were also scattered among different chromosomes of the cotton

genomes harboring 69 QTLs in the A subgenome and 65 in the D

subgenome. Interestingly, most of the QTLs contained only one

significant SNP, except for 37 QTL loci with more than one

associated SNP. For instance, QTL (qGhBN_D11-1) had seven

significant markers. All QTLs and GWAS signals for yield-related

traits were retrieved from the database to compare our QTLs with

those in previous reports. A total of 535 QTLs were reported for

yield-related traits in 33 r QTL mapping studies. Similarly, details of

the significant markers and their genomic positions were extracted

from six reports of association mapping studies. Among the 134

QTLs identified in these studies, 39 were novel and newly identified

in the Indian germplasm, and the remaining 95 QTLs overlapped

with previously reported QTLs (Supplementary Table S7). In

addition, we identified eight QTL that exhibited pleiotropic

associations with more than one trait. Of these, three QTLs

(qGhBN_SCY_D6-1, qGhBN_SCY_D6-2, and qGhBN_SCY_D6-3)

on chromosome D06, were found to be associated with BN and SCY

having common significant markers (NC_053442.1_36092628,

NC_053442.1_37082185, NC_053442.1_37984052) within the

same genomic intervals (35.8–38.1 Mb). Also, three QTLs

(qGhSI_LI_A5 , qGhLI_SI_A13, qGhLI_SI_D9) exhibited

pleiotropic association for SI and LI, of these qGhLI_SI_A13 had

a common marker (NC_053436.1_78553469) for LI and SI while

the other two had overlapping QTL intervals in terms of physical

position (25.54–25.94 Mb in A05 and 5.67–6.07 Mb in D09).

Moreover , BW and SCY had one p l e i o t rop i c QTL

(qGhBW_SCY_A10) because of the presence of a common SNP

marker (NC_053433.1_116352175) within genomic intervals of

116.15–116.55 Mb. In addition, one QTL (qGhLP_BN_A8)

showed an association between LP and BN owing to the

overlapping of QTL intervals in Chr A08 (59.74–60.14 Mb). As

these traits showed a significant correlation at the phenotypic level

(BN and SCY = 0.80, BW and SCY = 0.74, and SI and LI = 0.65),
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they were also found to have pleiotropic-associated markers at the

genomic level. This result implies that a network of QTLs with

multiple phenotypic effects may control fiber yield traits.
3.6 Identification of favorable haplotypes
of pleiotropic QTLs

To identify the cumulative effects of favorable SNPs, haplotype

analysis using eight QTL loci exhibiting pleiotropic associations was

conducted. Haplotype analysis of QTL qGhBN_SCY_D6-2,

associated with BN and SCY traits on Chromosome D06, formed

a haplotype block with five SNP markers, which consisted of six

haplogroups in our association panel (Figure 6A). All five markers

showed substantial LD (Figure 6B), and variations in these

haplotype alleles led to significant differences in the phenotypes of

BN and SCY. The average BN values of the haplogroups were 22.72,

23.22, 27.05, 23.14, 24.92, and 25.63 per plant, respectively, and for

SCY, the average values among the six haplogroups were 74.71,

76.25, 95.99, 76.34, 79.51, and 88.54 g/plant, respectively, for which

H003 (haplotype 3) showed significantly higher BN and SCY values

than those of the other haplogroups (Figures 6C, D). Haplotype

analysis of qGhSI_LI_A5 QTL resulted in the formation of four

haplogroups with seven SNPs having substantial LD on

Chromosome A05 (Supplementary Figures S7A, B) among the

117 cotton germplasms. The average LI and SI of H003

(haplotype 3) were 4.85 g and 8.56 g, respectively, higher than

those of the other three haplogroups (Supplementary Figures S7C,

D) showing significant phenotypic variation.

Eleven SNP markers were associated with pleiotropic QTL

qGhLI_SI_D9, which represents four haplogroups in our cotton

germplasm (Figure 7A). Substantial phenotypic variation for LI and

SI and strong LD was observed among the 11 haplotype alleles

present within these haplotype groups on Chromosome D09

(Figures 7B–D). The average LI values of the four haplotype

groups were 4.59, 4.33, 4.48, and 4.36 (g), respectively, similarly,

the average value of SI among the haplogroups was 8.00, 7.47, 7.57,

and 7.76 (g), respectively. The average value of H001 (haplotype 1)

was greater than that of the other haplotypes for both LI and SI. In

addition, qGhBW_SCY_A10 represented six haplogroups consisting

of 22 SNP markers with strong LD (Supplementary Figures S8A, B).

Among all the six haplogroups, haplotype 3 (H003) exhibits the

highest average BW and SCY value of 3.56 g and 93.91 g/plant,

respectively (Supplementary Figures S8C, D). Furthermore, the

other four QTLs, qGhBN_SCY_D6-1, qGhBN_SCY_D6-3,

qGhLI_SI_A13 , and qGhLP_BN_A8 , showed phenotypic

differences; however, the haplotype alleles of these QTLs did not

have any gene features within the 10–20 kb window.
3.7 Identification of candidate genes

Genomic intervals of 134 reported QTLs were extracted and

annotated to identify the putative candidate genes associated with

each trait. Functional annotation of these regions retrieved 2,509

unique genes comprising 1,966 protein-coding, 277 lncRNAs, 204
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snoRNAs, 30 tRNAs, 29 snRNAs, and three miscRNAs. The

distribution of these genes in the QTL regions ranged from 1 to

65, except for qGhLI_D4-1 and qGhBN_SCY_D6-1, which did not

harbor any putative genes. Only 14 (~10%) QTLs had<5 putative

genes, 33 QTLs (~24%) had >5–<10 putative genes, while all the

remaining 85 QTLs (~63%) covered >10 genes (Supplementary

Table S7). A total of 192, 432, 557, 591, 398, and 441 genes were

associated with BN, BW, LI, LP, SCY, and SI, respectively.

Moreover, the distribution of these genes across the cotton

genome was uneven, with 1211 genes located in the A sub-

genome and 1,298 genes in the D sub-genome, respectively.

Chromosome D08 had the maximum number of genes (205

genes), whereas the minimum number of genes (13 genes) were

in chromosome A13. Further gene ontology (GO) enrichment

analysis for each trait was conducted to understand the function

of each candidate gene, and it was found that these genes within the

QTL regions were predominantly enriched for different biological

processes. The top ten biological processes enriched for each yield-

related trait are shown in Figure 8. For BN, the enrichment analysis

results showed four terms that belong to phosphate metabolism:

regulation, transport, homeostasis, and cellular response to

phosphate starvation. BW includes terms related to RNA

processing, DNA replication, maintenance, and mitosis, reflecting

cell growth-associated processes enriched in this region. The LI

region has genes associated with cellular fate determination,

polarity specification, toxin catabolism, and cell wall organization.
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The LP region regulates gene expression at the epigenetic (DNA

demethylation and histone deacetylation), transcriptional, and

translation levels, and genes responsive to salicylic acid and

gibberellin. SCY has stress-responsive, purine metabolism, and

cell fate-related gene ontology. SI contains sugar signaling,

trehalose synthesis and metabolism, plant cell wall synthesis,

photoperiodism, and vegetative growth development-related genes

enriched within its region.

In addition, to identify the most active genes related to six yield

traits, gene expression analysis was performed using RNA-seq data

from diverse cotton tissues (seed, cotyledon, root, stem, leaf, torus,

calycle, petal, stamen, pistil, ovule, and fiber). Of the 2,509

candidate genes, 870 were found to be transcriptionally

active, showing a zFPKM value of ±3 in at least one tissue

(Supplementary Figure S9). The numbers of active genes in

different QTLs for BN, BW, LI, LP, SCY, and SI were 73, 169,

185, 208, 137, and 143, respectively. Furthermore, to identify the

highly expressed active genes for yield-related traits, the expression

profiles were mainly focused on the ovule, fiber, and seed tissues.

For BN, qGhBN_A6-1, qGhBN_D5-1, and qGhBN_D6-4 contained

highly expressed active genes such as GhCYP (high expression at

5DPA of fiber development stage), GhGELP (highest expression at

20 DPA fiber development stage), and GhCBSX5 (highly active in

stamen tissue and at the 10 DPA of fiber development stage). For

the BW trait, qGhBW_D9-3 had two highly expressed genes

(GhAGX2 and GhEP1-3) showing higher expression at 10 and 20
A

B

D

C

FIGURE 6

Haplotype analysis of pleiotropic QTL qGhBN_SCY_D6-2, (A) haplogroups observed in our 117-association panel using five SNP markers, (B)
genomic location of five SNP loci and LD based on the pairwise R2 values between the SNPs estimated in Chromosome D06. The R2 values are
indicated using the color bar. (C, D) Phenotypic differences of boll number (BN) and seed cotton yield (SCY) g/plant among the six haplogroups.
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DPA at the fiber development stage, respectively. In addition, the

BW QTL qGhBW_A11-1, qGhBW_D9-1, and qGhBW_D9-2

contained the highly expressed gene GhSMP1 (higher activity

specifically at 25 and 35 DPA of ovule development), GhGRP4

(expression in all stages of ovule development), and GhCSGL3

(positive activity in seeds at 5 and 10 h), respectively. The

qGhLI_A4-2 QTL for LI has two genes, GhbZIP11 (showing a

higher expression profile in ovule and fiber development stages)

and GhLEA (showing higher expression in ovule development).

Other LI QTLS, qGhLI_A6-1, qGhLI_D6-2, qGhLI_D9-1, and

qGhLI_D9-2 show expression profiles for GhKNAP2 (expressed in

root tissue), GhCYP (showing higher activity in all tissues except

seed), GhMIF2 (higher activity in ovules and fibers at mid

developmental stages), and GhGA20OX1 (highest expression 20

DPA of fiber development) genes. Seven LP QTLs, qGhLP_A5-1,

qGhLP_A6-1, qGhLP_A10-1, qGhLP_A10-3, qGhLP_A10-6,

qGhLP_D8-2, and qGhLP_D10-3 contained GhPDF1 (highest

activity in ovule and fiber developmental stages), GhMADS23

(higher activity in ovule developmental stages), GhGUX1

(expression at 20 DPA of fiber stage), GhBBE18 (expression at 25

DPA of fiber stage), GhLEA-D-19 (high expression at 0 and 5 h of

seed development and 35 DPA of ovule development), GhchlADH1

(showing higher expression in 20 and 25 DPA fibers, ovule 20 DPA,

root, and leaf tissues), and GhABCC (higher activity in 20 and 25

DPA fiber, 20 DPA of ovule development along with root and leaf).
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The qGhSCY_A4-1 QTL of SCY contains seven genes (five GhPG,

one GhPL, and one GhlncRNA) and showed interesting expression

profiles that were highly expressed in stamen tissues in contrast to

other tissues, especially the pistil. In addition, qGhSCY_D2-1 for the

SCY trait had two expressed genes (GhPUP4 and GhDCTPP1) that

were highly expressed in ovules at all stages (except at 35 DPA). The

other two SCY QTLs (qGhSCY_A8-2 and qGhSCY_D2-2) showed a

high expression profile for GhAP2/ERF_AIL5 (highly expressed in

the later stage of ovule and fiber development along with all stages

of seed development) and GhGGAT2 (expressed 25 and 35 DPA of

fiber development), respectively. For SI, qGhSI_D2-3 contains two

genes, GhAGP9 (highest activity at all stages of fiber development)

and GhZAT10 (activity at 25 DPA of both ovule and fiber

development). Similarly, the qGhSI_D8-2 QTL for SI had two

active genes, GhACO3 and GhFLA7 (which showed the highest

activity during the ovule and fiber development stages). In addition,

qGhSI_D12-1 contained GhMYB22, which showed higher

expression at an early stage of ovule development (−1 to 1 DPA).

In addition, of the eight pleiotropic QTLs, two QTL

qGhBN_SCY_D6-3 and qGhSI_LI_A5, governed three active

genes. qGhBN_SCY_D6-3 had two active genes, GhPPR (higher

expression in ovules at −3, 0, 3, and 5 DPI), and GhCHUP1 (highest

activity at 5 and 10 DPA of fiber development and 20 and 25 DPA

of ovule development) while qGhSI_LI_A5 had GhSCPL42 (higher

expression at 5, 10, and 20 DPA of ovule development). Of the 870
A
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FIGURE 7

Haplotype analysis of pleiotropic QTL qGhLI_SI_D9. (A) Haplogroups observed in our 117-association panel using 11 SNP markers, (B) Genomic
location of eleven SNP loci and LD based on the pairwise R2 values between the SNPs estimated in Chromosome D09. The R2 values are indicated
using the color bar. (C, D) Phenotypic differences of lint index (LI) g and seed index (SI) g among the four haplogroups.
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active genes, 40 candidate genes were selected for six yield-related

traits that showed more contrasting expression profiles in the ovule,

fiber, and seed developmental stages in comparison to other cotton

tissues (Figure 9). Additionally, among the 40 genes significantly

expressed in cotton yield traits, 15 genes were reported to be

associated with different fiber development stages, eight genes

were reported for different biotic and abiotic stresses, and 17

genes were novel genes associated with fiber development

(Supplementary Table S8).
4 Discussion

Cotton is one of the most important natural fibers and is a raw

material for many textile industries. Its yield can significantly

influence the textile industry because it is directly related to

overall supply and demand dynamics, production capacity,

pricing, innovation, global trade, and sustainability efforts within

the industry. Cotton yield is a complex quantitative trait governed

by multiple yield-related descriptors that are difficult to improve

simultaneously using traditional breeding methods (Wang et al.,

2019). Thus, the identification and characterization of genetic

factors for targeted traits and their manipulation through
Frontiers in Plant Science 14
conventional breeding coupled with genomic tools have

consistently been the primary goals for cotton breeders, enabling

a more precise selection of genotypes in the pursuit of developing

varieties with higher yield potential. In the present study, GWAS

was performed based on the natural population of 117 Indian

upland cotton germplasms and genotyping-by-sequencing methods

to deploy markers for six yield-related traits. Association mapping

study is an effective tool for mapping complex quantitative traits to

identify of key genes associated with such traits in many plants

(Huang et al., 2012; Horton et al., 2014; Crowell et al., 2016;

Varshney et al., 2019b; Wang et al., 2020). It is an analytical

method and its ability to resolve associated loci relies on factors

such as the size of the experimental population, marker density, and

the selection of appropriate statistical tools or GWAS models for

marker-trait identification (Liu et al., 2016). Population size has a

great impact on association mapping studies, and it has been

reported that a relatively large population size ensures sufficient

genetic variation, thereby influencing the detection of significant

QTLs (Su et al., 2016; Huang et al., 2017). Population sizes ranging

from 95 to 800 have been previously studied in upland cotton in

association studies (Gapare et al., 2017; Sun Z. et al., 2017; Dong

et al., 2019; Kumar et al., 2021). Although our population size of 117

released varieties from different agro-climatic zones was not
FIGURE 8

Biological process gene ontology term enrichment for genes located in the QTL region of yield-related traits. The top 10 BP ontology terms are
shown for each trait. The y-axis represents the BP and the x-axis enrichment scores for each trait. The color scale shows the p-value of enrichment
and bubble size enrichment score.
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sufficiently large, they are suitable for mapping analysis because

they stabilize after many years of genetic recombination (Nordborg

et al., 2002). Along with population size, phenotypic variances in a

single environment affect the accuracy of phenotypic data, thereby

affecting the reliability of the mapping study. To rectify this error,

the use of multi-environment and unbiased prediction data in

association analysis has been proven effective in previous studies

(Roorkiwal et al., 2018; Tomar et al., 2021). Phenotyping from

multiple field locations effectively eliminates the influence of the

environment and aids in the interpretation of environment-specific

as well as general QTL (Gutiérrez et al., 2015). In the present study,

we used two sites for the evaluation of six yield-related phenotypic

traits: Punjab Agricultural University, Punjab (E1), and Tamil Nadu

Agricultural University (E2), which are the two main cotton-

growing belts in India. In addition, there is a large difference in

the geographical position as well as the climatic conditions between

these two zones (https://www.cicr.org.in/pdf/long_staple), and all

six traits exhibited abundant phenotypic variation ranging from

6.32% to 24.7% and 6.17% to 20.1% in E1 and E2, respectively. Our

findings also showed the presence of medium to high heritability

(>50%, except for LP in E2), illustrating the importance of these

germplasm lines for genetic improvement and showing the same
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phenotypic expression if sown in the same environment (Bhat et al.,

2022). High and stable heritability has always been proven to be

useful in determining the strong association between markers and

traits of interest (Courtois et al., 2013). In addition, the correlation

study among the traits showed a significant positive correlation

between SCY and BN, and BW, and a maximum negative

correlation between LP and SI (Figure 2) which corroborates the

findings of Dong et al. (2018) and Sun et al. (2018). Thus, the

presence of significant variation among the genotypes in

different environments along with the strong correlation led us to

explore markers associated with six yield-related traits through

GWAS analysis.

Association mapping using various SSR or SNP chips has been

previously reported in upland cotton (Mei et al., 2013; Gapare et al.,

2017; Handi et al., 2017; Huang et al., 2017; Kumar et al., 2021);

however, the development of high-resolution sequencing

technologies such as GBS, SLAF-seq, and RAD-seq offers

significant advantages and has led to tremendous progress in the

development of numerous SNP markers for genetic mapping in

cotton (Islam et al., 2016; Su et al., 2016; Geng et al., 2020; Wang

et al., 2021) and other crops (Arruda et al., 2016; Maldonado et al.,

2019; Ravelombola et al., 2021). Genotyping by sequencing (GBS)
FIGURE 9

A heatmap of putative candidate genes for six yield traits preferentially active in the ovule, fiber, and seed tissues of cotton. The color scale in the
heatmap represents the zFPKM transformed value. Column label is provided for type of tissue and row label is provided for gene biotype,
chromosomal location of gene and candidate gene traits.
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provides a comprehensive view of the genome by generating genetic

markers that spread across the entire genome. In contrast, SSR

markers and SNP chips have limited coverage, and may not capture

the full genetic variation present in a population. This increased

marker density improves the resolution and efficiency of GWAS,

enabling the detection of more genetic associations and fine

mapping of genomic regions. In addition, SNP chips often rely on

preselected SNPs that may not fully represent the genetic diversity

of a particular population or species, conversely, GBS allows for

unbiased genotyping, reduces ascertainment bias, and enables a

more accurate assessment of genetic variation. GBS technologies

have enabled the rapid sequencing and genotyping of breeding

populations, allowing plant breeders to accomplish genomic

diversity, GWAS, genomic selection (GS), and marker

development in many species without prior knowledge of the

species genomes (Poland and Rife, 2012). In our study, a

substantial number of high-quality SNP markers (2,41,086) were

identified using the GBS method with an average density of 1SNPs/

11.36 kb. The number of markers reported in our study was

relatively higher than that reported by Wang et al. (2021);

however, it was almost consistent with the findings of Geng et al.

(2020). The higher number of markers in the current study was

sufficient to conduct GWAS analysis, offering potential advantages

in uncovering additional prominent loci and candidate genes

(Wang et al., 2018).

Upland cotton has an extensive and intricate history of

domestication and breeding, with a narrow genetic background,

and is mostly influenced by geographical isolation and gene flow

(Huang et al., 2017). Furthermore, understanding the population

structure and relatedness in the association mapping panel is crucial

for elucidating the heterogeneity of the genetic architecture and

controlling false associations (Lu et al., 2015). Therefore, it is crucial

to consider the population structure and degree of relatedness

among individuals in association-mapping studies. In our study,

the association panel was categorized into two clades (CGP1 and

CGP2) based on molecular analyses using STRUCTURE software

but were not completely consistent according to the geographical

origin, as reported in previous studies (Gapare et al., 2017; Sun Z.

et al., 2017; Song et al., 2019). In addition, clustering analysis using

Nei’s genetic distance, kinship matrix, and PCA calculation

methods showed good consistency with population structure

analysis. The absence of geographical correlation in our

germplasm might be attributed to the relatively high level of gene

exchange and interspersed introduction or crossbreeding among

the germplasms across different geographical regions of India.

Overall, these results highlighted that the germplasms were not

highly structured and exhibited weak relatedness, but considering

the greater continuous phenotypic variations among the six yield-

related traits (Table 1), the association population was further used

in the GWAS analysis (Yano et al., 2016; Sun Z. et al., 2017; Song

et al., 2019).

Several studies have indicated that effective control of the

discovery of false positives resulting from population structure in

crops may not be entirely achieved (Hamblin et al., 2011; Lipka

et al., 2015). Therefore, to address these errors, we investigated

various statistically robust models for the genome-wide association
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study using the GAPIT package in the ‘R’ programming. The

strategy of utilizing two or more different models to identify

significant markers in cotton has been reported in several studies

(Badigannavar and Myers, 2015; Abdullaev et al., 2017; Sethi et al.,

2017; Li C. et al., 2018; Su et al., 2018). In the present study, we

implemented six different models; three univariate models (GLM,

MLM, and CLMM) and three multivariate mixed models (MLMM,

FarmCPU, and Blink). According to Segura et al. (2012), the use of a

multivariate GWAS method addresses the issue of confounding

between covariates and the test marker, and lowers the false

discovery rate (FDR) compared to univariate GWAS when

employing the same threshold, enabling the detection of a greater

number of QTLs. By examining the Q–Q plots, we determined the

most suitable models, and our findings demonstrated that

the MLMM exhibited the best-fit model for our trait data, unlike

the other models that exhibited early deviations from the expected

line. The MLMM model has also shown successful results in other

plants, such as Cannabis (Watts et al., 2021), tomato (Zhao et al.,

2022), apricot (Omrani et al., 2019), and wheat (Mihalyov et al.,

2017). Detected by the MLMM, 205 significant SNP from two

environments and BLUP were found to be associated with six yield-

related traits (Supplementary Table S6). These markers were

unevenly distributed on all chromosomes of cotton (except for

Chr D13), suggesting that the regulation of these traits involves a

complex gene network. This finding aligns with those of previous

reports, highlighting the intricate genetic control of cotton yields

(Rong et al., 2007; Sun et al., 2018). Using these significantly

associated markers, QTL were determined within the ±200 kb

upstream and downstream regions, as reported previously (Sun Z.

et al., 2017; Song et al., 2019). In this study, 134 QTLs were derived

from 205 significant markers (Supplementary Table S7).

Interestingly, some of these significant SNPs or QTLs were

associated with multiple yield-related traits at pleiotropic loci. It

has been reported that complexity and linkage between complex

traits are common in many crops (Van Tienderen et al., 1996; Yan

et al., 2011; Raman et al., 2019; Li A. et al., 2022). In upland cotton,

four pleiotropic loci related to fiber yield, fiber quality, and

flowering date have been reported by Wang et al. (2021).

Similarly, four and nine pleiotropic loci have been reported for

concurrent alterations in both lint yield and fiber quality traits in

cotton (Geng et al., 2020; Li Y. et al., 2023). In our study, eight QTLs

(six within the same genomic interval and two overlapping with

adjacent QTLs) were found to be associated with six yield-related

t r a i t s . QTL qGhBN_SCY_D6 -1 , qGhBN_SCY_D6 -2 ,

qGhBN_SCY_D6-3 was simultaneously associated with BN and

SCY, having common significant markers NC_053442.1_

36092628, NC_053442.1_37082185, NC_053442.1_37984052.

Three other QTLs, qGhSI_LI_A5 , qGhLI_SI_A13 , and

qGhLI_SI_D9, were concurrently associated with SI and LI, of

which qGhLI_SI_A13 had a common marker (NC_053436.1_

78553469), while the other two were overlapping QTLs. Similarly,

qGhBW_SCY_A10 and qGhLP_BN_A8 were pleiotropic QTLs for

BW/SCY and LP/BN, respectively. Additionally, correlation

analysis of these yield-related traits showed a significant positive

correlation (between SCY and BW, BN), and the maximum

negative correlation between LP and SI indicated that these are
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the favorable loci that could be the genetic foundation for the

correlation between these traits. Thus, the pleiotropic loci identified

in this study provide information to explore the molecular

mechanism that explains the simultaneous enhancement of six

intricate yield-related traits in cotton, which will be helpful in the

selection of germplasms in crop improvement programs for yield

traits in Indian upland cotton.

In the past few decades, hundreds of QTLs or GWAS signals

associated with cotton fiber yield have been identified in different

intraspecific and interspecific populations through various linkage

and association mapping methods (Said et al., 2015; Huang et al.,

2017; Ma Z. et al., 2018). Of the 134 QTLs detected in the present

study, 95 QTLs overlapped within the genomic interval or were

adjacent to the genomic position of the QTLs and GWAS signals

identified in a previous study (Supplementary Table S7).

Interestingly, some of the QTLs were trait-specific, as reported

earlier within the same genomic interval. For instance, QTLs

(qGhBN_D5-1, qGhBN_D6-1, qGhBN_D6-2, qGhBN_D6-3, and

qGhBN_D6-4) for BN overlap within TM58714_TM58742_

TM58749 (Zhu et al., 2021), and qBPP-1-43.5 (Zhang et al., 2011).

Similarly, for BW, QTLs (qGhBW_A13-2, qGhBW_D4-2,

qGhBW_D7-1, qGhBW_D9-3, qGhBW_D12-1) showed consistent

results with TM47610_TM47614, TM56685_TM56686, TM63749

(Zhu et al., 2021), qBW-C16-1 (Wu et al., 2009) i15830Gh (Sun

et al., 2018), and qBW-06A-c26-1 (Yu et al., 2013b) BW QTLs

reported previously. LI (qGhLI_D6-2, qGhLI_D9-2) corresponds to

QTLs qLI-D6-1 (Liu et al., 2012) and Br7_Lt%_23 (3,47+) (Lacape

et al., 2013) LI QTLs reported in previous studies. For LP, three QTL

(qGhLP_A6-2, qGhLP_D6-1, and qGhLP_D8-1) matched with the LP

GWAS signals reported by Ma Z. et al. (2018) (A06_102555770), and

QTL reported by Yu et al. (2013a) (F2:3-qLP-c25-1), and Chen et al.

(2010) (qLP-D8-1/qLP-F2:3-JES-1a), respectively. Four QTLs

(qGhSCY_A13-1, qGhSCY_D6-3, qGhSCY_D2-1, and qGhSCY_D2-

2) were associated with SCY in the present and in the previously

reported SCY QTLs: qSCY-07A-c13-1, qSCY-06A-c25-1 (Yu et al.,

2013b), qSY-D2-1 (Wang et al., 2007), and TC-qSCY-c14-1 (Yu et al.,

2013a), respectively. Interestingly, pleiotropic QTLs for BN and SCY

(qGhBN_SCY_D6-1, qGhBN_SCY_D6-2, and qGhBN_SCY_D6-3)

showed congruency for both BN (qBPP-1-43.5) and SCY (qSCY-

06A-c25-1) traits, as reported previously (Zhang et al., 2011; Yu et al.,

2013b). Pleiotropic QTL (qGhBW_SCY_A10 and qGhLI_SI_D9)

were consistent with the BW association signal A10_99131954 (Ma

Z. et al., 2018) and qSI-D9-1 (Shen et al., 2007) located on

chromosomes A10 and D09, respectively. Therefore, our findings

corroborate those of previous studies, validate the authenticity of

current GWAS results, and increase confidence in the reliability of

some QTLs/SNPs. These QTL/SNPs, exhibit stable inheritance and

were consistently detected across diverse segregating populations

with varying genetic backgrounds and through different mapping

methods, and have a significant potential for future breeding

programs aimed at improving cotton yield in India.

High-quality allelic loci are precious assets for agricultural

breeding initiatives, and the identification of favorable alleles is an

efficient approach to enhance the traits within crop plants (Su et al.,

2016). Many recent studies have identified haplotype alleles for

important traits, such as haplotype analysis of yield-related traits in
Frontiers in Plant Science 17
soybean (Bhat et al., 2022), agronomically important traits in

Arabidopsis (Lu et al., 2019), grain quality traits in rice (Wang

et al., 2017), high thousand-kernel weight in wheat (Sun C. et al.,

2017), grain yield, and flowering time under drought and heat stress

conditions in maize (Yuan et al., 2019), which have shown

considerable potential for the identification of traits and crop

improvement. In cotton, Song et al. (2019) reported the haplotype

analysis of two significantly associated SNPs with the lint percentage

(LP) trait had a positive effect on LP, and these favorable alleles can be

pyramided in a target line by marker-assisted selection. Similarly, two

major haplotypes for fiber length and strength in cotton have been

identified on chromosomes Dt11 and At07 (Sun Z. et al., 2017). In the

present study, haplotype analysis of pleiotropic QTLs identified for

different traits was conducted using a 10–20 kb window. The

combination of favorable alleles identified within H003 (haplotype

3) was significantly higher for BN, BW, SCY, LI, and SI in the

pleiotropic QTL qGhBN_SCY_D6-2, qGhSI_LI_A5 , and

qGhBW_SCY_A10, respectively. Eleven SNP combinations within

haplogroup H001 were greater than other haplotype groups in the

pleiotropic QTL qGhLI_SI_D9. Our results revealed that the

combination of favorable alleles led to the identification of

haplogroups that regulate a diverse range of phenotypes and

significant phenotypic variation in yield-related traits in cotton. All

identified diverse haplotypes can be further pyramided as a targeted

line by marker-assisted breeding in cotton breeding programs. Thus,

haplotype-based breeding strategies will aid in choosing favorable

plant genotypes that carry advantageous haplotype alleles that have

great potential for crop improvement (Varshney et al., 2019a).

Several genes associated with yield traits, such as Gh_D08G2376

(Huang et al., 2017), Gh_D12G2344 (Sun et al., 2018), Gh_D05G1124

(Song et al., 2019), Gh_A02G1268 (Su et al., 2016), Gh_D02G0025

(Ma Z. et al., 2018), AHP5 (Fang et al., 2017), Gh_A02G0111 (Niu

et al., 2023), and Ghir_A08G009110 (Feng et al., 2022) have been

previously reported in GWAS using different association mapping

studies. In the present study, 2,509 candidate genes were identified

within the confidence interval of the identified QTLs. Previous studies

have suggested that genes preferentially expressed at different stages

of fiber, ovule, and seed development may be involved in fiber yield

and quality (Huang et al., 2017); therefore, we selected 40 highly

active genes showing significant expression profiles (Supplementary

Table S8). For BN, three candidate genes were identified; theGhGELP

isoform has been reported to have a direct function in ovule, fiber,

and seed development in cotton (Ma R. et al., 2018). GhCBSX5 has

reported to be involved in other biological processes (Ali et al., 2021);

however, its role in fiber development in cotton has not yet been

reported.GhCYP has no functional information in cotton; its isoform

has been reported to play a significant role in drought tolerance in

wheat (Zang et al., 2010). Gene annotation of the BW reported QTL

intervals identified five active genes. GhCSGL3 plays a direct role in

secondary cell wall biosynthesis leading to enhanced lint yield and

quality in cotton (Li et al., 2015; Zhang et al., 2015), whereas

GhAGXT2 and GhEP1-3 play a positive role in abiotic stress in

cotton (Li L. et al., 2022). Two other genes, GhSMP1 and GhGRP4,

were reported to be novel genes governing boll weight traits in the

present study. Six candidate genes have been reported for LI traits of

which two genes (GhKNAP2 and GhGA20OX1) were functionally
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validated to play a major role in the cotton fiber development process

(Xiao et al., 2010; Gong et al., 2014). The other two genes (GhLEA

and GhbZIP11) have been reported to be stress-responsive in cotton

(Liang et al., 2016; Magwanga et al., 2018). In addition, the functional

roles ofGhCYP and GhMIF2 have not been reported in cotton, but its

isoform has been reported to play a vital role in petal elongation in

Gerbera hybrida (Han et al., 2017). Similarly, expressional analysis of

candidate genes for LP traits resulted in the identification of seven

active genes. Three genes (GhLEA-D-19, GhPDF1, and GhABCC15)

have direct roles in cotton seed germination, fiber cell initiation, and

elongation (Dure III and Galau, 1981; Zhu et al., 2003; Deng et al.,

2012). The other four genes (GhGUX1, GhBBE18, GhMADS23, and

GhChlADR1) were newly identified genes and might play a vital role

during fiber development based on their expression profile; however,

the functions of these in cotton remain to be further explored.

Interestingly, for SCY highest number of genes was found (eleven)

out of five GhPG, one GhPL, and one lncRNA reported encodes the

highly significant marker (NC_053427.1_2009750) showing the

highest phenotypic effects (~16.69%) could be the most promising

genes found in the present study that could play a major role in fiber

yield trait, which also corroborates with previously reported studies

(Li Z. et al., 2023; Sun et al., 2020). Another gene, GhAP2/ERF/AIL5,

has also been reported to play a key role in the growth and

development of cotton plants (Zafar et al., 2022). GhPUP4,

GhDCTPP1, and GhGGAT2 have no direct role in cotton; however,

GhPUP4 has been reported to play a major role in the enhancement

of grain size increase in rice (Xiao et al., 2019). SI has five active genes,

(GhMYB22, GhAGP9, GhZAT10, GhACO3, and GhFLA7), which

play an active role in fiber initiation elongation and freezing

tolerance, as reported previously (Shi et al., 2006; Huang et al.,

2013; Li P. et al., 2023). Additionally, pleiotropic QTLs

(qGhBN_SCY_D6-3 and qGhSI_LI_A5) have three active genes

(GhPPR, GhCHUP1, and GhSCPL42), whose functions in cotton

fiber development have not been deciphered; however, their isoforms

have been reported to play a functional role in defense mechanisms

against abiotic and biotic stress (Wang et al., 2022). All 23 stable and

17 novel genes identified in the current study exhibited a high

expression profile, which renders them promising candidate genes

for future investigations and their functional validation would reveal

their role in cotton yield improvement through functional genomics

approaches. In conclusion, the present study unveiled a rich source of

genetic elements, including SNPs, QTLs, and putative candidate

genes associated with fiber yield traits in Indian upland cotton.
5 Conclusion

The present study has made significant strides in understanding

the genetic structure and diversity of the Indian cotton germplasm,

the identification of SNPs associated with fiber yield traits, and the

subsequent identification of potential candidate genes. A weak

population structure in the Indian cotton germplasm revealed two

subgroups when the population structure was analyzed using a

variety of approaches, including PCA, NJ tree, and kinship analysis.

A low level of genetic relatedness among the genotypes was

observed in the kinship matrix, which is required for breeding
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programs because it preserves the genetic diversity with wide

adaptability. A total of 205 significant SNPs associated with six

yield-related traits were identified through the GWAS and further

delineated into 134 QTLs. Interestingly, several of these QTLs

showed pleiotropic effects, indicating that these loci govern

several traits and are thus advantageous candidate loci for

introduction into breeding programs aimed at enhancing fiber

yield. Additionally, 2,509 unique candidate genes were identified

within the vicinity of these QTLs. The biological processes of the

trait-associated genes were revealed using gene ontology

enrichment analysis. While analyzing the public domain RNA-seq

data, we identified 40 potential candidate genes across various

cotton fiber developmental stages, several of which are known to

be associated with fiber yield, while others need further functional

validation to decipher their role in cotton yield. In conclusion, the

present study unveiled a rich source of genetic elements, including

SNPs, QTLs, and putative candidate genes associated with fiber

yield traits in Indian upland cotton. These findings provide a solid

foundation for further research on the functional roles of these

genetic elements and their potential utilization in breeding

programs to improve cotton fiber yield in India. To clearly

determine the involvement of candidate genes governing cotton

yield traits, further functional validation is necessary. It is

anticipated that this effort will make a substantial contribution to

the MAS breeding of high-fiber-yielding cotton varieties, thereby

enhancing cotton farming productivity and the sustainability of the

Indian cotton industry.
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(2015). Multi-environment multi-QTL association mapping identifies disease
resistance QTL in barley germplasm from Latin America. Theor. Appl. Genet. 128,
501–516. doi: 10.1007/s00122-014-2448-y

Hall, D., Tegström, C., and Ingvarsson, P. K. (2010). Using association mapping to
dissect the genetic basis of complex traits in plants. Briefings Funct. Genomics 9 (2),
157–165. doi: 10.1093/bfgp/elp048

Hamblin, M. T., Buckler, E. S., and Jannink, J.-L. (2011). Population genetics of
genomics-based crop improvement methods. Trends Genet. 27 (3), 98–106. doi:
10.1016/j.tig.2010.12.003

Han, M., Jin, X., Yao, W., Kong, L., Huang, G., Tao, Y., et al. (2017). A mini zinc-
finger protein (MIF) from Gerbera hybrida activates the GASA protein family gene,
GEG, to inhibit ray petal elongation. Front. Plant Sci. 8, 1649. doi: 10.3389/
fpls.2017.01649

Handi, S. S., Katageri, I. S., Adiger, S., Jadhav, M. P., Lekkala, S. P., and Reddy
Lachagari, V. B. (2017). Association mapping for seed cotton yield, yield components
and fibre quality traits in upland cotton (Gossypium hirsutum L.) genotypes. Plant
Breed. 136 (6), 958–968. doi: 10.1111/pbr.12536

Hart, T., Komori, H. K., LaMere, S., Podshivalova, K., and Salomon, D. R. (2013).
Finding the active genes in deep RNA-seq gene expression studies. BMC Genomics 14,
1–7. doi: 10.1186/1471-2164-14-778

Horton, M. W., Bodenhausen, N., Beilsmith, K., Meng, D., Muegge, B. D.,
Subramanian, S., et al. (2014). Genome-wide association study of Arabidopsis thaliana
leaf microbial community. Nat. Commun. 5 (1), 5320. doi: 10.1038/ncomms6320

Hu, Y., Chen, J., Fang, L., Zhang, Z., Ma, W., Niu, Y., et al. (2019). Gossypium barbadense
and Gossypium hirsutum genomes provide insights into the origin and evolution of
allotetraploid cotton. Nat. Genet. 51 (4), 739–748. doi: 10.1038/s41588-019-0371-5

Huang, G.-Q., Gong, S.-Y., Xu, W.-L., Li, W., Li, P., Zhang, C.-J., et al. (2013). A
fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and
elongation of cotton. Plant Physiol. 161 (3), 1278–1290. doi: 10.1104/pp.112.203760

Huang, G., Huang, J.-Q., Chen, X.-Y., and Zhu, Y.-X. (2021). Recent advances and
future perspectives in cotton research. Annu. Rev. Plant Biol. 72, 437–462. doi: 10.1146/
annurev-arplant-080720-113241

Huang, C., Nie, X., Shen, C., You, C., Li, W., Zhao, W., et al. (2017). Population
structure and genetic basis of the agronomic traits of upland cotton in China revealed
by a genome-wide association study using high-density SNP s. Plant Biotechnol. J. 15
(11), 1374–1386. doi: 10.1111/pbi.12722

Huang, X., Zhao, Y., Wei, X., Li, C., Wang, A., Zhao, Q., et al. (2012). Genome-wide
association study of flowering time and grain yield traits in a worldwide collection of
rice germplasm. Nat. Genet. 44 (1), 32–39. doi: 10.1038/ng.1018

Iqbal, M., Reddy, O., El-Zik, K., and Pepper, A. (2001). A genetic bottleneck in
the’evolution under domestication’of upland cotton Gossypium hirsutum L. examined
using DNA fingerprinting. Theor. Appl. Genet. 103, 547–554. doi: 10.1007/PL00002908
Frontiers in Plant Science 20
Islam, M. S., Thyssen, G. N., Jenkins, J. N., Zeng, L., Delhom, C. D., McCarty, J. C.,
et al. (2016). A MAGIC population-based genome-wide association study reveals
functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC
Genomics 17 (1), 1–17. doi: 10.1186/s12864-016-3249-2

Jannink, J.-L., Bink, M. C., and Jansen, R. C. (2001). Using complex plant pedigrees
to map valuable genes. Trends Plant Sci. 6 (8), 337–342. doi: 10.1016/S1360-1385(01)
02017-9

Jia, Y., Sun, X., Sun, J., Pan, Z., Wang, X., He, S., et al. (2014). Association mapping
for epistasis and environmental interaction of yield traits in 323 cotton cultivars under
9 different environments. PloS One 9 (5), e95882. doi: 10.1371/journal.pone.0095882

Kantartzi, S., and Stewart, J. M. (2008). Association analysis of fibre traits in
Gossypium arboreum accessions. Plant Breed. 127 (2), 173–179. doi: 10.1111/j.1439-
0523.2008.01490.x

Kolde, R. (2019). pheatmap: pretty heatmaps. R package version 1.0. 12.

Kumar, P., Nimbal, S., Sangwan, R. S., Budhlakoti, N., Singh, V., Mishra, D. C., et al.
(2021). Identification of novel marker–trait associations for lint yield contributing traits
in upland cotton (Gossypium hirsutum L.) using SSRs. Front. Plant Sci. 12, 653270. doi:
10.3389/fpls.2021.653270

Lacape, J.-M., Gawrysiak, G., Cao, T.-V., Viot, C., Llewellyn, D., Liu, S., et al. (2013).
Mapping QTLs for traits related to phenology, morphology and yield components in an
inter-specific Gossypium hirsutum× G. barbadense cotton RIL population. Field Crops
Res. 144, 256–267. doi: 10.1016/j.fcr.2013.01.001

Lee, J. A. (1984). Cotton as a world crop. Cotton 24, 1–25. doi: 10.2134/
agronmonogr24.c1

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv preprint arXiv:1303.3997. doi: 10.48550/arXiv.1303.3997

Li, Z., Cao, X., Wang, H., Liu, Y., Liu, W., Zhang, H., et al. (2023). Comprehensive
identification of polygalacturonases in cotton: Genomic analysis, potential regulatory
mechanisms and expression patterns in anthers. Ind. Crops Prod. 200, 116874. doi:
10.1016/j.indcrop.2023.116874

Li, F., Fan, G., Lu, C., Xiao, G., Zou, C., Kohel, R. J., et al. (2015). Genome sequence of
cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome
evolution. Nat. Biotechnol. 33 (5), 524–530. doi: 10.1038/nbt.3208

Li, C., Fu, Y., Sun, R., Wang, Y., and Wang, Q. (2018). Single-locus and multi-locus
genome-wide association studies in the genetic dissection of fiber quality traits in
upland cotton (Gossypium hirsutum L.). Front. Plant Sci. 9, 1083. doi: 10.3389/
fpls.2018.01083

Li, A., Hao, C., Wang, Z., Geng, S., Jia, M., Wang, F., et al. (2022). Wheat breeding
history reveals synergistic selection of pleiotropic genomic sites for plant architecture
and grain yield. Mol. Plant 15 (3), 504–519. doi: 10.1016/j.molp.2022.01.004

Li, Y., Si, Z., Wang, G., Shi, Z., Chen, J., Qi, G., et al. (2023). Genomic insights into the
genetic basis of cotton breeding in China. Mol. Plant 16 (4), 662–677. doi: 10.1016/
j.molp.2023.01.012

Li, P., Wang, M., Zhou, Y., Wu, Q., Shen, Y., Cui, Z., et al. (2023). Freezing
transcriptome analysis showed that GhZAT10 regulates freezing tolerance through a
partially CBF-dependent pathway in upland cotton (Gossypium hirsutum L.). Environ.
Exp. Bot. 208, 105263. doi: 10.1016/j.envexpbot.2023.105263

Li, F., Wen,W., He, Z., Liu, J., Jin, H., Cao, S., et al. (2018). Genome-wide linkage mapping
of yield-related traits in three Chinese bread wheat populations using high-density SNP
markers. Theor. Appl. Genet. 131, 1903–1924. doi: 10.1007/s00122-018-3122-6

Li, L., Yan, X., Li, J., Wu, X., and Wang, X. (2022). Metabolome and transcriptome
association analysis revealed key factors involved in melatonin mediated cadmium-
stress tolerance in cotton. Front. Plant Sci. 13, 995205. doi: 10.3389/fpls.2022.995205

Liang, C., Meng, Z., Meng, Z., Malik, W., Yan, R., Lwin, K. M., et al. (2016). GhABF2,
a bZIP transcription factor, confers drought and salinity tolerance in cotton
(Gossypium hirsutum L.). Sci. Rep. 6 (1), 1–14. doi: 10.1038/srep35040

Lipka, A. E., Kandianis, C. B., Hudson, M. E., Yu, J., Drnevich, J., Bradbury, P. J., et al.
(2015). From association to prediction: statistical methods for the dissection and
selection of complex traits in plants. Curr. Opin. Plant Biol. 24, 110–118. doi: 10.1016/
j.pbi.2015.02.010

Lischer, H. E., and Excoffier, L. (2012). PGDSpider: an automated data conversion
tool for connecting population genetics and genomics programs. Bioinformatics 28 (2),
298–299. doi: 10.1093/bioinformatics/btr642

Liu, S., Fan, C., Li, J., Cai, G., Yang, Q., Wu, J., et al. (2016). A genome-wide
association study reveals novel elite allelic variations in seed oil content of Brassica
napus. Theor. Appl. Genet. 129, 1203–1215. doi: 10.1007/s00122-016-2697-z

Liu, D., Liu, F., Shan, X., Zhang, J., Tang, S., Fang, X., et al. (2015). Construction of a
high-density genetic map and lint percentage and cottonseed nutrient trait QTL
identification in upland cotton (Gossypium hirsutum L.). Mol. Genet. Genomics 290,
1683–1700. doi: 10.1007/s00438-015-1027-5

Liu, G., Mei, H., Wang, S., Li, X., Zhu, X., and Zhang, T. (2015). Association mapping
of seed oil and protein contents in upland cotton. Euphytica 205, 637–645. doi: 10.1007/
s10681-015-1450-z

Liu, W., Song, C., Ren, Z., Zhang, Z., Pei, X., Liu, Y., et al. (2020). Genome-wide
association study reveals the genetic basis of fiber quality traits in upland cotton
(Gossypium hirsutum L.). BMC Plant Biol. 20, 1–13. doi: 10.1186/s12870-020-02611-0

Liu, R., Wang, B., Guo, W., Qin, Y., Wang, L., Zhang, Y., et al. (2012). Quantitative
trait loci mapping for yield and its components by using two immortalized populations
frontiersin.org

https://doi.org/10.1111/j.1471-8286.2007.01758.x
https://doi.org/10.1038/ng.3887
https://doi.org/10.1007/s00122-009-1223-y
https://doi.org/10.3389/fpls.2022.929168
https://doi.org/10.1146/annurev.arplant.54.031902.134907
https://doi.org/10.1146/annurev.arplant.54.031902.134907
https://doi.org/10.1111/j.1365-313X.2005.02591.x
https://doi.org/10.1007/s10681-017-1855-y
https://doi.org/10.1111/tpj.14999
https://doi.org/10.1093/jxb/eru182
https://doi.org/10.1016/j.ympev.2015.05.023
https://doi.org/10.1186/s42397-021-00087-3
https://doi.org/10.1186/s42397-021-00087-3
https://doi.org/10.1007/s00122-014-2448-y
https://doi.org/10.1093/bfgp/elp048
https://doi.org/10.1016/j.tig.2010.12.003
https://doi.org/10.3389/fpls.2017.01649
https://doi.org/10.3389/fpls.2017.01649
https://doi.org/10.1111/pbr.12536
https://doi.org/10.1186/1471-2164-14-778
https://doi.org/10.1038/ncomms6320
https://doi.org/10.1038/s41588-019-0371-5
https://doi.org/10.1104/pp.112.203760
https://doi.org/10.1146/annurev-arplant-080720-113241
https://doi.org/10.1146/annurev-arplant-080720-113241
https://doi.org/10.1111/pbi.12722
https://doi.org/10.1038/ng.1018
https://doi.org/10.1007/PL00002908
https://doi.org/10.1186/s12864-016-3249-2
https://doi.org/10.1016/S1360-1385(01)02017-9
https://doi.org/10.1016/S1360-1385(01)02017-9
https://doi.org/10.1371/journal.pone.0095882
https://doi.org/10.1111/j.1439-0523.2008.01490.x
https://doi.org/10.1111/j.1439-0523.2008.01490.x
https://doi.org/10.3389/fpls.2021.653270
https://doi.org/10.1016/j.fcr.2013.01.001
https://doi.org/10.2134/agronmonogr24.c1
https://doi.org/10.2134/agronmonogr24.c1
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.1016/j.indcrop.2023.116874
https://doi.org/10.1038/nbt.3208
https://doi.org/10.3389/fpls.2018.01083
https://doi.org/10.3389/fpls.2018.01083
https://doi.org/10.1016/j.molp.2022.01.004
https://doi.org/10.1016/j.molp.2023.01.012
https://doi.org/10.1016/j.molp.2023.01.012
https://doi.org/10.1016/j.envexpbot.2023.105263
https://doi.org/10.1007/s00122-018-3122-6
https://doi.org/10.3389/fpls.2022.995205
https://doi.org/10.1038/srep35040
https://doi.org/10.1016/j.pbi.2015.02.010
https://doi.org/10.1016/j.pbi.2015.02.010
https://doi.org/10.1093/bioinformatics/btr642
https://doi.org/10.1007/s00122-016-2697-z
https://doi.org/10.1007/s00438-015-1027-5
https://doi.org/10.1007/s10681-015-1450-z
https://doi.org/10.1007/s10681-015-1450-z
https://doi.org/10.1186/s12870-020-02611-0
https://doi.org/10.3389/fpls.2023.1252746
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Joshi et al. 10.3389/fpls.2023.1252746
of a heterotic hybrid in Gossypium hirsutum L. Mol. Breed. 29, 297–311. doi: 10.1007/
s11032-011-9547-0

Lu, X., Fu, X., Wang, D., Wang, J., Chen, X., Hao, M., et al. (2019). Resequencing of
cv CRI-12 family reveals haplotype block inheritance and recombination of
agronomically important genes in artificial selection. Plant Biotechnol. J. 17 (5), 945–
955. doi: 10.1111/pbi.13030

Lu, Q., Zhang, M., Niu, X., Wang, S., Xu, Q., Feng, Y., et al. (2015). Genetic variation
and association mapping for 12 agronomic traits in indica rice. BMC Genomics 16 (1),
1–17. doi: 10.1186/s12864-015-2245-2

Ma, Z., He, S., Wang, X., Sun, J., Zhang, Y., Zhang, G., et al. (2018). Resequencing a
core collection of upland cotton identifies genomic variation and loci influencing fiber
quality and yield. Nat. Genet. 50 (6), 803–813. doi: 10.1038/s41588-018-0119-7

Ma, R., Yuan, H., An, J., Hao, X., and Li, H. (2018). A Gossypium hirsutum GDSL
lipase/hydrolase gene (GhGLIP) appears to be involved in promoting seed growth in
Arabidopsis. PloS One 13 (4), e0195556. doi: 10.1371/journal.pone.0195556

Magwanga, R. O., Lu, P., Kirungu, J. N., Dong, Q., Hu, Y., Zhou, Z., et al. (2018).
Cotton late embryogenesis abundant (LEA2) genes promote root growth and confer
drought stress tolerance in transgenic Arabidopsis thaliana. G3: Genes, Genomes.
Genetics 8 (8), 2781–2803. doi: 10.1534/g3.118.200423

Maldonado, C., Mora, F., Scapim, C. A., and Coan, M. (2019). Genome-wide
haplotype-based association analysis of key traits of plant lodging and architecture of
maize identifies major determinants for leaf angle: Hap LA4. PloS One 14 (3), e0212925.
doi: 10.1371/journal.pone.0212925

Mei, H., Zhu, X., and Zhang, T. (2013). Favorable QTL alleles for yield and its
components identified by association mapping in Chinese Upland cotton cultivars.
PloS One 8 (12), e82193. doi: 10.1371/journal.pone.0082193

Mihalyov, P. D., Nichols, V. A., Bulli, P., Rouse, M. N., and Pumphrey, M. O. (2017).
Multi-locus mixed model analysis of stem rust resistance in winter wheat. Plant
Genome 10 (2), plantgenome2017.2001.0001. doi: 10.3835/plantgenome2017.01.0001

Nie, X., Huang, C., You, C., Li, W., Zhao, W., Shen, C., et al. (2016). Genome-wide
SSR-based association mapping for fiber quality in nation-wide upland cotton inbreed
cultivars in China. BMC Genomics 17 (1), 1–16. doi: 10.1186/s12864-016-2662-x

Niu, H., Kuang, M., Huang, L., Shang, H., Yuan, Y., and Ge, Q. (2023). Lint
percentage and boll weight QTLs in three excellent upland cotton (Gossypium
hirsutum): ZR014121, CCRI60, and EZ60. BMC Plant Biol. 23 (1), 179. doi: 10.1186/
s12870-023-04147-5

Nordborg, M., Borevitz, J. O., Bergelson, J., Berry, C. C., Chory, J., Hagenblad, J., et al.
(2002). The extent of linkage disequilibrium in Arabidopsis thaliana. Nat. Genet. 30 (2),
190–193. doi: 10.1038/ng813

Omrani, M., Roth, M., Roch, G., Blanc, A., Morris, C. E., and Audergon, J.-M. (2019).
Genome-wide association multi-locus and multi-variate linear mixed models reveal
two linked loci with major effects on partial resistance of apricot to bacterial canker.
BMC Plant Biol. 19 (1), 1–18. doi: 10.1186/s12870-019-1631-3

Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., and Salzberg, S. L. (2016). Transcript-
level expression analysis of RNA-seq experiments with HISAT, StringTie and
Ballgown. Nat. Protoc. 11 (9), 1650–1667. doi: 10.1038/nprot.2016.095

Poland, J., and Rife, T. (2012). Genotyping-by-sequencing for plant breeding and
genetics. Plant Genome 5, 92–102. Go to original source. doi: 10.3835/
plantgenome2012.05.0005

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., et al.
(2007). PLINK: a tool set for whole-genome association and population-based linkage
analyses. Am. J. Hum. Genet. 81 (3), 559–575. doi: 10.1086/519795

Qin, Y.-M., and Zhu, Y.-X. (2011). How cotton fibers elongate: a tale of linear cell-
growth mode. Curr. Opin. Plant Biol. 14 (1), 106–111. doi: 10.1016/j.pbi.2010.09.010

Raman, H., Raman, R., Qiu, Y., Yadav, A. S., Sureshkumar, S., Borg, L., et al. (2019).
GWAS hints at pleiotropic roles for FLOWERING LOCUS T in flowering time and
yield-related traits in canola. BMC Genomics 20 (1), 1–18. doi: 10.1186/s12864-019-
5964-y

Ravelombola, W., Qin, J., Shi, A., Song, Q., Yuan, J., Wang, F., et al. (2021). Genome-
wide association study and genomic selection for yield and related traits in soybean.
PloS One 16 (8), e0255761. doi: 10.1371/journal.pone.0255761

Rong, J., Feltus, F. A., Waghmare, V. N., Pierce, G. J., Chee, P. W., Draye, X., et al.
(2007). Meta-analysis of polyploid cotton QTL shows unequal contributions of
subgenomes to a complex network of genes and gene clusters implicated in lint fiber
development. Genetics 176 (4), 2577–2588. doi: 10.1534/genetics.107.074518

Roorkiwal, M., Jarquin, D., Singh, M. K., Gaur, P. M., Bharadwaj, C., Rathore, A.,
et al. (2018). Genomic-enabled prediction models using multi-environment trials to
estimate the effect of genotype× environment interaction on prediction accuracy in
chickpea. Sci. Rep. 8 (1), 11701. doi: 10.1038/s41598-018-30027-2

Rungis, D., Llewellyn, D., Dennis, E., and Lyon, B. (2005). Simple sequence repeat (SSR)
markers reveal low levels of polymorphism between cotton (Gossypium hirsutum L.)
cultivars. Aust. J. Agric. Res. 56 (3), 301–307. doi: 10.1071/AR04190

Said, J. I., Lin, Z., Zhang, X., Song, M., and Zhang, J. (2013). A comprehensive meta
QTL analysis for fiber quality, yield, yield related and morphological traits, drought
tolerance, and disease resistance in tetraploid cotton. BMC Genomics 14, 1–22. doi:
10.1186/1471-2164-14-776

Said, J. I., Song, M., Wang, H., Lin, Z., Zhang, X., Fang, D. D., et al. (2015). A
comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and
Frontiers in Plant Science 21
interspecific G. hirsutum× G. barbadense populations. Mol. Genet. Genomics 290,
1003–1025. doi: 10.1007/s00438-014-0963-9
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