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Recombinant biopharmaceuticals including antigens, antibodies, hormones,

cytokines, single-chain variable fragments, and peptides have been used as

vaccines, diagnostics and therapeutics. Plant molecular pharming is a robust

platform that uses plants as an expression system to produce simple and

complex recombinant biopharmaceuticals on a large scale. Plant system has

several advantages over other host systems such as humanized expression,

glycosylation, scalability, reduced risk of human or animal pathogenic

contaminants, rapid and cost-effective production. Despite many advantages,

the expression of recombinant proteins in plant system is hindered by some

factors such as non-human post-translational modifications, protein misfolding,

conformation changes and instability. Artificial intelligence (AI) plays a vital role in

various fields of biotechnology and in the aspect of plant molecular pharming, a

significant increase in yield and stability can be achieved with the intervention of

AI-based multi-approach to overcome the hindrance factors. Current limitations

of plant-based recombinant biopharmaceutical production can be

circumvented with the aid of synthetic biology tools and AI algorithms in

plant-based glycan engineering for protein folding, stability, viability, catalytic

activity and organelle targeting. The AI models, including but not limited to,

neural network, support vector machines, linear regression, Gaussian process

and regressor ensemble, work by predicting the training and experimental data

sets to design and validate the protein structures thereby optimizing properties

such as thermostability, catalytic activity, antibody affinity, and protein folding.

This review focuses on, integrating systems engineering approaches and AI-

based machine learning and deep learning algorithms in protein engineering and

host engineering to augment protein production in plant systems to meet the

ever-expanding therapeutics market.

KEYWORDS
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1 Introduction

Plant molecular pharming refers to the recombinant expression of

biologics including vaccines, hormones, therapeutics and diagnostic

reagents in plant-based systems. The field is gaining attention since the

biologics produced from plants are efficient and similar to products

from other conventional systems with the advantage of eukaryotic host

performing post-translational modifications. Some of these

recombinant biologics produced in plant systems are SARS-CoV2

virus-like particle (VLPs), spike antigen, anti-SARS-CoV2 mAb H4

and B38, anti-EBV (Ebola virus) mAb 6D8, 4H2 IgG and IgM (against

Coccidioides), antimicrobial peptide (AMP) LL-37 and human

apolipoprotein A-IMilano (Apo A-IMilano) (Fulton et al., 2015;

Holásková et al., 2018; Ali and Kim, 2019; Shanmugaraj et al., 2020;

Jugler et al., 2022; Zhao et al., 2023). Various model plant systems have

been used as stable or transient heterologous expression hosts for

recombinant protein production that include, tobacco (Nicotiana

benthamiana and Nicotiana tabacum), Arabidopsis, tomato, potato,

rice, maize, soybean, etc. (Ghag et al., 2021; Lobato Gómez et al., 2021).

The plant host systems are useful in many aspects such as cost-

effectiveness, multimeric protein assembly, scale-up and safety

(minimal/no risk of human pathogen contaminations). Even with

the listed advantages, there are few limitations to use plants as

expression systems such as lack of humanized N-glycosylation post-

translational modification which is needed for antibody production

and stability of plant-produced proteins are still a concern (Sethi et al.,

2021). Recombinant biologics production is dependent on several

factors such as vector construction, codon optimization, regulatory

components, protein localization and glycosylation (Amack and

Antunes, 2020; Jin et al., 2022; Mirzaee et al., 2022; Moon et al.,

2022; Zhao et al., 2023).

Systems Engineering in biology can be defined as a holistic

approach that analyzes, models, alters, optimizes, and regulates the

complex processes of biological systems resulting in desired

functions. Artificial Intelligence (AI) refers to the development of

machines and systems that use algorithms and statistical models to

analyze data, identify patterns and can perform/outperform tasks

that demand human intelligence in learning, reasoning, planning,

communicating, and problem-solving (Russell, 2010). Machine

Learning (ML) is a subset of AI that enables the systems to learn

by providing abundant training datasets and is classified into

supervised, unsupervised and semi-supervised learning

algorithms. Supervised algorithms are the most used of the three

since they are developed using labelled datasets from databases with

minimum data redundancy, feature extraction, analysis & selection

of main traits, prediction methods, and performance evaluation.

They provide an excellent prospect for biologists in identifying

patterns of gene expression and relevant features, thereby governing

the identification through deep understanding of different

combinations of the responsible factors (Singh et al., 2016; Silva

et al., 2019). Deep Learning (DL) is a network-based supervised

learning method with multiple layers of simple modules pooled and

arrayed for learning, computing, and mapping a big dataset through

each layer. It takes advantage over other AI-based ML algorithms in

exploring complex structures of high-dimensional data built from
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the simplest layers (Lecun et al., 2015). Industry 4.0 revolutionizes

traditional practices of manufacturing in industrial settings with the

integration of digital technologies, automation, and data exchange,

which concourses physical and digital systems leading to increased

efficiency, productivity and innovation. Intervention of automation,

cyber-physical systems, internet of things (IoT) and big data

analytics would prove to be efficient and robust in plant-based

biologics production (Dubey et al., 2018; Chen et al., 2020).

AI has been used in recombinant biologics production in host

systems such as mammalian cells (CHO and HEK293), yeast

(Saccharomyces cerevisiae and Pichia pastoris) and bacterial

(Escherichia coli and Bacillus subtilis) systems (Van Brempt et al.,

2020; Smiatek et al., 2021; Feng et al., 2022a; Li et al., 2022a;

Packiam et al., 2022). Application of AI or ML algorithms include

protein engineering, protein-protein interaction, stability,

localization, solubility, functional motif prediction and catalytic

activity which increases the production and functionality of

recombinant proteins (Han et al., 2019; Jiang et al., 2021; Feng

et al., 2022a; LaFleur et al., 2022; Masson et al., 2022; Kalemati et al.,

2023). Till date, AI finds very least or no intervention in plant

molecular pharming. In this review, we discuss about the systems

biology concepts with the introduction of AI, as shown in Figure 1,

in different aspects of recombinant biologics production to increase

the stability, functionality and applications of AI-based ML

algorithms in engineering systems to overcome the challenges and

to enhance the production of next generation plant-based biologics.
2 Advantages of plant
expression system

The market size of plant-based biologics was valued at $116.1

million during the year 2021, and with the compound annual

growth rate (CAGR) at 4.8%, it is being estimated to reach $182.9

million by the year 2031. Few of the major plant-based production

firms include Leaf Expression Systems, Zea Biosciences, Plant

Biotechnology Inc., InVitria, Mapp Biopharmaceutical and

PlantForm (Allied Market Research, 2023). Very few plant-based

recombinant therapeutics have been commercialized following

development and many are under clinical trials (He et al., 2021;

Lobato Gómez et al., 2021). Elelyso, taliglucerase alfa, produced in

carrot cell culture by ProtalixBio Therapeutics was approved by

FDA in 2012 to treat Gaucher disease and has been commercialized

(Mor, 2015). ZMapp – an antibody cocktail produced in N.

benthamiana by Leaf Biopharmaceutical (commercialization arm

of Mapp Biopharmaceutical) was used to treat Ebola outbreak

under emergency use authorization during 2014 in Africa

(Qureshi, 2016). Recombinant growth factors were produced in

the endosperm of barley grain by ORF Genetics and have been

commercialized as skincare products (ORF Genetics, 2023).

Covifenz, a plant-based SARS CoV2 VLP vaccine against

COVID19, developed by Medicago was authorized by Health

Canada during 2022 (Hager et al., 2022).

Protein-based pharmaceutical products are growing rapidly in

recent years and most of them are produced in mammalian and
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microbial expression systems. Now-a-days, plant systems have

emerged as an alternative platform for large scale production of

recombinant proteins as they necessitate no capital-intensive

infrastructure, bioreactors, or expensive culture media, but may

be quickly scaled in low-cost greenhouses using simple reagents

(Chen and Davis, 2016). When compared with prokaryotic and

other host systems, plants offer an alternative bioreactor system for

recombinant expression due to their glycan profile and cost-

effective management system (Schillberg et al., 2019). Apart from

the advantages mentioned above, plant systems are human

pathogen free, sterile conditions are not required during

production and scalable due to open-field cultivation (Buyel,

2019). For all these reasons plant expression system has been

established as a prominent bioreactor for the production of

therapeutic proteins such as vaccines, therapeutic proteins and

growth hormones (Limkul et al., 2016; Moon et al., 2022).

Each expression host has its advantages and limitations. For

instance, mammalian cell systems are capable of inherently

producing recombinant biologics in humanized form, but it is

difficult to maintain cell lines free from human pathogens and

contaminants (Sethi et al., 2021). Plant system has many

advantages over other systems including rapid (production of

recombinant protein starts at day 2-3 post infiltration), cost-

effective (produced at a cost of $0.27 for 3 mg dose of recombinant

AMP), scale-up (increasing the plant biomass as required and thereby

protein yield), purity (up to 99%), safety (production without any

contaminant interference and functionally safe in humans) and post-

translational modifications (N-glycosylation in engineered tobacco

plants, which prokaryotic host system lacks). These advantages can be

briefed with an example each using N. benthamiana transient

expression host system. SARS-CoV2 RBD (Receptor binding
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domain) Fc fusion vaccine candidate was expressed in

N. benthamiana and was extracted 4 days post infiltration which

gave an yield of 25 µg/g FW (Siriwattananon et al., 2021). Alam et al.

(2018) were able to produce antiviral compound Griffithsin at 99%

purity from tobacco plant. TwomAb isotypes, 4H2 IgG and 4H2 IgM

antibodies against Coccidioides CTS1 (Valley Fever) antigen were

expressed in N. benthamiana plants showing homogenous N-

glycosylation profile with a dominant GnGn/GnM structure, highly

similar to mammals. Techno-economic analysis by McNulty et al.

(2020) of N. benthamiana-based recombinant protein production

reveals that the plant can produce up to 4 g of protein per kg FW (g/

kg FW) with the yield up to 300 kg of recombinant protein per year

through transient expression.
3 Systems engineering approaches to
produce recombinant
biopharmaceuticals in plants

Plant-based biologics have emerged as a promising alternative

for therapeutics production due to their low-cost and scalable

nature. This is critical for meeting the demand for immunizations

during pandemics. Production of recombinant therapeutics in

plants can be achieved by either stable or transient expression.

Stable expression systems are developed by nuclear transformation

or chloroplast transformation through Agrobacterium-mediated or

biolistic gene transfer (Gelvin, 2003; Tien et al., 2019; Bolaños-

Martıńez et al., 2020; Heenatigala et al., 2020; Kumar and Ling,

2021). Meanwhile, transient expression systems are developed by

plant virus-based vectors or agroinfiltration. Stable expression
FIGURE 1

Overview of AI integration in plant molecular pharming pipeline.
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systems possess advantages including scale-up, low storage costs,

glycosylation patterns and reduced cross contamination of animal-

borne agents; Transient expression systems are known for their

rapid, cost-effective, increased protein accumulation and

commercialization potential (Moon et al., 2019). Transient

expression of recombinant biopharmaceuticals in plant system is

the most preferred mode of production since the system

accumulates large quantities of proteins quickly. Different

immunogens and therapeutic agents have been produced through

transient expression in leaves by agroinfiltration (Iyappan et al.,

2018; Page et al., 2019; Rattanapisit et al., 2020).

Proteins reach functional state by proper folding, disulphide

bond formation, subunit assembly and post-translational

modifications. Prokaryotic host systems pose limitations such as

lack of post-translational modifications (glycosylation and

sialylation), signal peptide cleavage and pro-peptide processing

(Gomord and Faye, 2004). Glycosylation is the most prevalent

and diverse type of post-translational modification of proteins

shared by all eukaryotic cells. A complex metabolic network and

many glycosylation pathways are used during the enzymatic

glycosylation of proteins to produce a wide variety of proteoforms

(Schjoldager et al., 2020). For instance in humans, N-

acetylglucosaminyl transferases IV and V present in Golgi

functions in galactosylation, branch elongation and sialic acid

capping, which is not found in plants (Strasser, 2022; Strasser,

2023). In order to produce therapeutic proteins of interest in plant

with desired glycosylation pattern, b-1,4 galactosyl transferase co-

expression and sub-cellular localization to Golgi is preferred

(Navarre et al., 2017; Strasser, 2022). Recombinant glycoproteins

produced in plants have residues of a1,3-fucose and b1,2-xylose
linked to the same core N-glycan. These two sugar residues could be

immunogenic since they are absent in human glycoproteins

(Margolin et al., 2020a). In Arabidopsis, tobacco, and rice,

multiplex CRISPR-Cas9 technology was used to knock out two

glycosyl transferases, b1,2-xylosyltransferase and a1,3-
fucosyltransferase, in order to humanize glycosylation patterns in

plants and produced biopharmaceuticals. The results demonstrate

that complete suppression of these two sugar residues was reported

in Arabidopsis and tobacco, while the presence of Lewis structure in

rice shows that the glycosylation pattern differs between dicots like

Arabidopsis and tobacco and monocots like rice (Jansing et al.,

2019; Jung et al., 2021). Many therapeutic proteins that are

glycosylated need to be sialylated ultimately to fully activate their

biological functions, however plants are not capable of N-glycan

sialylation, in contrast to mammals. The ability to perform N-

glycan sialylation is much sought after in the plant-based

biopharmaceutical industry since sialic acids are a frequent

terminal alteration on human N-glycans. Plants can be

engineered across a2,6-sialylation or a2,3-sialylation pathways

that showed active IgG with anti-inflammatory properties and

increased pharmacokinetic activity of therapeutics produced in

plants (Strasser, 2023). N-glycan sialylation is highly desirable due

to its function in extended half-life, stability, solubility, and receptor

binding (Bohlender et al., 2020; Chia et al., 2023). A whole

mammalian biosynthetic pathway, including the coordinated

expression of the genes for (i) biosynthesis, (ii) activation, (iii)
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transport, and (iv) transfer of Neu5Ac to terminal galactose, has

been introduced into N. benthamiana in order to achieve in planta

protein sialylation (Izadi et al., 2023).

Recombinant biologics expressed in plants are designed as

fusion proteins to contain an N-terminal or C-terminal tag (His,

FLAG, HA, CBM3 etc.) for easy purification and analysis.

Immobilized metal-ion affinity chromatography is widely used for

purification of hexahistidine tagged proteins (Vafaee and Alizadeh,

2018; Islam et al., 2019; Hanittinan et al., 2020; Islam et al., 2020;

Marques et al., 2020; Soni et al., 2022). Other techniques such as

one-step cation-exchange chromatography, Protein G-/A-based

affinity chromatography, diafiltration (antibody purification) and

polyelectrolyte precipitation (removal of plant proteins),

hydrophobic interaction chromatography (HIC) followed by

hydrophobic charge induction chromatography (HCIC) are

employed in recombinant plant protein purification (Fulton et al.,

2015; Park et al., 2015; Shi et al., 2019; Miura et al., 2020; Lim et al.,

2022; Grandits et al., 2023).
4 AI-based ML algorithms in
recombinant protein production

Gene designing and genetic engineering are key tools in

molecular pharming, which enable the expression of protein of

interest in host system, and development of genetically modified

organisms with desirable traits. The design of gene and its

expression cassette is the first step in getting desired protein in

the plant system (Rozov and Deineko, 2019). Proper designing

plays a major role in the production of biologics that includes

selection of host system, codon optimization, regulatory

components associated with foreign gene, host engineering, mode

of expression, and purification of biopharmaceuticals (Webster

et al., 2017; Peyret et al., 2019; Belcher et al., 2020; Sainsbury,

2020; Hassan et al., 2021; Vazquez-Vilar et al., 2023). AI-based ML

algorithms are proven choice for cost-cutting and efficient designing

of product manufacturing in different host systems. Few of the

competent network models were built on Convolutional Neural

Networks (CNNs), a DL architecture inspired from connectivity

patterns of animal visual cortex to identify, locate and differentiate

objects in any image (Barré et al., 2017). Different AI-based ML and

DL algorithms have been developed to increase the recombinant

biopharmaceutical production in the hosts by detecting, analyzing

and optimizing the conditions such as screening and candidate

selection, vector construction, codon optimization, protein

modelling and design, growth condition optimization and protein

solubilization and purification. A model architecture of CNN is

shown in Figure 2.
4.1 AI in codon optimization

Introduction of native genes into alternate host system causes

incompatibility in codon usage bias, sequence repeats, % of GC,

negative cis-regulatory elements and Shine-Dalgarno sequence

(Tuan-Anh et al., 2017; Constant et al., 2023; Jain et al., 2023).
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Codon bias affects the expression of transgene in the host plant

which result in stopping at disfavored codons, truncation,

misincorporation or frameshift. Site directed mutagenesis can

resolve these problems by introducing silent mutations in coding

region of the transgene and help the host species read transgene

codon without any hindrance (Ma et al., 2003). Heterologous

expression of recombinant proteins in different hosts needs

optimization of coding sequences with synonymous codons as the

host systems tend to remove heterologous proteins through

proteolysis. Further, codon optimization renders the recombinant

protein with structural and functional conformation at increased

levels of expression in different host systems (Al-Hawash et al.,

2017; Argentinian AntiCovid Consortium, 2020; Ding et al., 2022).

The codon optimization percentage is proportional to the level of

recombinant transgene expression. The amount of expression of the

four variants of the bar gene with varying percentages of optimized

codons was examined using experimental and in silicomethods, and

it was found that genes with 50–70% of optimized codons were

expressed effectively in N. tabacum (Agarwal et al., 2019). Beta-

defensin from chicken called chicken b Gallinacin-3 has

demonstrated broad-spectrum antibacterial action against plant

infections. Using DNAWORKS3.0 and the Genscript Rare Codon

Analysis Tool, chicken b Gallinacin-3 gene sequences were codon

optimized and tested. The results demonstrated constitutive

expression in Medicago sativa and improved antibacterial activity

against E. coli, S. aureus, and Salmonella typhi (Jin et al., 2022).

Despite species difference, the codon optimizer program improved

translation efficiency in tobacco and lettuce by using codon usage

hierarchy of the psbA gene (Kwon et al., 2016). Adiponectin, an

adipokine and a cell signaling protein, is produced as a secretory

protein in Withania somnifera hairy root culture. Codon usage

data, base composition and codon adaptive index (CAI) of W.

somnifera were analyzed; the human adiponectin gene sequence

was optimized and expressed as secretory product. Optimization of

codons increased the expression levels of protein secretion

(Dehdashti et al., 2020). The synthesis and expression of

therapeutic proteins depend heavily on codon optimization.

Effective methods are required to efficiently optimize codons for

the generation of recombinant proteins in plants (Webster et al.,
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2017). Codon usage bias was utilized to optimize nucleotide

sequences for host-specific expression in many systems including

E. coli, Chinese Hamster Ovary (CHO) cells, HEK293, etc (Al-

Hawash et al., 2017; Shayesteh et al., 2020; Lu et al., 2021). Till date,

no AI tool has been designed to optimize codons for increasing the

plant-based recombinant biologics production. The challenges

posed by conventional methods include a vast possibility of

codon combinations, irrational effects following transcription and

translation, protein misfolding and loss of function (Constant

et al., 2023).

Neural network (NN) models identify unexplored patterns in

the native DNA sequences from the training set, predicts the most

valid coding sequences using the test set and optimize DNA

sequence for translation. The NN-optimization is found to be

more efficient than conventional methods resulting in

significantly higher yields of recombinant biologics (Goulet et al.,

2023). Many sequence-based ML algorithms using deep neural

networks (DNN) extract features from input codon data, predict

and evaluate sequence data. Two major parameters that play a

crucial role in codon optimization are 1) codon adaptation index

(CAI) and 2) tRNA adaptation index (tAI). CAI is the frequency of

codon usage in an organism’s coding DNA sequence (CDS) and tAI

is the measure of intracellular tRNA to translate into proteins and

individual codon-anticodon pairing efficiency (Sabi et al., 2017;

Tuan-Anh et al., 2017; Fu et al., 2020; Constant et al., 2023; Goulet

et al., 2023). A Recurrent Neural Network (RNN) model trained

sequence was tested for its efficiency by transient transfection of

unoptimized and optimized sequences in CHO (ExpiCHO) cells.

The titres of model protein, human programmed death ligand 1

(PD-L1) extracellular domain, were quantitated nine days after

transfection. The RNN-optimized sequence was expressed largely

(179.5 ± 12.4 mg/mL) than the native sequence (104.5 ± 5.7 mg/mL).

The RNN model was used in optimization of mAb and stable

integration of mAb CDS in CHO-K1-derived cells. The RNN-

optimization of CDS yielded 2030 mg/mL and the unoptimized

sequence resulted in an yield of 960 mg/mL (Goulet et al., 2023).

Influence of AI in bacterial expression system is more than any

other eukaryotic systems and so codon optimization was widely

carried out through ML-based models. Tuan-Anh et al. (2017) used
FIGURE 2

An illustration of input characteristics recognition using CNN. The input spatial features pass through multiple convolutional and pooling layers;
processed data is received at a fully connected layer. The convolutional layer applies filters to extract features from input, pooling layer
downsamples the features in order to reduce computation and fully connected layer makes the final prediction to result the output.
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neural network with CAI and GC content for optimizing codons

expressing prochymosin, the chymosin-precursor in E. coli system.

Codon optimization could preferably not just used for increasing

heterologous recombinant expression, but also for increasing the

protein solubility. MPEPE, a newly developed protein solubility

prediction DNN model was built using convolution layers, pooling

layers and long-short term memory (LSTM) layers. The

architecture was built as embedded matrix, through ‘one-hot

encoding’ technique using integers ‘1’ and ‘0’, to include

synonymous codons of individual amino acids. Point mutation in

sites was scrutinized through evolutionary analysis without

interfering the protein function. The target nucleotides for

expression studies were used as inputs in MPEPE for virtual

screening and recombinant proteins were expressed in E. coli

BL21 (DE3) cells with an increased level of soluble protein

expression (Ding et al., 2022). Bidirectional LSTM Conditional

Random Field (BiLSTM-CRF) model is a codon optimization

model built for E. coli by H. Fu et al. (2020). The model converts

codon optimization to sequence annotation and trains the data of E.

coli gene set through word-embedding vector. The multivalent

Plasmodium falciparum vaccine antigen FALVAC-1 and PTP4A3,

a prognostic cancer biomarker optimized by BiLSTM-CRF were

expressed in E. coli BL21 (DE3). The model efficiently optimized the

low-expression candidate to higher expression levels, which proved

the robustness of the model and the high expression candidate

PTP4A3 was expressed in similar levels which proved the stability

of algorithm. Jain et al. (2023) designed ICOR (Improving Codon

Optimization with RNNs), a DL tool, built on BiLSTM architecture

through ‘one-hot encoding’ method, with a large non-redundant

dataset of E. coli genomes and upon correlation comparison with

the mRNA expression in real-time based on a work by dos Reis et al.

(2003), the improvement in expression observed was about 236%.

The multilayer network model may be trained for other host

systems including model plants (such as N. benthamiana or N.

tabacum) as shown in Figure 3 with complete omics dataset through

transfer learning approach to increase the yield. CO-BERTa, a deep

contextual language model was trained with GFP (Green

Fluorescent Prote in) and ant i-HER2 VHH CDSs on

Enterobacterales dataset for functional protein measurement. The

mCherry reporter protein which showed 28.7% pairwise identity to

GFP and anti-SARS-CoV2 VHH which showed 73.7% pairwise

identity to anti-HER2 VHH was chosen to test the model. These

proteins differ in their length but share similar structural features, a

major feature being b-barrel. ACE (Activity-specific Cell

Enrichment) measurement of CO-BERTa codon optimized

proteins in SoluPro™ E. coli B strain showed highest expression

levels than commercial algorithms (except Genewiz, p<0.05)

(Constant et al., 2023). Further, genome analysis and codon usage

patterns of plant host systems through artificial neural networks

(ANNs) could significantly increase the expression of recombinant

biologics (Doyle et al., 2016).

Quantum computers can be used to optimize codons for high

expression of proteins. Quantum Annealing (QA) algorithm uses

quantum computers to give high-dimensional combinatorial

optimization of codons using Binary Quadratic Model (BQM)

built on ‘one-hot encoding’ technique. mRNA codons of peptide
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fragments and full length proteins of SARS-CoV2 spike

glycoprotein were optimized using Quantum Approximate

Optimization Algorithm (QAOA) (Fox et al., 2021).

Currently, there are no ML-based algorithms available for

codon optimization of recombinant proteins to express in plants.

The algorithms available for other host systems could be adapted,

remodelled and designed for plant-based expression hosts since

many of the model plants’ genome is available publicly.
4.2 AI in protein modelling and design

The recombinant proteins expressed in different systems are

influenced majorly by factors including structure, solubility,

catalytic activity, protein folding and stability. Vector and gene of

interest is designed to overcome the challenges of recombinant

protein expression. The components of protein modelling include

host and expression vector selection, promoter, selectable marker,

fusion tags. ML based algorithms enhance the expression and

overcome the challenges in expression of recombinant biologics in

multiple expression systems. These algorithms analyses and tests

(either nucleotides – CDS/RNA-seq or amino acids) sequences and

provides with the fitness of protein variants (Wittmann et al., 2021).

FewMLmodels utilize structure along with sequences of amino acids

for modelling of proteins. The RNNs and other neural network

models are powerful than other ML models since these could learn

from raw data directly without any sequence alignment and heuristic

scoring (Deep RNN for Protein Function Prediction from Sequence).

While molecular dynamics simulations for an antibody through

supercomputers require hours and even days, neural networks such

as CNN models take only seconds to get the work done in personal

computers (Lai, 2022). Regulatory elements are one of the key

components of recombinant protein production and synthetic

promoters have been designed using ML models to increase the

transcription efficiency. Highly functional Synthetic Promoters with

Enhanced Cell-State Specificity (SPECS) were identified from a

library of 6107 promoters using multiple ML regression algorithms,

from which a generalized linear model with elastic net regularization

(GLMNET) was chosen as the efficient model to predict highly active

promoters. The spatiotemporal activity of each promoter was

analyzed by expression of fluorescent protein in HEK-293T cells

(Wu et al., 2019). In the work by Vo ngoc et al. (2020), human PolII

core promoter was analyzed to create HARPE (high-throughput

analysis of randomized promoter elements). The HARPE training

dataset included 200,000 variants of promoter sequences and

downstream core promoter region (DPR) models were generated

by support vector regression (SVR) algorithm and tested in vitro and

in HeLa cells. Designing protein includes predicting counterparts,

which are involved in structural integrity and stability of proteins

(Masson et al., 2022). These include epitope prediction, vaccine

designing and remote homology detection, which utilize parts of

the protein molecule to increase its activity (Mettu et al., 2016; Moss

et al., 2019; Yang et al., 2021b; Kosa̧loğlu-Yalçın et al., 2022; Routray

et al., 2022).

Using DeepLoc, a deep convolutional network Kraus et al.

(2017) showed improved performance over traditional approaches
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in the automated classification of protein subcellular localization in

yeast cells. Organelle targeting and sub-cellular localization

increases the recombinant therapeutic protein expression in

plants to higher levels. Localization of recombinant proteins in

cytosol and different plant organelles such as nucleus, chloroplast,

mitochondria and endoplasmic reticulum (ER) of plant tissues such

as seeds and leaves are useful in increased accumulation and

stability of expressed proteins (Vafaee and Alizadeh, 2018; Arcalis

et al., 2019; Bidarigh fard et al., 2019; Islam et al., 2019; Shi et al.,

2019; Hanittinan et al., 2020; Islam et al., 2020; Li et al., 2022b; Lim

et al., 2022). Signal sequences are added to N-terminus or C-

terminus of the biologics to increase the yield and a C-terminal
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ER retention signal is the most widely used strategy to accumulate

higher amount of proteins in recombinant expression. Sahu et al.

(2021) developed a tool, Plant-mSubP, based on integrated ML

approaches with SVM as the model to predict localization of

proteins to single and dual organelle targets.

Analysis of the enriched bococizumab yeast cell libraries along

with similar library for antibody affinity was done using an ML

model, which enabled the identification of rare variants with co-

optimized levels of low self-association and high affinity (Makowski

et al., 2022). Similarly, mAbs can be screened and optimized for

production in specific host systems that could include plants as well

(Feng et al., 2022a; Lai, 2022). Proteins such as toxins which are
FIGURE 3

An overview of CNN and BiLSTM in codon optimization for plant expression system. Input DNA sequence is translated to amino acid sequence and
reverse translated to DNA sequence. The sequence is further tested using CNN for codon optimization metrics prediction for plant expression
system and BiLSTM tests with synonymous codons for optimal codon usage for high expression in plant system.
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difficult to produce in certain hosts can be expressed easily using

deep-learning based CNN algorithms (Pan et al., 2020). A wide

range of ML algorithms used in various eukaryotic and prokaryotic

systems for modelling different proteins is shown in Table 1.
4.3 ML models in engineering strains for
recombinant protein production

A large repertoire of omics data is obtained from the host

system at different levels of replication (genome), transcription

(transcriptome), translation (proteome), and regulation

(metabolome). These data can be used to engineer host cells to

improve recombinant protein yield (Ramzi et al., 2020; Samoudi

et al., 2021). ML algorithms can be implemented in understanding
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the genome-scale metabolic models (GEMs), which encompasses

hundreds of metabolic pathways and thousands of metabolic

reactions. ML can be a stand-alone or a complementary

approach, in learning regulatory levels of complex pathways in

plants such as transcriptional, translational and allosteric

regulation. These ML algorithms are shown to exhibit more

robustness than statistical tools (Radivojević et al., 2020; Zhang

et al., 2020; Strain et al., 2023).

Multilayer Perceptron (MLP), an NNmodel was used to analyse

the human RNA-seq data from ARCHS4 database based on

secretory index (SI) and extrapolated to engineer CHO cells

(Zaragoza, 2022). In order to predict yeast cell growth Culley

et al. (2020) proposed ML–based data integration techniques,

combining gene expression profiles that rigorously assess and

compare with computationally generated metabolic flux. A total
TABLE 1 AI in protein modelling and design.

Component Name of
the

program

Type of ML
algorithm

Architecture Function/
Parameter

Model system/
training dataset

References

mRNA

APARENT
(APA
REgressionNeT)

CNN
One-hot encoded matrix
system with two
convolutional layers

• mRNA isoform prediction
and polyadenylation within
+10 to +35 nt downstream of
6-base central sequence
element (CSE)
• cleavage site prediction
across polyA signal

HEK293
Bogard et al.
(2019)

6-mer Logistic
Regression
Baseline

Linear logistic
regression

One-hot encoded matrix
system with 6-mer counts

• mRNA isoform prediction
and polyadenylation
• cleavage site prediction

mRNA, gene
enhancers and
protein

DEN (Deep
Exploration
Network)

Deep
Convolutional
Generative
Adversarial
Networks (DC-
GANs)

One-hot encoded matrix
Latent Seed
Sequence Tensor

• polyadenylation signals
conformed to mRNA
isoforms and 3’ cleavage sites
• differential splicing
• maximum transcriptional
activation of gene enhancers
• functional variants of GFP
(Green Fluorescent Protein)

HEK293
HeLa
MCF7
CHO

Linder et al.
(2020)

APARENT CNN

- GP regression

APA VAE
(Variational
Autoencoder)

Residual Neural
Network (ResNet)

KL-bounded
DEN

CNN

Gene interaction
and expression

scCapsNet DNN Capsule Neural Network

Discovery of gene
interactions; closely related in
function but presenting
differential gene expression
pattern in single cell types
(based on transcriptome
analysis)

scRNA-seq dataset
including mouse
retinal bipolar
(mRBC) cells and
human peripheral
blood mononuclear
cells (hPBMC)

Wang et al.
(2020)

Transcription
factor

Independent
Component
Analysis (ICA)

Unsupervised ML -

Gene expression and
transcriptional regulation in
E. coli through transcriptome
analysis

E. coli K12 RNA-seq
expression profiles

Sastry et al.
(2019)

Transcription
factor binding

FactorNet
Convolutional
RNN

One hot encoded 4-row
bit matrix, LSTM

Transcription Factor (TF) cell
type specific binding site
prediction. (Eg.TF E2F1

DNase-seq, ChIp-seq
and RNA-seq data of
chromosomes X and

Quang and Xie
(2019)

(Continued)
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TABLE 1 Continued

Component Name of
the

program

Type of ML
algorithm

Architecture Function/
Parameter

Model system/
training dataset

References

binding to GM12878 and
HeLa-S3)

1-22 from ENCODE-
DREAM challenge

Promoters
Hybrid
biophysical-ML
approach

Ridge regression
model

-

• Synthetic promoter
designing
• Identification of -35 and
-10 motifs and optimal
spacer length

E. coli
LaFleur et al.
(2022)

Synthetic
promoter

DL model Deep CNN
Transformer model with
BiLSTM

Design regulatory sequences
including orthologous
promoters

RNA-seq data from S.
cerevisiae and 10 other
Ascomycota species

Vaishnav et al.
(2022)

Protein DeepRHD DNN
CNN based bidirectional
GRU (Gated Recurrent
Units)

Remote homology prediction
of protein sequences using
physico chemical properties
and evolutionary information

SCOP1.67 dataset
Routray et al.
(2022)

Protein ProtT5

pLM (protein
language models)
Logistic
Regression

Attention based deep
dilated residual networks
consisting of convolution
layers (ResNet CNN)

Protein (transmembrane beta
barrel proteins – OmpX and
variants) structure prediction
from sequences

High resolution
protein 3D structure
dataset from
ProteinNet12

Weissenow
et al. (2022)

Protein ML model

Linear regression
models including
glmnet, partial
least squares,
averaged neural
network, SVM
with radial basis
function kernel,
stochastic gradient
boosting, boosted
generalized linear
model, random
forest, cubist and
naïve Bayes
models

Caret package in R

Factors influencing
recombinant protein stability
including Molecular weight,
cysteine residues and N-
linked glycosylation

CHO cells expressing
human secretome

Masson et al.
(2022)

Protein ASPIRER DL model
XGBoost and N-terminal
sequence-based CNN

Prediction of Non-classical
secreted proteins (NCSPs)

Gram positive bacteria
NCSPs dataset from
UniProt

Wang et al.
(2022)

Protein eUniRep DL NN
UniRep multiplicative
LSTM

Protein, avGFP and TEM-1
b-lactamase, engineering
(Low-N engineering) using
small number of functional
variants

E. coli DH5a
Biswas et al.
(2021)

Protein UniRep

SVM

RNN
Prediction of recombinant
gene expression and protein
solubility

B. subtilis
Martiny et al.
(2021)

LR

Random Forest
(RF)

ANN

Protein ECNet RNN
BiLSTM, Transformer
architecture with TAPE
integration

Protein fitness prediction
based on evolutionary
context, engineered TEM-1
b-lactamase variants showing
enhanced ampicillin
resistance

E. coli DH5a
Diverse large-scale
deep mutational
scanning (DMS)
datasets and random
mutagenesis datasets

Luo et al.
(2021)

Protein EPSOL
Keras based DL
model

Multidimensional
Embedding, multi-
convolutional-pooling

Protein solubility prediction
Heterologous
expressed E. coli
soluble and insoluble

Wu and Yu
(2021)

(Continued)
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TABLE 1 Continued

Component Name of
the

program

Type of ML
algorithm

Architecture Function/
Parameter

Model system/
training dataset

References

module and a Multi-layer
Perceptron (MLP)

protein dataset
compiled by
Smialowski et al.
(2012)

Protein DEEPred
Multi-layered
perceptrons
(MLPs)

Feed-forward multitask
DNN

Sequence/Gene Ontology
(GO) based functional
definition prediction of
proteins

Pseudomonas
aeruginosa strain
reference genome and
UniProtKB/Swiss-Prot
dataset

Sureyya
Rifaioglu et al.
(2019)

Protein ML models

GANs

Generator Neural
Network and
Discriminator Neural
Network

Prediction of Protein
solubility

eSol database dataset
Han et al.
(2019)

Logistic regression

Decision Tree

SVM

Naïve Bayes

Cforest

XGboost

ANNs

Protein DeepSol DL model

CNN, non-linear high-
dimensional k-mer vector
spaces, deep feed-forward
neural network (FFNN)

Protein solubility prediction

Heterologous
expressed E. coli
soluble and insoluble
protein dataset
compiled by
Smialowski et al.
(2012)

Khurana et al.
(2018)

Protein ML RNN
BiLSTM, One-hot
encoded matrix

Identification and function
prediction of protein
homologs including iron
sequestering proteins,
cytochrome P450, serine and
cysteine proteases and G-
Protein coupled receptors,
detection through
fluorescence (GFP)

E. coli Liu (2017)

Protein SPIDER2
Deep learning
neural network

Stacked sparse
autoencoder

Protein secondary structure,
solvent accessible surface
area, main chain torsion
angle prediction

Non-redundant high
resolution protein
structures dataset

Yang et al.
(2017)

Amyloidogenic
proteins

AbsoluRATE SVM Sequence-based regression
Aggregation kinetics
prediction of amyloidogenic
proteins

CPAD 2.0 database
dataset

Rawat et al.
(2021)

Antibody DeepAb

Deep residual
convolutional
network (Deep
RCN) with
Rosetta-based
protocol

RNN, BiLSTM, LSTM
Antibody Fv structure
prediction from sequence

Observed Antibody
Space (OAS) database,
SAbDab database

Ruffolo et al.
(2022)

Antibody DeepH3
Deep residual
network

One dimensional and two
dimensional convolutions

Prediction of de novo CDR
H3 loop structures

Rosetta and SAbDab
dataset

Ruffolo et al.
(2020)

mAbs solPredict

ESM1b-based
Multilayer
perceptron
(MLP2Layer)

Pretrained protein
language model
EMS1b embedding

• Rapid, large-scale high
throughput screening of mAb
sequences (IgG1, IgG2 and
IgG4) and quantitative
solubility prediction

HEK293/CHO
Feng et al.
(2022a)
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TABLE 1 Continued

Component Name of
the

program

Type of ML
algorithm

Architecture Function/
Parameter

Model system/
training dataset

References

transfer learning
model

eliminating precipitation in
Histidine pH 6.0 (H6) buffer
system
• Eliminates the need for
3D modelling

mAbs/IgG1

DeepSCM Scikit-learn

CNN architecture

Molecular dynamics
simulation to screen high
concentration antibody
viscosity prediction

SAbDab and AbYsis
database dataset

Lai (2022)
Keras v2.7.0 -

Multiepitope
vaccine

DeepVacPred DNN-V
Multi-layer CNN and a 4-
layer linear neural
network

Designing vaccine subunit
containing both T- and B-cell
epitopes of Spike
glycoprotein against SARS-
CoV2

E. coli K12
Yang et al.
(2021b)

T-cell Epitope

Antigen
eXpression
based Epitope
Likelihood-
Function
(AXEL-F)/
NetMHCpan
4.1 combination

- Neural networks

• Expression of source
antigen; T cell epitope
prediction and peptide
presentation to MHC Class I
molecule
• SARS-CoV2 epitope
prediction

IEDB HLA class I
ligands dataset;
RNA-Seq data of
HeLa cells;
SARS-CoV2
expression dataset
from Finkel et al.
(2021)

Kos ̧aloğlu-
Yalçın et al.
(2022)

T-cell Epitope - Epitope likelihood
Aggregate z-score,
structure-based processing
likelihood

P. aeruginosa endotoxin
domain III (PE-III) epitope
prediction

P. aeruginosa
Moss et al.
(2019)

T-cell Epitope - Epitope likelihood Aggregate z-score

CD4+ T-cell epitope
prediction in bacterial and
viral antigens without
genotype information
through antigen processing
constraint modelling

Sequence data from
different studies in
C57BL/6 mice, HLA-
DR4-transgenic mice
and humans

Mettu et al.
(2016)

Protein
localization

MULocDeep

Bayesian
optimization &
Attention
visualization

LSTM

Protein localization in
organelles such as nucleus,
mitochondria, plastid and
thylakoid and extracellular
matrix

Mitochondrial
proteome data of A.
thaliana cell cultures,
Solanum tuberosum
tubers, Vicia faba
roots

Jiang et al.
(2021)

Protein
localization

Plant-mSubP SVM OvR (One-vs.-Rest)

Single- and dual- organelle
targeting/subcellular
localization of proteins in
plants

Plant protein sequence
dataset from Uniprot
Database

Sahu et al.
(2021)

Cytokines and
peptides

ProtConv
Transfer learning
CNN

LSTM, ResNet and
Transformer with TAPE
embedding
LeNet-5 architecture

Function prediction of
proinflammatory cytokines
and anticancer peptides

IEDB and CancerPPD
database dataset

Sara et al.
(2021)

Peptide
FBGAN
(Feedback
GAN)

GANs
RNN and Feedback loop
training architecture

• Generation of synthetic
AMPs and a-helical peptide
coding genes
• Optimization of
secondary structure

Uniprot database
dataset

Gupta and Zou
(2018)

Peptide-MHC
Class I binding

CapsNet-MHC CNN Capsule Neural Network

Prediction of interaction
between allelic variants of
MHC and peptides with rare
sequence lengths

IEDB dataset
Kalemati et al.,
(2023)

Peptide-HLA
binding

DeepSeqPanII
Pan-specific DNN
with attention
mechanism

LSTM
Prediction of Peptide-HLA
Class II binding

IEDB datasets BD2013
and BD2016

Liu et al.
(2022b)
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of 1,143 S. cerevisiae mutants were tested and 27 machine learning

methods were analyzed.

ART (Automated Recommendation Tool) and EVOLVE

algorithm are ML-based Bayesian ensemble optimization tools

used in increasing the production of tryptophan in yeast, S.

cerevisiae. These ML algorithms were used to design 30 different

promoter combinations from the transcriptome dataset, which were

used to predict engineered strains to show increased productivity.

The engineered strain SP606 was found to possess higher synthesis

rate of proxy GFP than other strains designed using ML and library

preparation. Also, the engineered yeast strain SP606 was identified

to have an increased titre and productivity of tryptophan (Zhang

et al., 2020). ART was also trained with concentration dataset of

proteins/enzymes involved in heterologous pathway for the

production of limonene. New strain design sets of E. coli for

enhanced production of limonene were provided by ART

(Radivojević et al., 2020).

Similarly, supervised learning algorithms have predicted

pathway dynamics with the use of multiomics data (proteome

and metabolome data) in E. coli for enhancing limonene

production (Costello and Martin, 2018). In contrast, an

unsupervised ML approach termed as HybridFBA, was proposed
Frontiers in Plant Science 12
by Ramos et al. (2022) that combined GEM and metabolic flux

balance analysis (FBA) using principle component analysis (PCA)

in CHO cells (Strain et al., 2023). Machine Learning Predictions

Having Amplified Secretion (MaLPHAS) by Eden Bio Ltd is an ML

algorithm that predicted knock out of five genes, out of which

Component of Oligomeric Golgi Complex (cog6) knockout strain

resulted in doubled secretion of recombinant protein in the host

Komagataella phaffii (P. pastoris) compared with the bgs7

supersecretor strain (Markova et al., 2022).

DCell is a virtual eukaryotic cell composed of 2,526 subsystems

embedded as VNNs (visible neural networks), a deep ANN, in

hierarchy. The model was built using the hierarchical architecture

of subsystems of S. cerevisiae. Being trained on several million

genotypes, during simulation, DCell generates patterns of molecular

activities based on genotype to phenotype relationship (Ma et al.,

2018). DCell can identify gene deletions/knockouts using Gene

Ontology (GO), which will result in phenotype change (Ma et al.,

2018; Kim et al., 2020).

The ML algorithms and tools can be used to introduce or

remove genes from a pathway to direct the increased production of

humanized recombinant biologics in plant system. Knock-out

approach of removing plant-specific glycans [b(1,2)-Xyl and
TABLE 1 Continued

Component Name of
the

program

Type of ML
algorithm

Architecture Function/
Parameter

Model system/
training dataset

References

MHC Class II
Antigen
Presentation

NNAlign_MAC ANN
NNAlign_MA ML
framework

• CD4 T cell epitope
prediction
• MHC class II antigen
presentation prediction
• Prediction of protein-drug
immunogenicity

Single allele and
Multiple allele dataset
& IEDB dataset

Barra et al.
(2020)

Signal Peptide XGBoost Regression model -

Increasing the protein
translocation rates to ER by
optimizing synthetic signal
peptide-protein (mAb/ScFv)
complex formation

CHO-K1 cells
O’Neill et al.
(2023)

Signal peptide
Sequence-to-
sequence model

Attention-based
neural network

Transformer model

Signal peptide prediction
from Amylase, lipase,
protease and xylanase
enzymes

B. subtilis
Wu et al.
(2020)

Signal peptide SignalP 5.0 DL model

Non-linear PSSMs
(position specific scoring
matrix), BiLSTM and a
conditional random field

Peptide identification (three
classes including Sec/SPI, Sec/
SPII, Tat/SPI) in prokaryotes

Reference proteomes
of E. coli K12 and
S. cerevisiae

Almagro
Armenteros
et al. (2019)

Toxic motifs

ToxDL

Deep CNN

Bidirectional GRU, one-
hot encoded matrix

Toxicity assessment of
genetically engineered
organisms by highlighting
toxic motifs and alteration of
toxicity

Toxic/venom protein
dataset from Animal
Toxin Annotation
Project in UniProt

Pan et al.
(2020)

Domain2Vec Skip-gram model

NSAID
Ensemble
Decision Tree
(DT)

Extremely
Random Tree
(ET) Multiple base trees with

bagging strategy
Non-steroidal anti-
inflammatory drug,
Oxaprozin, solubility in
supercritical CO2 fluid

Oxaprozin solubility
dataset from
Khoshmaram et al.
(2021)

Alshehri et al.
(2022)

Random Forest
(RF)

Gradient Boosting
Sequence of base
predictors
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a(1,3)-Fuc] or knock-in strategy to express human [b(1,4)-Gal]and
addition of sialic acid residues in specific host plants result in

humanized protein expression. Such mechanisms could be explored

and analyzed through ML tools such as ART (Sethi et al., 2021).

Also, metabolic flux of host plant systems can be studied to generate

stable lines with optimized metabolic pathways for desired post

translational modifications of recombinant biologics.
4.4 Automation and AI in plant growth
monitoring and biomass production

One of the big attributes of plant molecular pharming for

recombinant biologics production, next to host selection and

engineering is plant growth and maintenance. Plants are efficient

biofactories for the manufacture of recombinant proteins and

growth monitoring is a vital aspect when it comes to both

laboratory scale and commercial production. Several automation

technologies including affordable sensors built on Raspberry Pi,

robotics and high-definition cameras work based on image

acquisition (Jahnke et al., 2016; Jolles, 2021; Banerjee et al., 2022;

Wan et al., 2022). The camera sensors have been deployed to

analyze the plant growth patterns, phenotypes such as plant

morphology, height, canopy, temperature, leaf biomass, leaf area

index, greenness, age and different stresses. Similarly, seed count,
Frontiers in Plant Science 13
shape, size and color, parameters for plant growth such as

temperature, photoperiod, grow light color, etc. were studied by

robot-assisted systems. A large training dataset of raw images

captured in the camera sensors are analyzed through DNN

modules and processed for color correction and segmentation for

analysis (Jahnke et al., 2016; Ubbens and Stavness, 2017; Tovar

et al., 2018; Zheng et al., 2019; Tausen et al., 2020; Bose and Hautop

Lund, 2022). The efficient analysis of images are carried out by

models based on CNNs that include U-Net, R-CNN and ResNet

(Ubbens and Stavness, 2017; Lin et al., 2019; Zheng et al., 2019;

Tausen et al., 2020; Bose and Hautop Lund, 2022). The IoT based

sensors and programs are not limited to phenotyping the growth

and morphology of plants but could detect plant nutrient

deficiencies, diseases and soil parameters, thereby reduce the

labor intensive maintenance and increase the sustainability

(Dhivya et al., 2021; Monteiro et al., 2021; Bose and Hautop

Lund, 2022). Plant monitoring and phenotyping using integrated

automation and ML approaches is illustrated in Figure 4.

With the wider and large-scale biologics production

environment, a large number of sensors in plant monitoring are

needed and it becomes highly difficult to build the architecture for

plant maintenance. Hence remote sensing using unmanned aerial

vehicles (UAVs) is used in place at low altitudes to acquire high-

resolution multispectral images of plants grown in agricultural field

and greenhouses. The UAV high-throughput phenotyping
B

C

D

E

A

FIGURE 4

An illustration of plant monitoring and phenotyping with the integration of automation and ML approaches. (A) and (B) N. benthamiana plants grown in
containment facility monitored continuously by image sensors; UAV deployed for plant monitoring in greenhouse; (C) Image acquisition of plant
phenotypes such as height, width, leaf greenness, disease identification, seed count, morphology and segregation; (D) Phenotyping of plants by CNN-
based ML model; (E) Robotic system for optimization and maintenance of environmental requirements for plant growth trained by CNN model.
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platform, working on support vector machine (SVM) and SVM-

derived models, processes the spectral information of optical images

for the identification of plant growth, biomass, stress and disease

stages (Maimaitijiang et al., 2020; Fu et al., 2021; Yang et al., 2021a;

Aslan et al., 2022; Jiang et al., 2022a; Bai et al., 2023a). Several plants

used as hosts in production of recombinant biopharmaceuticals

such as Glycine max (L.) Merr. (soybean), Triticum aestivum

(wheat), Hordeum vulgare (barley), Oryza sativa (rice), Zea mays

(maize), Arachis hypogaea L. (peanut), Arabidopsis thaliana

(Arabidopsis), Brassica napus (rapeseed), Lycopersicon esculentum

Mill. (Tomtato), Cucumis Linn. (cucumber), L. sativa Linn.

(lettuce), Brassica oleracea linn. (cabbage), Raphanus sativus linn.

(turnip), Apium graveliens Linn. (celery) and Spinacia oleracea

Linn. (spinach) and N. tabacum (tobacco) can be monitored

using the sensors for high product yield (Minervini et al., 2015;

Jahnke et al., 2016; Minervini et al., 2017; Ubbens and Stavness,

2017; Zheng et al., 2019; Maimaitijiang et al., 2020; Fu et al., 2021;

Sangjan et al., 2021; Sarkar et al., 2021; Yang et al., 2021a; Banerjee

et al., 2022; Bai et al., 2023a; Bai et al., 2023b; Sun et al., 2023). A

detailed list of automation and AI-based tools used in plant

monitoring is listed in Table 2. These technologies are not limited

to monitoring the mentioned plants but can be extended to all the

plant host systems used in expression of recombinant biologics.
4.5 ML approaches in cell suspension
cultures and bioreactors

Plant cell suspension cultures offer a unique platform for the

production of recombinant proteins due to their ability to perform

post-translational modifications similar to mammalian cells

(Gutierrez-valdes et al., 2020). Plant cell suspension cultures are

usually prepared from callus tissue in shaker flasks or fermenters to

form single cells and small aggregates and growing plant cells in a

liquid medium in a controlled environment, such as bioreactor,

where various factors like temperature, pH, and ratio of nutrient are

to be optimized for cell growth and protein production (Cardon

et al., 2019). Several proteins have been produced in bioreactor

using cell suspension cultures including ORF8, an accessory protein

of SARS-CoV2 in suspension cultured tobacco BY-2 cells (Imamura

et al., 2021), rrBChE, rice recombinant butyrylcholinesterase in rice

cell suspension culture (Macharoen et al., 2021), LBT-Syn protein in

carrot cell suspension culture (Carreño-Campos et al., 2022),

taliglucerase (ELELYSO), a recombinant version of human

glucocerebrosidase in carrot cell cultures (Mor, 2015) etc.

Large scale production of plant-expressed recombinant proteins

can be achieved by growing the transformed plant cell in different

bioreactor shapes, however, there are diverse problems to be

addressed such as pH of media, minerals, growth regulators, cell

density, gaseous atmosphere, agitation system and sterilization

conditions (Ruffoni et al., 2010).

Now-a-days AI techniques are increasingly being applied to

bioreactors, which are essential tools in bioprocessing for the

production of various biological products such as recombinant

proteins, vaccines, and biofuels. ML models can identify the

optimal operating conditions, such as temperature, pH, dissolved
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oxygen, and nutrient concentrations, to maximize product yield and

quality. By integrating with sensors, data acquisition systems and

control algorithms, AI models can analyze data in real time and

automatically adjust process parameter accordingly. AI can adapt

and adjust process parameters for optimal performance, reducing

the need for manual intervention.

Optimizing plant tissue culture media is a complicated and

time-consuming process, which is influenced by genotype, mineral

nutrients, plant growth regulators, vitamins and other factors. ML

approaches such as multilayer perceptron neural network

(MLPNN), k-nearest neighbors (KNN) and gene expression

programming (GEP) were used for developing prediction models

in optimizing plant tissue culture media composition (Hosseini

et al., 2022). In another work, three ANN models: CIPnet, CWnet

and DCnet were developed to predict the best media composition

for callus weight (CW), callus induction percentage (CIP) and days

to callus initiation (DC). The performance was satisfactory and

showed the R2 values of 0.95, 0.95 and 0.88 for CIPnet, CW, and

DCnet respectively (Munasinghe et al., 2020). The formation of

foam in bioreactor is another major issue in pharmaceutical

industry and creates operational issues. To address the issue in

bioreactor, a CNN-based model was developed for the real-time

identification of foam formation (Austerjost et al., 2021). Cell

proliferation could be monitored through ML based algorithms.

An ML model was trained for monitoring insect cell proliferation

and viability percentage upon baculovirus infection in the

bioreactor (Altenburg et al., 2023).

ANN based ML algorithm was used to control the micro-aerobic

conditions to achieve a satisfactory product yield. Metabolic flux-

based control strategy technique (SUPERSYS_MCU) was used to

address the issue. To generate a surrogate model in the form of an

ANN, the control strategy used simulations of a genome-scale

metabolic model. The meta-model provided setpoints to the

controller, allowing adjustment of the inlet airflow to control

oxygen uptake rate (Zangirolami et al., 2021). Application of ANN

models in predicting the system performance of osmotic membrane

bioreactors (OMBRs) was investigated and such models developed

showed good performance for the prediction of water flux and

membrane fouling simulations (Viet and Jang, 2021).

Deep learning techniques in a hybrid semi metric modelling

contest, such as deep feed forward neural network with varying

depths, the rectified linear unit (ReLU) activation function, dropout

regularization of network weights, and stochastic training with the

ADAMmethod were explored (Mestre et al., 2022). Performance of

ML algorithms was analyzed to predict n-caproate and n-caprylate

productivities in bacteria using 16S rRNA amplicons in a

bioreactor. The bioreactor performance was analyzed

quantitatively and accurately from the dataset generated from

different bioreactors. ML models were trained independently and

tested with 16S rRNA amplicon sequencing data to predict n-

caproate and n-caprylate productivities. The tests concluded that

random forest was the best algorithm producing more consistent

results with low error rate and more than 90% accuracy in the

prediction of n-caproate and n-caprylate (Liu et al., 2022a). To

predict the accuracy of real-time liquid level four ML algorithms,

multiple linear regression (MLR), artificial neural network (ANN),
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random forest (RF), and support vector machine (SVM) with radial

basis kernel were analyzed and found that ANN and RF models

performed well (Yu et al., 2022).

4.6 AI in downstream processing

The market demand of biopharmaceutical products is

constantly increasing every year and there is an increasing

pressure on price reduction for global access to biological drugs.

In order to meet the market demand, significant improvement has

been carried out in upstream processes, however the productivity in

downstream has not increased accordingly (Ötes et al., 2017). The

most challenging phase of therapeutic protein production in

industries is the downstream processing (DSP) and DSP is

accounting for a large portion of the total production costs. The

growing demand and developments in upstream processing of

therapeutics have burdened the downstream purification
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processes, due to high cost and insufficient processing capacity (Li

et al., 2019). DSP of recombinant therapeutic proteins involves a

series of operation such as filtration, followed by capture,

purification, and polishing steps mainly done by chromatography

(Gaughan, 2016). Chromatography is considered as the workhorse

of DSP because it can selectively enrich the target proteins while

eliminating impurities and this is achieved by exploiting differences

in molecular properties, such as size, charge and hydrophobicity

(Bernau et al., 2022). The development of product specific

chromatography-based purification techniques is time consuming

and expensive because target proteins make up a small portion of

the total protein in the initial plant extract. To address this issue,

Buyel and Fischer (2014) created a general downstream procedure

for the purification of recombinant proteins produced in plants

with diverse features. This was done by concentrating on the resin’s

ability to bind tobacco host cell proteins (HCPs) under various

conditions such as pH and conductivity.
TABLE 2 Automation and AI Tools in plant monitoring.

Platform Automation
Technology

Imaging Device Phenotype/
Parameter

Plant Species References

UAV remote sensing
Multirotor UAV with
CNN architecture

XIMEAMQ022MG-CM
Camerawith CMOS
sensor and 16 mm lens
and Sony NEX-7 Camera

Disease severity at 25m
altitude

O. sativa (rice) Bai et al. (2023a)

High throughput UAV
remote sensing

DJI Phantom 4 Advanced
quadcopter

Drone RGB camera

Accurate plant count,
location and size
determination to
distinguish in paddy field
at 7m altitude

O. sativa(rice) Bai et al. (2023b)

RiceNet Deep Learning Network

Edge-computing based
network monitoring

IoT monitoring with deep
learning algorithm-based
Edge Image Processing
Architecture

Raspberry Pi Camera with
5MP sensor

• Plant growth
• Environment and
Water quality

- Wan et al. (2022)

GrowBot
Robotic system with U-
Net: CNN

OV5647 CMOS image
sensor with Raspberry Pi4

Plant growth based on
nutrient deficiency and
temperature stress

Ocimum basilicum
(basil)

Bose and Hautop Lund
(2022)

AscTec Navigator 3.4.5 UAV with built-in GPS AscTec Falcon 8
octocopter (Ascending
technologies, Germany)
Sony a6000 24.3 MP
camera with 20mm f/2.8
lens

• Leaf Area Index at
20m altitude
• Leaf/biomass growth
• Vegetation indices
• Chlorophyll index

A. hypogaea L.
(peanut)

Sarkar et al. (2021)
WEKA (Waikato
Environment for
Knowledge Analysis)
software v3.8.4

ANN

WOFOST UAV imaging integration -
Leaf area index (LAI),
biomass, yield

T. aestivum
(winter wheat)

Yang et al. (2021a)

Hyperspectral Reflectance
MLP, SVM and RF with
remote sensing

UniSpec-DC Spectral
Analysis System (PP
Systems International
Inc., USA)

• Biomass yield
• Plant growth and
development stages

G. max
(soybean)

Yoosefzadeh-Najafabadi
et al. (2021)

Greenotyper U-Net: CNNs
RPi3 Model B with RPi
Camera module v2.1

• Plant area
• Greenness
• Overlapping growth
patterns

Trifolium repens
(white clover)

Tausen et al. (2020)

Keras
U-Net based CNN
segmentation model

2592 x 1944 x 3
resolution camera (5 MP)

Powdery mildew disease
detection

Cucumis sativus
(cucumber)

Lin et al. (2019)

(Continued)
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TABLE 2 Continued

Platform Automation
Technology

Imaging Device Phenotype/
Parameter

Plant Species References

CropDeep
RetNet with ResNet50
CNN

IoT cameras,
Autonomous Spray
robots, Autonomous
Picking Robots,
Mobicamera and
Smartphone camera

• Precision farming
• Plant identification,
growth and location
• Different plant variety
monitoring
• Fruit and vegetable
health status

25 plant varieties
including L. sativa
Linn. (lettuce), A.
graveliens Linn.
(celery), Cucumis
Linn. (cucumber), B.
oleracea Linn.
(cabbage), S. oleracea
Linn. (spinach), L.
esculentum Mill.
(tomato), R. sativus
Linn. (turnip)

Zheng et al. (2019)

Alexnet
CNN-Long-Short Term
Memories (LSTM)
architecture

Canon EOS 650D
Plant growth pattern of
different genotypes

A. thaliana
Taghavi Namin et al.
(2018)

Persistent Homology
based topological methods

DIRT (Digital Imaging of
Root Traits)
Gaussian kernel density
estimator
Elliptical Fourier
descriptors

-

• Leaf shape, serrations
and root architecture
• Discrimination
between genotypes

Solanum pennellii
(wild tomato)

Li et al. (2018)

PlantCV U-Net based CNN

Raspberry Pi Camera
Plant convex hull, width
and length

A. thaliana

Tovar et al. (2018)
Nikon COOLPIX L830
Camera

Seed size, shape, count
and color

Chenopodium quinoa
Willd. (Quinoa)

LeafNet
Caffe framework based
Deep Learning CNN

LeafSnap, Flavia and
Foliage dataset images
using Mobile cameras
(iPhones mostly)

Species identification
through leaf features like
edges and venations

LeafSnap, Flavia and
Foliage dataset

Barré et al. (2017)

Deep Plant Phenomics
(DPP)

Deep CNN with PlantCV
module

Canon PowerShot
SD1000 7 MP camera,
Model B with Raspberry
Pi 5 MP camera module

Leaf size, shape and leaf
count

A. thaliana
N. tabacum
(tobacco)

Ubbens and Stavness
(2017)
Minervini et al. (2015)

phenoSeeder
KR 10 scara R600-Z300
robot (KUKA Roboter
GmbH, Germany)

Oscar F-810C Camera
(Allied-Vision
Technologies, GmbH,
Germany)

Seed projected area,
length, width and color

B. napus (rapeseed),
H. vulgare (barley)
and A. thaliana

Jahnke et al. (2016)
Grasshopper GRAS-
50S5M-C Camera (Point
Grey, Canada) with
35mm lens

Seed volume

UAV remote sensing
SAMPLINGTSPN

UAV and
GPML (Gausian Processes
for Machine Learning)
Toolbox

MikroKopter, Hexa XL
with Multispectral
Tetracam Camera

Nitrogen level prediction
at 30m altitude

Z. mays (maize) Tokekar et al. (2016)

DIRT (Digital Imaging of
Root Traits)

- -
Root angles (top and
bottom), stem diameter,
width of root system

Z. mays (maize) Das et al. (2015)

GARNICS
Robotic system with ML-
based algorithms

Robot head with 4 x
Point Grey Grasshopper,
3.45 mm pixels Camera
and Schneider
KreuznachXenoplan 1.4/
17-0903 lenses
Canon PowerShot
SD1000 7 MP camera,
Model B with Raspberry
Pi 5 MP camera module

• Plant detection and
localization
• Plant and leaf
segmentation
• Leaf shade, appearance
and difference detection
• Leaf counting
• Leaf growth tracking
• Classification based on
mutant and treatment
recognition and age
regression

A. thaliana
N. tabacum
(tobacco)

Minervini et al. (2015)
F
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Recent developments in ML and DL based programs can be

utilized to overcome the challenges in downstream processing

(Bernau et al., 2022). ML has been applied to chromatography

system to monitor real time processing, process optimization,

retention time prediction and peak monitoring. In order to

predict the chromatographic conditions (i.e., solvents and solvent

ratio), three vectorization types such as learned embedding,

extended-connectivity fingerprints (ECFP), ECFP encoder+FFNN

and three machine learning approaches (FFNN, LSTM and CNN),

DNN architectures and a set of hyperparameter values were

investigated. The best results were achieved for the prediction of

solvents and solvent ratio with ECFP LSTM auto-encoder with

FFNN as the supervised machine-learning method with an accuracy

of 0.95 for first task and 0.982 for second task respectively

(Vas ̌kevičius et al., 2021). Several ML models have been

developed so far to address some of the challenges in downstream

processing such as XGboost for the prediction of column

performance (Jiang et al., 2022b), PeakBot for chromatographic

peak prediction (Bueschl et al., 2022), DeepRT for peptide retention

time prediction (Ma et al., 2017) and an algorithm to predict the

HCPs elution behavior (Buyel et al., 2013).
5 Challenges and current limitations

Plant-based expression systems have several advantages for

producing proteins, however, also come with limitations and

challenges. Here are few limitations and challenges in plant-based

expression systems such as low productivity, post-translational

modification, protein stability, biosafety concerns, high costs of

downstream processing, regulatory approval, and slow translation

to applications (Schillberg et al., 2019; Schillberg and Finnern, 2021;

Sethi et al., 2021). Even though the plant expression system is

cheaper and more scalable than conventional expression systems,

expression yields and appropriate post-translational modifications

along the plant secretory pathway remain a challenge for many

proteins. For instance, fusion viral glycoproteins often expressed in

plants give low yield and may not be properly processed in some

cases (Margolin et al., 2020b). In comparison to mammalian

systems, plant-based expression systems introduce different

glycosylation patterns which could have an effect on the

immunogenicity and functionality of proteins. Although difficult,

methods for achieving human-like glycosylation patterns in plants

are being explored by engineering host systems using CRISPR/

Cas9-based technologies. The intellectual property (IP) and

regulatory body approval is one of the main hurdles in the

adoption of molecular farming compared to commercial

microbial and mammalian cell expression systems which have a

proven track record, particularly in the field of biopharmaceutical

manufacture. As a result, the industry continues to view molecular

farming as risky and chooses to depend on its tried-and-true

systems in most circumstances (Schillberg and Finnern, 2021).

The possible hazards posed by genetically modified (GM) plants

or animals, including the effect on biodiversity, ecological

interactions, and possibility of unforeseen effects, must be

carefully evaluated. There is a risk that the transgenes may
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unintentionally spread to other organisms through gene flow,

such as cross-pollination or horizontal gene transfer. For

molecular pharming processes and products to be safe, it is

crucial to implement effective containment strategies, risk

assessment and mitigation measures. Techniques such as

chloroplast expression and transient expression in closed culture

systems could circumvent the environmental risk of transgene

transmission through pollen (Moon et al., 2019; Feng et al., 2022b).

AI-based tools have been developed and deployed for various

microbial expression systems such as E. coli, P. pastoris, S. cerevisiae

and mammalian cell expression systems including CHO, HEK293,

HeLa and MCF7 (Linder et al., 2020; Van Brempt et al., 2020;

Smiatek et al., 2021; Feng et al., 2022a; Li et al., 2022a; Packiam et al.,

2022). Plant host system remains an unexplored arena for AI

incorporation. Creation and maintenance of AI-based training

models is mainly hindered by lack of abundant experimental

dataset that include but not limited to genome, transcriptome and

metabolome sequences; plant cell culture, plant growth and

bioreactor conditions; protein extraction and optimization,

purification strategies and relative parameters such as protein

localization, structure, stability, catalytic activity and solubility.

Such limited training dataset renders the ML approaches

overfitting (Feng et al., 2020; van Dijk et al., 2021). Intervention of

automation and AI models discussed in Tables 1, 2 to predict the

conditions and maintenance for the large-scale production in plants

is yet to be established as illustrated in Figure 4. Data integration of

multiple parameters discussed in Table 1 is needed for optimal

protein expression. Further the generation of training dataset for

plant cell culture condition optimization necessitates a large

collection of data (van Dijk et al., 2021); and in vitro testing of

enormous experimental procedures in different test conditions for an

individual recombinant protein production in real-time is laborious;

time-consuming; requires well-equipped research facility and

investment for growth optimization, plant maintenance and

downstream processing (Schillberg et al., 2019; Hesami et al.,

2020; Sarker, 2021; van Dijk et al., 2021; Packiam et al., 2022).

Even with the available omics data of model plants used in

recombinant biologics production, expression training datasets are

insufficient for AI-based host engineering and host selection, vector

and gene designing, protein modelling, solubility and stability

prediction as they are not integrated yet (van Dijk et al., 2021). A

large number of data for each parameter (more than 10,000 data

points if required) is needed to perform as an effective training

dataset (Barré et al., 2017; Hesami et al., 2020; LaFleur et al., 2022;

Yang et al., 2023). The illustration in Figure 5 highlights the

requirement of training datasets available globally that could build

a web of AI-based prediction and optimization tools to tackle the

challenges and increase the production of highly active next

generation biologics. Several algorithms have been under-utilized

or unutilized to increase the recombinant protein yield. ML

algorithm could predict the signal peptides and increase the ER

translocation rates in CHO cells (O’Neill et al., 2023), and yet not

used in exploring recombinant biologics production in plants. CNN-

based prediction models have been used effectively for increased

protein expression in microbial systems (Zrimec et al., 2020) and so

far no tool has been adapted for plant-based expression systems.
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6 Conclusion and future directions

Plant molecular pharming offers efficient alternate host systems

for expression of recombinant biologics. Moreover, the system is

robust and cost-effective compared to other hosts. In this review, the

concepts of AI in systems engineering for improved production of

recombinant biologics were discussed. Several prediction and

optimization parameters are known to increase the yield in

different expression hosts and integration of machine learning

algorithms is new to the plant molecular pharming field. Such

plant-based expression parameters include host engineering,

growth and maintenance, protein model designing, glycosylation,

sialylation, epitope prediction, antibody identification&

optimization, regulatory element prediction & optimization and

protein stability and activity. Neural network-based ML models

when integrated with systems engineering approaches could be

advantageous during the manufacture of humanized forms of

biologics at various stages of production including seed selection,

germination, plant growth parameter optimization, monitoring,

recombinant protein modelling, expression, extraction,

purification and downstream processing. GEMs and other omics

data availability favor the process of designing and optimization of

protein production yet more omics (genomics, proteomics,

transcriptomics and metabolomics) based studies are needed for

complete utilization of ML tools. Transcriptome and metabolome

profiles of specific plant hosts in the form of large training data sets

need to be fed into neural networks, which then can be used to test

the desired function (such as gene knock-out or knock-in).

Similarly, parameters of protein production solely based on plant

system are to be created as codes using language models and

integrated as hierarchical architectures using neural networks.

Datasets trained with the discussed parameters using ML models

for protein expression in plants could aid in an effective modelling

of recombinant biologics and prediction of accurate conditions for

protein expression in different plant hosts including but not limited

to N. benthamiana, N. tabacum, L. sativa and O. sativa. Such ML-

based techniques will reduce the time frame and cost of reagents in
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all the levels of plant-based biologics production rendering

functional and active products.
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FIGURE 5

Training dataset requirement for optimal protein expression in plants. A large volume of data is required for prediction of optimum conditions at
each stage including host engineering, expression and downstream processing for a specific protein to be expressed large-scale in plants.
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Radivojević, T., Costello, Z., Workman, K., and Garcia Martin, H. (2020). A machine
learning Automated Recommendation Tool for synthetic biology. Nat. Commun. 11,
1–14. doi: 10.1038/s41467-020-18008-4

Ramos, J. R. C., Oliveira, G. P., Dumas, P., and Oliveira, R. (2022). Genome-scale
modeling of Chinese hamster ovary cells by hybrid semi-parametric flux balance
analysis. Bioprocess Biosyst. Eng. 45, 1889–1904. doi: 10.1007/s00449-022-02795-9

Ramzi, A. B., Baharum, S. N., Bunawan, H., and Scrutton, N. S. (2020). Streamlining
natural products biomanufacturing with omics and machine learning driven microbial
engineering. Front. Bioeng. Biotechnol. 8. doi: 10.3389/fbioe.2020.608918

Rattanapisit, K., Shanmugaraj, B., Manopwisedjaroen, S., Purwono, P. B.,
Siriwattananon, K., Khorattanakulchai, N., et al. (2020). Rapid production of SARS-
CoV-2 receptor binding domain (RBD) and spike specific monoclonal antibody
CR3022 in Nicotiana benthamiana. Sci. Rep. 10, 17698. doi: 10.1038/s41598-020-
74904-1

Rawat, P., Prabakaran, R., Kumar, S., and Gromiha, M. M. (2021). AbsoluRATE: An
in-silico method to predict the aggregation kinetics of native proteins. Biochim.
Biophys. Acta - Proteins Proteomics 1869, 140682. doi: 10.1016/j.bbapap.2021.140682

Routray, M., Vipsita, S., Sundaray, A., and Kulkarni, S. (2022). DeepRHD: An
efficient hybrid feature extraction technique for protein remote homology detection
using deep learning strategies. Comput. Biol. Chem. 100, 107749. doi: 10.1016/
j.compbiolchem.2022.107749

Rozov, S. M., and Deineko, E. V. (2019). Strategies for optimizing recombinant
protein synthesis in plant cells: classical approaches and new directions. Mol. Biol. 53,
157–175. doi: 10.1134/S0026893319020146

Ruffolo, J. A., Guerra, C., Mahajan, S. P., Sulam, J., and Gray, J. J. (2020). Geometric
potentials from deep learning improve prediction of CDR H3 loop structures.
Bioinformatics 36, I268–I275. doi: 10.1093/BIOINFORMATICS/BTAA457

Ruffolo, J. A., Sulam, J., and Gray, J. J. (2022). Antibody structure prediction using
interpretable deep learning. Patterns 3, 100406. doi: 10.1016/j.patter.2021.100406

Ruffoni, B., Pistelli, L., Bertoli, A., and Pistelli, L. (2010). Plant cell cultures:
Bioreactors for industrial production. Adv. Exp. Med. Biol. 698, 203–221.
doi: 10.1007/978-1-4419-7347-4_15

Russell, S. J. (2010). Artificial intelligence a modern approach (New Jersey: Pearson
Education, Inc).

Sabi, R., Daniel, R. V., and Tuller, T. (2017). StAIcalc: tRNA adaptation index
calculator based on species-specific weights. Bioinformatics 33, 589–591. doi: 10.1093/
bioinformatics/btw647

Sahu, S. S., Loaiza, C. D., and Kaundal, R. (2021). Plant-mSubP: A computational
framework for the prediction of single- And multi-target protein subcellular
localization using integrated machine-learning approaches. AoB Plants 12, 1–10.
doi: 10.1093/AOBPLA/PLZ068

Sainsbury, F. (2020). Innovation in plant-based transient protein expression for
infectious disease prevention and preparedness. Curr. Opin. Biotechnol. 61, 110–115.
doi: 10.1016/j.copbio.2019.11.002

Samoudi, M., Masson, H. O., Kuo, C. C., Robinson, C. M., and Lewis, N. E. (2021).
From omics to cellular mechanisms in mammalian cell factory development. Curr.
Opin. Chem. Eng. 32, 100688. doi: 10.1016/j.coche.2021.100688

Sangjan, W., Carter, A. H., Pumphrey, M. O., Jitkov, V., and Sankaran, S. (2021).
Development of a raspberry pi-based sensor system for automated in-field monitoring
to support crop breeding programs. Inventions 6, 42. doi: 10.3390/inventions6020042

Sara, S. T., Hasan, M. M., Ahmad, A., and Shatabda, S. (2021). Convolutional neural
networks with image representation of amino acid sequences for protein function
prediction. Comput. Biol. Chem. 92, 107494. doi: 10.1016/j.compbiolchem.2021.107494

Sarkar, S., Cazenave, A. B., Oakes, J., McCall, D., Thomason, W., Abbott, L., et al.
(2021). Aerial high-throughput phenotyping of peanut leaf area index and lateral
growth. Sci. Rep. 11, 1–17. doi: 10.1038/s41598-021-00936-w

Sarker, I. H. (2021). Machine learning: algorithms, real-world applications and
research directions. SN Comput. Sci. 2, 1–21. doi: 10.1007/s42979-021-00592-x

Sastry, A. V., Gao, Y., Szubin, R., Hefner, Y., Xu, S., Kim, D., et al. (2019). The
Escherichia coli transcriptome mostly consists of independently regulated modules.
Nat. Commun. 10, 1–14. doi: 10.1038/s41467-019-13483-w

Schillberg, S., and Finnern, R. (2021). Plant molecular farming for the production of
valuable proteins - Critical evaluation of achievements and future challenges. J. Plant
Physiol. 258–259, 153359. doi: 10.1016/j.jplph.2020.153359

Schillberg, S., Raven, N., Spiegel, H., Rasche, S., and Buntru, M. (2019). Critical
analysis of the commercial potential of plants for the production of recombinant
proteins. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00720
Frontiers in Plant Science 22
Schjoldager, K. T., Narimatsu, Y., Joshi, H. J., and Clausen, H. (2020). Global view of
human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 21, 729–
749. doi: 10.1038/s41580-020-00294-x

Sethi, L., Kumari, K., and Dey, N. (2021). Engineering of plants for efficient
production of therapeutics. Mol. Biotechnol. 63, 1125–1137. doi: 10.1007/s12033-
021-00381-0

Shanmugaraj, B., Rattanapisit, K., Manopwisedjaroen, S., Thitithanyanont, A., and
Phoolcharoen, W. (2020). Monoclonal Antibodies B38 and H4 Produced in Nicotiana
benthamiana Neutralize SARS-CoV-2 in vitro. Front. Plant Sci. 11. doi: 10.3389/
fpls.2020.589995

Shayesteh, M., Ghasemi, F., Tabandeh, F., Yakhchali, B., and Shakibaie, M. (2020).
Design, construction, and expression of recombinant human interferon beta gene in
CHO-s cell line using EBV-based expression system. Res. Pharm. Sci. 15, 144–153.
doi: 10.4103/1735-5362.283814

Shi, X., Cordero, T., Garrigues, S., Marcos, J. F., Daròs, J. A., and Coca, M. (2019).
Efficient production of antifungal proteins in plants using a new transient expression
vector derived from tobacco mosaic virus. Plant Biotechnol. J. 17, 1069–1080.
doi: 10.1111/pbi.13038

Silva, J. C. F., Teixeira, R. M., Silva, F. F., Brommonschenkel, S. H., and Fontes, E. P.
B. (2019). Machine learning approaches and their current application in plant
molecular biology: A systematic review. Plant Sci. 284, 37–47. doi: 10.1016/
j.plantsci.2019.03.020

Singh, A., Ganapathysubramanian, B., Singh, A. K., and Sarkar, S. (2016). Machine
learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 21, 110–
124. doi: 10.1016/j.tplants.2015.10.015

Siriwattananon, K., Manopwisedjaroen, S., Shanmugaraj, B., Rattanapisit, K.,
Phumiamorn, S., Sapsutthipas, S., et al. (2021). Plant-produced receptor-binding
domain of SARS-coV-2 elicits potent neutralizing responses in mice and non-human
primates. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.682953

Smialowski, P., Doose, G., Torkler, P., Kaufmann, S., and Frishman, D. (2012).
PROSO II - A new method for protein solubility prediction. FEBS J. 279, 2192–2200.
doi: 10.1111/j.1742-4658.2012.08603.x

Smiatek, J., Clemens, C., Herrera, L. M., Arnold, S., Knapp, B., Presser, B., et al.
(2021). Generic and specific recurrent neural network models: Applications for large
and small scale biopharmaceutical upstream processes. Biotechnol. Rep. 31, e00640.
doi: 10.1016/j.btre.2021.e00640

Soni, A. P., Lee, J., Shin, K., Koiwa, H., and Hwang, I. (2022). Production of
recombinant active human TGFb1 in nicotiana benthamiana. Front. Plant Sci. 13.
doi: 10.3389/fpls.2022.922694

Strain, B., Morrissey, J., Antonakoudis, A., and Kontoravdi, C. (2023). Genome-scale
models as a vehicle for knowledge transfer from microbial to mammalian cell systems.
Comput. Struct. Biotechnol. J. 21, 1543–1549. doi: 10.1016/j.csbj.2023.02.011

Strasser, R. (2022). Recent developments in deciphering the biological role of plant
complex N-glycans. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.897549

Strasser, R. (2023). Plant glycoengineering for designing next-generation vaccines and
therapeutic proteins. Biotechnol. Adv. 67, 108197. doi: 10.1016/j.bioteChadv.2023.108197

Sun, X., Yang, Z., Su, P., Wei, K., Wang, Z., Yang, C., et al. (2023). Non-destructive
monitoring of maize LAI by fusing UAV spectral and textural features. Front. Plant Sci.
14. doi: 10.3389/fpls.2023.1158837
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