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Introduction: The primary metabolism of plants, which is mediated by nitrogen,

is closely related to the defense response to insect herbivores.

Methods: An experimental system was established to examine how nitrogen

mediated tomato resistance to an insect herbivore, the oriental fruit fly

(Bactrocera dorsalis). All tomatoes were randomly assigned to the suitable

nitrogen (control, CK) treatment, nitrogen excess (NE) treatment and nitrogen

deficiency (ND) treatment.

Results: We found that nitrogen excess significantly increased the aboveground

biomass of tomato and increased the pupal biomass of B. dorsalis. Metabolome

analysis showed that nitrogen excess promoted the biosynthesis of amino acids

in healthy fruits, including g-aminobutyric acid (GABA), arginine and asparagine.

GABA was not a differential metabolite induced by injury by B. dorsalis under

nitrogen excess, but it was significantly induced in infested fruits at appropriate

nitrogen levels. GABA supplementation not only increased the aboveground

biomass of plants but also improved the defensive response of tomato.

Discussion: The biosynthesis of GABA in tomato is a resistance response to

feeding by B. dorsalis in appropriate nitrogen, whereas nitrogen excess facilitates

the pupal weight of B. dorsalis by inhibiting synthesis of the GABA pathway. This

study concluded that excess nitrogen inhibits tomato defenses in plant-insect

interactions by inhibiting GABA synthesis, answering some unresolved questions

about the nitrogen-dependent GABA resistance pathway to herbivores.

KEYWORDS

nitrogen, g-aminobutyric acid, Bactrocera dorsalis, interaction, primary metabolism,
plant defense
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1 Introduction

As an important inorganic nutrient of plants, nitrogen

participates in various physiological metabolic processes, being a

main component of proteins, nucleic acids and secondary

metabolites. The nitrogen concentration in plants is influenced by

the environmental nitrogen level. Generally, low nitrogen will

reduce the concentrations of amino acids and other nitrogen-

containing compounds (e.g., chlorophyll) in plants. These changes

will affect the carbon and nitrogen assimilation of plants and limit the

accumulation of plant biomass (Schlüter et al., 2012). Plants grown

with limited resources may prefer to produce more defensive

compounds (Wilkens et al., 1996). High nitrogen significantly

promotes the growth of plants with adequate environmental

resources, but plants in high-nitrogen environments have rich

cytoplasm and thinner cuticles (Jauset et al., 2000). High nitrogen

fertilization leads to a reduction in the content of lignin, which

decreases plant defenses by mediating the thickness of the plant’s

physical barrier (Zhang et al., 2017). Nitrogen fertilizers may not

directly affect thephysiologyof insects.Highnitrogenwould shift plant

physiology (e.g., amino acid biosynthesis and tricarboxylic acid cycle)

to affect the nutritional conditions for herbivorous insects (Foyer et al.,

2011). Herbivores prefer high-nitrogen plants, and the population size

of herbivores increases significantly in high-nitrogen plants (Li et al.,

2016). The population of Bemisia tabaci increases with increasing

amounts of nitrogen fertilizer under field conditions (Bi et al., 2001).

High nitrogen also increases the egg survival rate and pupal exuviae

sizeofTrialeurodes vaporariorumontomatoplants (Jauset et al., 2000).

A high-nitrogen environment supplies plants with more of this

macronutrient, and insects can obtain more suitable nutrients

under this nutrient condition. The carbon-nutrient balance

hypothesis (Bryant et al., 1983) holds that high nitrogen affects

the energy distribution of primary or secondary metabolism in

plants. High-nitrogen environments induce plants to invest more

resources in growth and inhibit the synthesis of secondary

metabolites (Zheng et al., 2021). The expression of the plant

defense response induced by herbivores may also be affected by N

availability (Ren et al., 2013).

Ammonium and nitrate are the main forms of inorganic nitrogen

that plants absorb. Nitrogen availability can change the basic

biochemistry and other physiological activities of plants by

regulating the primary metabolism of nitrogen and carbon (Wang

et al., 2019). Ammonium is usually transformed into amino acids in

plants, a process is called nitrogen assimilation(Ghanem et al., 2011).

Amino acids, which are the first stable products of nitrogen

assimilation, are significantly affected by the nitrogen regime and

nitrogen source (Kant et al., 2011). As an important product of

nitrogen assimilation, glutamic acid is a very active amino acid,

being the starting point for the synthesis of other amino acids and

can be rapidly converted into other nitrogenous compounds in plant

cells. Glutamic acid metabolism plays a central role in plant nitrogen

metabolism, including the biosynthesis of aminoacidswithkey roles in

plant defense, such as g-aminobutyric acid (GABA) (Kan et al., 2015).

Gamma-aminobutyric acid, a four-carbon nonprotein amino acid,

exists in many organisms. In plants, GABA is considered a new plant

growth regulator (Li et al., 2023). GABA can promote growth and
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improve plant resistance to stress by participating in signal

transmission, regulating the stability of the plant antioxidant system,

promoting photosynthesis and maintaining carbon and nitrogen

metabolism(Shelp et al., 1999, Li and Zhou, 2022).

The entanglement between primary metabolism regulation and

defense responses is a puzzling theme in plant science. Although

many studies have focused on the effects of nitrogen on plant

metabolism and the biological indicators of insect populations, the

mechanism of metabolic changes in plant-insect interactions

mediated by high nitrogen remains unclear. We hypothesized that

high nitrogen can promote insect herbivore by changing the

primary metabolism of plants. Tomato is an important crop and

an excellent model plant for plant physiology research (Thaler et al.,

2012). The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera:

Tephritidae), is a famous invasive agricultural pest that has caused

serious losses in the global agricultural economy (Vargas et al.,

2015). The main goal of this study is to address how high nitrogen

affects the interaction between tomato and B. dorsalis by using

metabolomics technology.
2 Materials and methods

2.1 The experimental models

Tomato plants (Solanum lycopersicum L. cultivar ‘Xia Luote’)

were used in the experiments. Tomato plants that were 22 days old

were transplanted from seedling plates into 25-cm-diameter pots

(one plant per pot) containing a mixture of soil and vermiculite (7:3,

v:v). FromMay through August, the greenhouse had a natural light-

dark cycle with a constant temperature of 28°C. All tomatoes were

randomly assigned to the suitable nitrogen (control, CK) treatment,

nitrogen excess (NE) treatment and nitrogen deficiency (ND)

treatment. The NE treatment was 500 mg/L CO(NH2)2 fertilizer.

The CK treatment was a suitable nitrogen level of 250 mg/L CO

(NH2)2 (Stout et al., 1998; Ding et al., 2020). The ND treatment was

0 mg/L CO(NH2)2. The same concentrations of potassium and

phosphorus were added to all groups to replenish the potassium and

phosphorus. Fertilizer (400 mL) was added four times once a week

when the plants set fruit (12th week of growth), the stage at which

leaf nitrogen content drops rapidly. These tomato plants and fruits

were used at the red stage (6 days after breaker). The biomass of

tomato shoots and roots was recorded after oven-drying the sample

to a constant weight at 80°C (after 105°C for 20 min).
2.2 B. dorsalis infestation experiment

The B. dorsalis individuals were developed from larvae that were

collected in rotten fruit in Guangdong Province. Before the

experiment, the B. dorsalis population was raised in an intelligent

artificial climate chamber (model: RXZ-500B) for 60 successive

generations to lessen the potential impacts of environmental

influence from the locality. The conditions of the climate chamber

were 28°C ± 1°C, 70 ± 5% RH and 14 L:10 D cycle. Eggs of B. dorsalis

were obtained utilizing an artificial egg extractor coated with mango
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juice. Larvae were fed an artificial diet consisting of 125 g sucrose, 31 g

beer yeast, 235 g wheat bran, 2.1 g antibiotic, and 600mLH2O. It took

8-10 days from egg hatching to larval maturity. The mature larvae

sprang to the damp, 2-5-cm-deep sand (60%-70% water content) to

pupate. The adult flies emerged after 7-8 days and were cultured in

insect rearing cages (25 cm×25 cm×50 cm) using an artificial diet

consisting of 75% sucrose and 25% peptone.

A simulated B. dorsalis infection experiment was carried out in

a greenhouse. Six groups of treatments were set up to simulate B.

dorsalis infection under laboratory conditions. CK group: healthy

fruits without infection in suitable nitrogen (CK) treatment. CKPI

group: fruits with infection in suitable nitrogen treatment. NE

group: healthy fruits without infection in nitrogen excess (NE)

treatment. NEPI group: fruits with infection in nitrogen excess

treatment. ND group: healthy fruits without infection in nitrogen

deficiency (ND) treatment. NDPI group: fruits with infection in

nitrogen deficiency (ND) treatment. Five tomato plants with red

fruit were selected in each group, and each plant was covered with

nylon mesh (50 cm×50 cm×100 cm) to form an independent, small

ecological environment. Pest injury treatment: Fifty sexually mature

adults with 25 of each sex were released into each nylon mesh. Each

fruit was checked to determine whether it was laid eggs by the B.

dorsalis evert for six hours. Fruit samples were taken at 48 hours

after spawning on fruits. All samples were immediately frozen in

liquid nitrogen and stored at -80°C until needed for analysis.
2.3 Metabolomic analysis

2.3.1 Sample extraction
Amixture comprising methanol, acetonitrile, and water (v:v:v =

2:2:1, LC–MS grade, Marda) was used as an extract solvent. The

extracted ratio was 0.05 g of sample to 1 ml of solvent. The extracted

solution was vortexed for 30 s and sonicated for 30 min at low

temperature. After standing at -20°C for 10 min, the solution was

centrifuged for 20 min at 14000 g at 4°C. The supernatant was

transferred into an LC-MS vial for detection. Equivalent amounts of

supernatants from all samples were mixed as QC (quality control)

samples for testing.

2.3.2 LC-MS analysis
Qualitative and quantitative analyses were performed using an

Agilent 1290 Infinity LC ultrahigh-pressure liquid chromatograph

(Agilent, USA) and an AB Triple TOF 6600 mass spectrometer (AB

SCIEX, USA) with XCMS and SIMCA-P. Liquid chromatography

was performed using a HILIC column (1.7 mm, 2.1 mm ×100 mm,

Waters, USA). Detailed LC-MS analytical methods are provided in

the Supplementary Material.

2.3.3 Data preprocessing
The raw data in Wiff format were converted into mzXML format

by ProteoWizard software, after which XCMS was used to perform

retention time correction, peak identification, peak extraction, peak

integration, and peak alignment. SIMCA software was used for

multivariate statistical analyses and differential metabolite screening.

HMDB and KEGG were used for metabolite identification.
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2.4 Feeding validation experiment

Larvae were fed fruits of different treatments: positive control

group: CK fruits with infested treatment; negative control group:

CK fruits with healthy treatment; and two treatment groups:

nitrogen-excess fruits with healthy treatment and nitrogen-excess

fruits with infestation. In the healthy treatment, tomatoes received

no treatment. In infested treatments, fruits were collected at 48

hours after oviposition on fruits by females. After different

treatments, fruits were inoculated with 0.1 ml of solution with

approximately 150 B. dorsalis eggs. Inoculation was performed by

making a 2-mm-deep, 5-mm-long incision in the surface of fruit

using a sterile surgical blade. The egg solution was transferred inside

the incision using a sterile 1 ml injector. We observed and recorded

the pupal weight of B. dorsalis on the fifth day after pupation.
2.5 GABA function verification experiment

After tomato plants that were 22 days old were transplanted

from seedling plates into pots, 60 plants were divided into two

groups. In the CK group, plants were sprayed with water once a

week. In the GABA group, plants were sprayed with 5 mmol/L

GABA solution. The biomass of plants was recorded after 14 days of

cultivation under the same environmental conditions. B. dorsalis

larvae were fed different artificial diets containing GABA. The two

concentrations of the experimental diets were 0.5 µmol/g and 0.7

µmol/g GABA. The CK group was fed general artificial diets. The

pupal weight was recorded on the fifth day after pupation.
2.6 Statistical analysis

One-way factorial ANOVA was used to analyze the differences

in biomass of tomato or B. dorsalis. Levene’s test was used for

variance homogeneity. Tukey’s HSD or Dunnett’s T3 test was used

for post hoc analysis to detect significant differences at P < 0.05. All

analyses were performed using SPSS software 13.0 (SPSS Inc.,

Chicago, IL, United States). The Kyoto Encyclopedia of Genes

and Genomes (KEGG) database (http://www.kegg.jp/ (Release

97.0, January 1, 2021)) was used to do metabolic pathway

enrichment using metabolites mapped to the database. Origin

2021 software (OriginLab Inc., Northampton, United States) was

used for cluster analysis and Venn analysis.
3 Results

3.1 Effects of nitrogen on tomato
and B. dorsalis biomass accumulation
and fruit metabolism

Nitrogen excess significantly increased shoot biomass

(F2,6 = 9.759, P < 0.05) and total biomass of tomato (F2,6 = 8.597,

P < 0.05) (Figures 1A, C), while the root/shoot ratio showed `

nitrogen deficiency has the higher ratio than CK and nitrogen
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excess group(F = 6.66, P < 0.05) (Figure 1B). Additionally, giving

excess nitrogen to the tomato increased the weight of pupae by

11% compared with theCK and nitrogen deficiency group

(F2,326 = 91.517, P < 0.01) (Figure 1D).

The Volcano plot (Figure 2A) showed that nitrogen excess led to

differences in the fruit metabolites. After screening of differential

metabolites (OPLS-DA VIP > 1 and P value < 0.1) detected 148

differential metabolites were found to be upregulated under nitrogen

excess, which were grouped into seven main classes. These seven

classed including carboxylic acids and derivatives (CAD), benzene and

substituted derivatives (BSD), organooxygen compounds (OOC),

steroids and steroid derivatives (SSD), fatty acyls (FAs), indoles and

derivatives (Indoles), glycerophospholipids (GPLs). The CAD

accounted for the highest number of differential metabolites

(Figure 2B). The KEGG enrichment analysis showed that 5

pathways were enriched under nitrogen excess (Figure 2C):

biosynthesis of amino acids, alanine, aspartate and glutamate

metabolism, phenylalanine metabolism, arginine biosynthesis and

aminoacyl-tRNA biosynthesis pathways. GABA, citrulline, arginine,

phenylalanine and asparagine were significantly upregulated under
Frontiers in Plant Science 04
nitrogen excess (Figure 2D). Indoleacetic acid,which is associatedwith

growth, was significantly upregulated under nitrogen excess.
3.2 Effects of pest injury on fruit
metabolism under different nitrogen levels

In total, 11782 metabolites were detected by LC-MS analysis, of

which 491 metabolites and 75 metabolites were upregulated and

downregulated by B. dorsalis feeding under nitrogen excess

(Figure 3A). Screening of differential metabolites (OPLS-DA VIP

> 1 and P value < 0.1) detected 131 pest injury (PI)-affected

differential metabolites (Figure 3B). These differential metabolites

were grouped into seven main classes: carboxylic acids and

derivatives (CAD), fatty acyls (FAs), glycerophospholipids

(GPLs), steroids and steroid derivatives (SSD), benzene and

substituted derivatives (BSD), organooxygen compounds (OOC)

and organonitrogen compounds (ONC).

The results of KEGG enrichment analysis in NEPI compared

with NE showed 5 different enrichment pathways: glutathione
A B

DC

FIGURE 1

Effects of nitrogen on tomato and (B) dorsalis biomass accumulation. (A) The biomass of per tomato shoot. (B) The root/shoot ratio of per tomato.
(C) The total biomass of per tomato. (D) The pupal weight of (B) dorsalis in infested fruits. The different letters in figure indicate significant
differences between different treatments (P < 0.05).
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metabolism, linoleic acid metabolism, biosynthesis of unsaturated

fatty acids, biosynthesis of amino acids, and arginine biosynthesis

(Figure 3C). A heatmap was drawn showing the contents and fold

changes of 12 differential metabolites associated with the 5

pathways. L-Pyroglutamic acid, glutamine, citrulline, S-adenosyl-

l-homocysteine, 5-L-glutamyl-L-alanine, linolenic acid, and linoleic

acid were significantly upregulated in the NEPI group. In contrast

to the above results, GABA was not significantly upregulated by

NEPI treatment, but glutamine, which is a downstream substance of

glutamate metabolism, was significantly upregulated by NEPI

treatment (Figure 3D).

The volcano plot showed that 457 metabolites and 133

metabolites were upregulated and downregulated by injury from

B. dorsalis in the CK group (Figure 4A). A total of 125 differential

metabolites were grouped into seven main classes: carboxylic acids

and derivatives (CAD), fatty acyls (FAs), glycerophospholipids

(GPLs), organonitrogen compounds (ONC), organooxygen

compounds (OOC), prenol lipids (PLs), steroids and steroid

derivatives (SSD) (Figure 4B). The carboxylic acids and
Frontiers in Plant Science 05
derivatives group still had the most differential metabolites. The

KEGG analysis showed that differential metabolites were

significantly enriched in 7 different enrichment pathways: zeatin

biosynthesis, pentose phosphate pathway, sphingolipid metabolism,

ascorbate and aldarate metabolism, galactose metabolism, starch

and sucrose metabolism and ABC transporters (Figure 4C). The

metabolic pathways were mainly associated with carbon

metabolism. Arabinose, glucose, fructose and tagatose production

were downregulated in the CKPI treatment. The content of GABA

was significantly increased in the CKPI treatment (Figure 4D).
3.3 GABA is not a differential metabolite in
the N deficiency group

The Volcano plot (Figure 5A) showed that nitrogen deficiency

led to differences in the fruit metabolites. After screening of

differential metabolites (OPLS-DA VIP > 1 and P value < 0.1)

detected 117 differential metabolites were found to be upregulated
A B

DC

FIGURE 2

Overview of fruit metabolism changes under nitrogen excess (NE) and CK tomatoes. (A) Volcano map: the horizontal coordinate indicates the
change in the metabolites (log2 fold change), and the vertical coordinate indicates the significance level (-log10 (P value)). The upregulated
metabolites and downregulated metabolites are presented by red and blue dots, respectively. (B) Grouping classification of the upregulated and
downregulated differential metabolites. CAD, Carboxylic acids and derivatives; BSD, Benzene and substituted derivatives; OOC, Organooxygen
compounds; SSD, Steroids and steroid derivatives; FAs, Fatty acyls; Indoles, Indoles and derivatives; GPLs, Glycerophospholipids; (C) KEGG
enrichment analysis of differential metabolites between NE and CK treatments. (D) Heatmap of differential metabolites associated with KEGG
pathways (NE, healthy fruits with nitrogen excess; CK, healthy fruits with suitable nitrogen).
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under nitrogen deficiency, which were grouped into seven main

classes. The organooxygen compounds (OOC) accounted for the

highest number of differential metabolites (Figure 5B). The KEGG

enrichment analysis showed that 4 pathways were enriched under

nitrogen deficiency (Figure 5C): starch and sucrose metabolism,

galactose metabolism, ABC transporters and nicotinate and

nicotinamide metabolism. GABA was not a differential metabolite

in nitrogen deficiency (Figure 5D).

The volcano plot showed that 863 metabolites and 441

metabolites were upregulated and downregulated by injury from

B. dorsalis in the nitrogen deficiency group (Figure 5E). The 196

differential metabolites were divided into 8 classes: carboxylic acids

and derivatives (CAD), fatty acyls (FAs), glycerophospholipids

(GPLs), organooxygen compounds (OOC), steroids and steroid

derivatives (SSD), benzene and substituted derivatives (BSD) and

organonitrogen compounds (ONC) (Figure 5F). The KEGG

analysis showed that most differential metabolites were

significantly enriched in the biosynthesis of unsaturated fatty

acids, glutathione metabolism, linoleic acid metabolism, galactose
Frontiers in Plant Science 06
metabolism, pyrimidine metabolism and purine metabolism

(Figure 5G). A heatmap was drawn showing the contents and

fold changes of 18 differential metabolites associated with the 6

pathways. Deoxyadenosine and inosine, which are associated with

energy metabolism, were upregulated in the NDPI treatment

(Figure 5H). D-Fructose 6-phosphate, glucose and mannose,

which are associated with galactose metabolism, were

downregulated in the NDPI treatment. However, GABA was not

significantly upregulated in the NDPI treatment, and it was not a

differential metabolite in the nitrogen deficiency group.
3.4 Function of GABA in the interaction
between nitrogen and B. dorsalis injury

The exogenous application of GABA significantly increased the

shoot biomass and total biomass of tomato (Figures 6A, C), with no

effect on the root/shoot ratio (Figure 6B). The feeding experiment

showed that GABA significantly inhibited the pupal weight of B.
A B

DC

FIGURE 3

Overview of fruit metabolism changes in healthy (NE) and infested tomatoes (NEPI) under nitrogen excess. (A) Volcano map; the horizontal
coordinate indicates the change in the metabolites (log2 fold change), and the vertical coordinate indicates the significance level (-log10 (P value)).
The upregulated metabolites and downregulated metabolites are presented by red and blue dots, respectively. (B) Grouping classification of the
upregulated and downregulated different metabolites. CAD: Carboxylic acids and derivatives. FAs, Fatty acyls; GPLs, Glycerophospholipids; SSD,
Steroids and steroid derivatives; BSD, Benzene and substituted derivatives; OOC, Organooxygen compounds; ONC, Organonitrogen compounds.
The numerals indicate the number of metabolites. (C) KEGG enrichment analysis of differential metabolites between NEPI and NE treatments.
(D) Heatmap of differential metabolites associated with KEGG pathways (NEPI, infested fruits with nitrogen excess; NE, healthy fruits with
nitrogen excess).
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dorsalis, and the inhibitory effect of 0.7 µmol/g GABA treatment

was significantly higher than that of 0.5 µmol/g GABA treatment

(Figure 6D). In healthy fruits without injury from B. dorsalis, the

pupal weight (eggs of artificial inoculation) of the control was

significantly higher than that of the nitrogen treatment. However,

after injury of B. dorsalis (infested fruits), the pupal weight of the

nitrogen excess treatment was significantly higher than that of the

CK group (Figure 7).
4 Discussion

Some studies have reported that a high nitrogen supply

increases the free amino acids in plants(Zhou et al., 2022). Plants

use GABA, asparagine and arginine as nitrogen storage and

transport amino acids (Kan et al., 2015). In particular, asparagine

and arginine have higher nitrogen-to-carbon ratios and release and

remobilize nitrogen after being hydrolyzed when the plant needs to

mobilize nitrogen from source tissues (Hildebrandt et al., 2015).
Frontiers in Plant Science 07
This study found that excess nitrogen promoted the biomass

accumulation of tomato and B. dorsalis. The reason why high

nitrogen increased the aboveground biomass of tomato was

explained by the metabolomic results. First, it promoted primary

metabolism (Atilio and Causin, 1996) and the accumulation of

amino acids to promote the production of nutrients. We also found

that key metabolites were significantly upregulated in the nitrogen

excess treatment, particularly GABA and IAA. GABA connects the

carbon and nitrogen metabolic fluxes in plants through the GABA

shunt (Fait et al., 2008). Several studies have shown that GABA can

promote pollen tube elongation and stem growth at low

concentrations (Bouché and Fromm, 2004). In addition, IAA

increases the accumulation of plant biomass. Ammonia nutrition

can induce the activity of aldehyde oxidase and promote the

synthesis of IAA (Koshiba et al., 1996).

As an inhibitory neuromuscular transmitter, GABA affects the

normal development of insects by directly acting on GABA-gated

chloride channels (Bown et al., 2006). The negative effects of GABA

on insects have been verified in several studies. One study reared
A B

DC

FIGURE 4

Overview of fruit metabolism changes in healthy (CK) and infested (CKPI) tomatoes of the suitable nitrogen group. (A) Volcano map; the horizontal
coordinate indicates the change in the metabolites (log2 fold change), and the vertical coordinate indicates the significance level (-log10 (P value)).
The upregulated metabolites and downregulated metabolites are presented by red and blue dots, respectively. (B) Grouping classification of the
upregulated and downregulated differential metabolites. CAD, Carboxylic acids and derivatives; FAs, Fatty Acyls; GPLs, Glycerophospholipids; ONC,
Organonitrogen compounds; OOC, Organooxygen compounds; PLs, Prenol lipids; SSD, Steroids and steroid derivatives. (C) KEGG enrichment
analysis of differential metabolites between CKPI and CK treatments. (D) Heatmap analysis of differential metabolites associated with KEGG pathways
(CKPI: infested fruits of suitable nitrogen, CK: healthy fruits of suitable nitrogen).
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larvae with artificial diets containing GABA, and the feeding results

showed that GABA significantly inhibited the growth of olive-

banded leafler (Choristoneura rosaceana) larvae (Ramputh and

Bown, 1996), and in another it significantly reduced the larval

weight of Spodoptera littoralis (Scholz et al., 2015). The results of

our research also showed that GABA had an inhibitory effect on the

pupal weight of the fruit fly, and with increasing GABA

concentration, the inhibition of biomass was more significant.

Given the result of the upregulation of GABA content in

nitrogen-excess fruits, ingestion of plant material that contains

elevated GABA levels, could have negative consequences for

insects (Bown et al., 2006). The growth of fruit fly larvae growing

in nitrogen-excess fruits would in that case be inhibited, but the

results were the opposite. Therefore, we also measured the

metabolic changes of fruits that were cultured under different

nitrogen levels with B. dorsalis injury to try to explain the reason

for the change in biomass.

Experimental evidence supports the synthesis of GABA induced

by herbivorous harm and involvement in plant defense (Bown et al.,

2002; Mithofer and Boland, 2012). In plants, GABA biosynthesis is

catalyzed by glutamate decarboxylase (GAD) (Akihiro et al., 2008).

Plants initiate the signal transduction pathway when under

environmental and biological stress, in which increased cytosolic

Ca2+ stimulates Ca2+/calmodulin-dependent GAD activity and
Frontiers in Plant Science 08
GABA synthesis (Zik et al., 2006). Research has demonstrated

that GABA accumulation is stimulated by Spodoptera littoralis

herbivory (Scholz et al., 2015). The crawling mechanical injury of

Choristoneura rosaceana and Heliothis virescens can also induce the

accumulation of GABA in a short time (Bown et al., 2002). GABA

and glutamine are both downstream metabolites of glutamate

metabolism. Glutamine synthetase (GS) catalyzes the synthesis of

glutamine from free ammonium and glutamate. Some studies have

shown that high-nitrogen nutrition can promote the activity of GS

(Balotf and Kavoosi, 2016), and the assimilation of ammonium into

glutamine is also one of the metabolic pathways which plants use to

avoid the toxicity of high ammonium (Masclaux-Daubresse et al.,

2006). Nitrogen-excess treatment provides tomato plants with a

high concentration of ammonium, which is potentially toxic to

plant cells. Free toxic ammonium in plants should be assimilated

quickly to avoid ammonium toxicity (Linka and Weber, 2005). The

main mechanism of ammonium assimilation is the GS/glutamine

oxoglutarate aminotransferase (GOGAT) cycle. Ammonium can be

assimilated into glutamine and glutamate via this cycle, which is the

major pathway for primary nitrogen assimilation in plants (Lea and

Miflin, 1974).

The metabolism of glutamate was the same in different

treatment groups. The major reason is that plants seem to

balance nitrogen metabolism by maintaining the homeostasis of
A B

D

E F

G HC

FIGURE 5

Overview of fruit metabolism changes under nitrogen deficiency (ND) and CK tomatoes. (A) Volcano map: the horizontal coordinate indicates the
change in the metabolites (log2 fold change), and the vertical coordinate indicates the significance level (-log10 (P value)). The upregulated
metabolites and downregulated metabolites are presented by red and blue dots, respectively. (B) Grouping classification of the upregulated and
downregulated differential metabolites. OOC: Organooxygen compounds. CAD: Carboxylic acids and derivatives. FAs: Fatty acyls. SSD: Steroids and
steroid derivatives. PLs: Prenol lipids. BSD: Benzene and substituted derivatives. Indoles: Indoles and derivative. (C) KEGG enrichment analysis of
differential metabolites between ND and CK treatments. (D) Heatmap of differential metabolites associated with KEGG pathways (ND: healthy fruits
with nitrogen deficiency, CK: healthy fruits with suitable nitrogen). Overview of fruit metabolism changes in healthy (ND) and infested tomatoes
(NDPI) of nitrogen deficiency. (E) Volcano map; the horizontal coordinate indicates the change in the metabolites (log2 fold change), and the vertical
coordinate indicates the significance level (-log10 (P value)). The upregulated metabolites and downregulated metabolites are presented by red and
blue dots, respectively. (F) Grouping classification of the upregulated and downregulated differential metabolites. CAD, Carboxylic acids and
derivatives; FAs, Fatty acyls; Gly, Glycerophospholipids; OOC, Organooxygen compounds; SSD, Steroids and steroid derivatives; BSD, Benzene and
substituted derivatives; ONC, Organonitrogen compounds. (G) KEGG enrichment analysis of differential metabolites between NDPI and ND
treatments. (H) Heatmap of differential metabolites associated with KEGG pathways ((NDPI, infested fruits with nitrogen deficiency; ND, healthy fruits
with nitrogen deficiency).
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glutamate. The concentration of glutamate in plants always remains

relatively constant under different nitrogen levels in different

culture conditions or in the diurnal cycle (Forde and Lea, 2007).

High nitrogen input causes fluctuations in amino acids, including

GABA, glutamine, arginine, asparagine, etc., in addition to

glutamate. These metabolic changes are related to enzymes of

nitrogen metabolism. Masclaux-Daubresse et al. (2006) argued

that GS and glutamate dehydrogenase (GDH) were the major

enzymes responsible for maintaining a constant concentration of

glutamate (Masclaux-Daubresse et al., 2006), but it is also likely that

the supply of 2-oxoglutarate is a key regulator (Forde and Lea,

2007). These studies explained that under high-nitrogen conditions,

the content of glutamate in tomato fruit did not fluctuate, but the

metabolism of GABA and glutamine fluctuated differently.

Glutamine is an important amino acid with the function of storing

nitrogen, and an ammonium ion is fixed in the metabolic process of

producing glutamine. B. dorsalis herbivory increases the levels of

glutamate acid, phenylalanine and aspartic acid in tomato fruits with

suitable nitrogen (Li et al., 2023). Our metabolomic results showed that

injury to B. dorsalis changed the metabolic direction of glutamate and

induced the upregulation of glutamine in the NE treatment group. The
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change in metabolic direction weakens the defense of tomato against B.

dorsalis feeding. These results explain why the pupal weight of the fruit

fly was increased in nitrogen-excess fruit that was injured by B. dorsalis.

We believe that under the high nitrogen level, the change in glutamate

metabolic direction was mediated by B. dorsalis, which may be the

result of the joint action of carbon metabolism and nitrogen

metabolism. Some reports have indicated that ammonium

assimilation is closely related to carbon metabolism (Gauthier et al.,

2010). The injury by B. dorsalis affected the carbon metabolism of

plants, and high nitrogen affected their nitrogen metabolism, which

destroyed the balance between carbon and nitrogen metabolism.

Carbon metabolism provides the necessary energy and carbon

framework for nitrogen metabolism. a-Ketoglutarate, the product of

glucose metabolism and the TCA cycle, is an important carbon

material in ammonium assimilation (Xun et al., 2020). GDH and

GOGAT both catalyze the synthesis of glutamate from a-ketoglutarate,
introducing a carbon framework into nitrogen metabolism (Masclaux-

Daubresse et al., 2006). Some studies have shown that a sufficient

carbon source allows plants to complete normal nitrogen metabolism

and assimilate excessive ammonium (Vega-Mas et al., 2017). The

damage by B. dorsalis significantly reduced the carbon source required
A B

DC

FIGURE 6

Effects of GABA supplements on the phenotypes of tomato biomass and the pupal biomass of (B) dorsalis. (A) The biomass of pre tomato shoots.
(B) The root/shoot ratio of pre tomato. (C) The total biomass of pre tomato. (D) The pupal weight of B. dorsalis. The asterisk indicates significant
differences (P < 0.05). The "ns" indicates no significant differences.
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FIGURE 7

Effects of nitrogen excess on phenotypes of pupal biomass of B. dorsalis in healthy and infested fruits. The different letters in figure indicate
significant differences between different treatments (P < 0.05).
FIGURE 8

Model for metabolomic responses to nitrogen excess and B. dorsalis herbivory in tomato (CK, Suitable nitrogen; NE, nitrogen excess). Promotion
and inhibition are presented by red and blue lines.
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for nitrogen metabolism. When the supply of the carbon framework is

insufficient, plants need to seek efficient nitrogen assimilation

pathways. Glutamine has a high nitrogen-to-carbon ratio (Kan et al.,

2015); under this condition, ammonium assimilation is completed by

glutamine synthetase. However, in the nitrogen-excess group, the

KEGG pathway analysis did not show enrichment of the carbon

metabolism pathway, possibly because the feedback of high nitrogen

affects carbon metabolism. The results under nitrogen deficiency

showed that the major differential metabolites were concentrated in

carbon metabolism, and GABA was not a differential metabolite. Low

nitrogen levels will significantly affect the carbon metabolism and

nitrogen metabolism of plants, including the reduction of nitrogen-rich

amino acid content (Zhou et al., 2021). Therefore, B. dorsalis did not

induce significant metabolic changes in nitrogen-rich amino acids after

harming nitrogen-deficient fruit. These results show that the GABA

metabolome of plants defending against herbivorous harm depends on

the level of nitrogen, making it a nitrogen-dependent defense response.
5 Conclusion

In conclusion, our research results supplement the research on the

effect of high nitrogen on plant defense. Nitrogen excess promoted the

aboveground biomass accumulation of tomato and B. dorsalis.

According to our metabolomic results, fruits that are cultured in

suitable nitrogen levels can promote the synthesis of GABA under

biological stress. We also demonstrated the control effect of GABA on

B. dorsalis. GABA supplementation not only increased the

aboveground biomass of plants but also improved the defensive

response of tomato. Injury by B. dorsalis inhibited the biosynthesis of

GABA, but injury promoted the biosynthesis of glutamine in nitrogen-

excess fruits (Figure 8). The study showed that excess nitrogen

inhibited the defense response of tomato to biological stress. These

findings provide a foundation for future research on the nitrogen-

mediated interaction between insects and plants.
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