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Introduction

Plants undergo stress whenever they are subjected to adverse conditions or an element

that inhibits metabolism and growth (Lichtenthaler, 1996). Plants incur irreversible harm,

even death, when overtaxed under unfavorable circumstances for an extended period

(Pahlich, 1993). Plant stress is caused by two types of environmental conditions: biotic

stressors, or living creatures such as fungus, bacteria, and insects, and abiotic stressors, or

non-living elements such as drought, salinity, and a dearth of minerals (Mosa et al., 2017).

Plant stressors drastically impair agricultural productivity. Crop-wise yield losses

aggravated by these detrimental organisms can be severe, ranging from 26.3% to 40.3%

(Oerke, 2006). Based on a study (Gatehouse et al., 1992), an estimated 37% of global

agricultural yield is lost due to pests and pathogens, while 13% is lost due to insects. In

addition, crop nutritional deficiencies endanger over two billion people’s food security

(Gaikwad et al., 2020), reducing crop yield by up to 70% (Francini and Sebastiani, 2019).

Precision agriculture strives to address these issues by facilitating the use of better resources

and continuously enhancing the food supply’s sustainability. It has been extensively

demonstrated that precision agriculture is an indispensable ingredient of streamlined

pest management and nutrition monitoring systems (Mavridou et al., 2019; Nugroho et al.,

2020; Presti et al., 2022).

Artificial intelligence (AI) continues to strengthen its influence in various fields because

of its constant innovations and utilization of robust applications to solve complex problems

that conventional computer systems and human beings cannot successfully handle. The

growing acceptance of AI is not an exception to precision agriculture. In fact, data-driven

AI applications contribute significantly to the discipline (Linaza et al., 2021). Machine

vision systems, for example, have a widespread application in the control of herbicides,

livestock, and crops (Dhanya et al., 2022). For AI to learn and enhance accuracy over time,

an abundance of readily accessible data is imperative. However, in precision agriculture, the
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effort and costs associated with data collection and annotation, as

well as laboratory analysis, make dataset preparation painstaking

(Lu and Young, 2020). On the contrary, open access data alleviates

such complications. As a result, it stimulates new projects and

ensures reproducible outcomes.

The PlantVillage dataset (Hughes et al., 2015) continues to be

the mainstay of computer vision tasks associated with plant stress

identification since its debut. By far, the largest public dataset of leaf

images is the PlantVillage dataset, which consists of 54,309 healthy

and unhealthy leaf images divided into 38 categories by species and

diseases. The efforts linked with tomatoes (Solanum lycopersicum)

can help comprehend the scope of PlantVillage. Because the

collection contains the most tomato pictures, a plethora of

research is devoted to the identification of tomato pests and

pathogens (Nandhini and Ashokkumar, 2021; Tan et al., 2021;

Al-gaashani et al., 2022; Bhujel et al., 2022). TensorFlow, Python’s

open-source machine learning framework, features two plant

disease datasets, PlantaeK (Kour and Arora, 2022) and

PlantLeaves (Chouhan et al., 2019). The PlantDoc dataset

contains internet-curated images of 17 diseases across 13 plant

species (Singh et al., 2020). There are also some crop-specific open

access archives for dealing with rice (Oryza sativa) (Raksarikon,

2021) and sugar beet (Beta vulgaris) (Yi et al., 2020) nutritional

deficiencies. However, notable research gaps continue to persist.

In practice, a single leaf could exhibit several irregularities

(McCauley et al., 2009). However, no agricultural dataset

encompasses multiple labels or categories in a single shot. Aside

from tomatoes, the PlantVillage dataset contains two other

vegetables, but all of the documented crops and plants are widely

cultivated in the United States. According to an FAO assessment,

around 6000 plant species are produced for food, with 200 species

offering considerable food quantities worldwide (Bélanger et al.,

2019). As a result, there remains innumerable crop anomalies that

must be addressed. In the PlantaeK and PlantLeaves datasets, the

complete set of pictures is divided into only two broad categories:

healthy and diseased. The issue with the PlantDoc dataset is that

plants can be stressed without displaying visible indications

(McCauley et al., 2009). As such, it raises some questions about

the reliability of the labeling. Finally, there is no public dataset

containing images of both abiotic and biotic stresses over an

extensive spectrum of crops.

With the purpose of a freely accessible, expert annotated

collection of healthy, nutritiously depleted and pest-impaired leaf

photos, we propose a dataset encompassing the principal crops in

Bangladesh, namely tomato (Solanum lycopersicum), eggplant

(Solanum melongena), cucumber (Cucumis sativus), bitter gourd

(Momordica charantia), snake gourd (Trichosanthes cucumerina),

ridge gourd (Luffa acutangula), ash gourd (Benincasa hispida), and

bottle gourd (Lagenaria siceraria). The dataset comprises 4,749

high-resolution (3024 x 3024) images organized into 57 distinct

categories. In addition to strengthening insect and disease

management for the aforementioned crops, the collection aims to

fill the data shortage in the field of crop nutrition deficiency.

The main contributions of our dataset include:
Fron
• The largest number of classes featured in an agro-domain dataset.
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• The first multi-label classification challenge in agriculture.

• The inaugural open-access dataset to cover symptoms of

both biotic and abiotic stressors across multiple crops at the

same time, establishing a benchmark in plant stress

recognition.
Data collection and labeling

FromMarch 17, 2022 to May 5, 2023, we used an iPhone 13 Pro

Max to capture 5000 leaf samples from observational fields in

Bangladesh Agricultural Research Institute (BARI), Gazipur. We

solely employed the primary 12 MP wide camera with an f/1.5-

aperture lens. Apart from the exposure setting, which was set at -1,

we did not modify any default parameters when capturing the

photos. This was determined because when the images were

overexposed to sunshine, the computational software system

altered the shots in such a way that the leaves differed radically

from what they seemed to naked eyes. The images were captured

directly overhead with a 1:1 aspect ratio, leading to a resolution of

3024 x 3024. The flash was switched off.

We opted to collect samples in natural lighting environments

rather than controlled ones to ensure generalizability of the

algorithms trained on the dataset. We set up our data collecting

equipment — a table and a camera mounted on a tripod — right

adjacent to fields with plenty of natural light. During the course of a

day’s data collection, we monitored illuminances with a Digital

LX1330B Illuminance Meter. We avoided bias by, first, sampling at

random with no specific plant stress in mind, and second,

maintaining identical heights from the table’s base to the phone

camera for each crop. The exact spacing between the camera and

the leaf/table are listed below:
• Ash gourd - 22.5 cm

• Bitter gourd - 14 cm

• Bottle gourd - 27.5 cm

• Cucumber - 24 cm

• Eggplant - 23 cm

• Ridge gourd - 23 cm

• Snake gourd - 22 cm

• Tomato - 15 cm
Instead of photographing leaves in plants with a complex

background that included several leaves, soil, and other plant

elements, we sampled one leaf at a time and placed it on top of a

satin fabric with a homogeneous black tone. In our dataset, we

encountered the early stages of crop anomalies, when the

differentiating traits are difficult to spot visually. Such

complexities mandated a consistent background with just one leaf

in succession, rendering the distinct features more obvious. In

addition, the PlantVillage dataset (Hughes et al., 2015), widely

regarded as the gold standard in automated plant disease

identification, relied on a grey or black paper sheet as a

background. As a result, we used an analogous method whilst

employing the same black satin cloth for each snapshot.
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Furthermore, we observed that the black backdrop accentuated the

colors of the symptoms while ensuring that no shadows were

formed to introduce scene complexity. Finally, researchers

frequently implement segmentation to extract the leaves from

complicated surroundings (Luo et al., 2023). Fortunately, because

of the uniform black backdrop, segmentation is not necessary;

hence, we ensured ease of use.

Following the acquisition, the samples were handed over to a

laboratory, where an experienced team meticulously analyzed and

labeled each image. The team performed both perceptual labeling

and laboratory analytical labeling. Here, each leaf was visually

identified first, followed by rigorous laboratory examination.

Nevertheless, we did not impose any specific criterion in order to

allow the team to carry out the annotation procedure to the best of

their scientific knowledge while minimizing bias. We adopted this

dual approach for two reasons. First of all, plants are susceptible to

stress irrespective of whether they exhibit any clear visual cues

(McCauley et al., 2009). Second of all, sun rays reaching the leaves

might occasionally mimic the appearance of several symptoms,

even when the plants were not truly affected (Barbedo, 2019). The

chemical analysis, for these reasons, was indispensable for dealing

with the challenges.

The annotation was overseen by two researchers (M.N.U. and

M.S.H.) with over 15 years of expertise in the subject. In the event of a

disagreement amongst team members, the supervisors (M.N.U. and

M.S.H.) served as mediators, using their professional judgments.
Data description

Despite acquiring 5000 photos categorized into 110 classes, we

opted not to include some of the classes due to a significant

imbalance in class representation. For example, powdery mildew

on bottle gourd and eggplant aphid had just one sample apiece. The

number of phosphorus deficiency representatives of different crops

was insufficient as well. As such, we omitted classes with fewer than

10 samples to avoid skewed predictive accuracies towards the

majority classes. The final dataset comprises 4,749 images

grouped into 57 distinct classes. Table 1 describes a thorough

overview of the dataset. It should be emphasized that the dataset

is labeled and designed for the classification of the secondary classes

listed in Table 1. We provided broad abiotic and biotic categories as

primary classes so that researchers could easily comprehend the

dataset and, if required, customize it for their specific goals and

applications. In addition, we incorporated both the dorsal and

ventral surfaces since symptoms are frequently found on either

side. Figure 1 depicts example representatives of a few of the 57

classes. In our dataset, most insect categories, such as beetles and

mites, show the signs or symptoms of pest-infestation. However, in

several instances, the insects themselves were noticeable.
Multi-label classification

In the agri-sector, our dataset is a pioneer in multi-label

classification, where multiple categories appear in a single
Frontiers in Plant Science 03
snapshot. We provided two leaves with multiple stress symptoms

to demonstrate. Figure 1 exhibits a cucumber leaf with a pale green

tint in the center and yellow tips, indicating nitrogen and potassium

shortages, respectively. Similarly, the eggplant leaf, which includes

numerous pits of varied sizes as well as yellow and brown speckles

cluttered all over, demonstrates both beetle and mite infestations.

Table 1 intends to assist researchers in identifying leaves that have

multiple labels or classes. For example, ‘N Mg’ denotes an absence

of nitrogen and magnesium, while ‘JAS MIT’ represents leaves

afflicted with both jassids and mites. The underscore refers to the

existence of multiple categories in an image, which were diligently

grouped and organized within the dataset in adequately

named folders.
A contrast with PlantVillage

The primary objective of our dataset is to be utilized for plant stress

recognition. The PlantVillage dataset has consistently served as the

benchmark in this context. Nevertheless, researchers recently achieved

100% accuracy on it (Bruno et al., 2022).We aspired to offer a successor

to PlantVillage with additional stressor categories encompassing

hitherto unexplored crops and high-resolution photographs.

The presence of multiple labels in individual photos, which the

PlantVillage collection lacks, is perhaps the most valuable aspect of

OLID I. Another aspect that separates our dataset from PlantVillage

is that our dataset encompasses 57 classes to PlantVillage’s 38,

including 16 multi-label classes. Finally, despite the gourd family’s

impact in our global nutritional needs (Rolnik and Olas, 2020),

there is still a significant lack in research on cucurbits stress

detection, which we seek to fulfill.
Data usage notes

OLID I is available on Kaggle (Orka et al., 2023a) and Zenodo

(Orka et al., 2023b). In Zenodo, we uploaded the dataset in sections

so that individuals with limited network access can view it more

easily. In addition, we supplied an excel file with complete

breakdown of the classes in both databases.

The dataset is fairly straightforward for setting up because we

put photographs in folders that correspond to the proper

annotations. Segmentation will not be required since we settled

on persistent background. However, as the dataset is imbalanced,

we advocate any form of augmentation before training different

algorithms. For example, the Augmentor package (Bloice et al.,

2017) in Python has horizontal flip, 90-degree rotation, vertical flip,

random rotation, random shear, random skew, and random zoom

functions that can be used to increase sample sizes for particular

classes and balance the dataset without compromising variance. In

addition, generative AI could potentially be utilized to create highly

lifelike samples (Lu et al., 2022). We acknowledge that, due to the

scarcity of high-performance equipment, many researchers will be

unable to fully use the high-resolution photographs; nevertheless,

cloud-based solutions, such as Google Colab, can effortlessly

overcome this limitation. Moreover, the images can be readily
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TABLE 1 Class distribution of the OLID I dataset.

Crop Primary Class Secondary Class Abbrv. Secondary Class Full Form Sample Size

Ash gourd

Healthy 83

Disease PM Powdery Mildew 79

Nutritional Deficiency

K Potassium Deficiency 293

K Mg Potassium and Magnesium Deficiency 53

N Nitrogen Deficiency 61

N K Nitrogen and Potassium Deficiency 386

N Mg Nitrogen and Magnesium Deficiency 42

Bitter gourd

Healthy 181

Disease DM Downy Mildew 48

LS Leaf Spot 35

Insect JAS Jassid 35

Nutritional Deficiency

K Potassium Deficiency 55

K Mg Potassium and Magnesium Deficiency 40

N Nitrogen Deficiency 147

N K Nitrogen and Potassium Deficiency 128

N Mg Nitrogen and Magnesium Deficiency 116

Bottle gourd

Healthy 31

Disease DM Downy Mildew 28

LS Leaf Spot 28

Insect JAS Jassid 24

JAS MIT Jassid and Mite 29

Nutritional Deficiency

K Potassium Deficiency 30

N Nitrogen Deficiency 39

N K Nitrogen and Potassium Deficiency 102

N Mg Nitrogen and Magnesium Deficiency 34

Cucumber

Healthy 34

Nutritional Deficiency

K Potassium Deficiency 50

N Nitrogen Deficiency 89

N K Nitrogen and Potassium Deficiency 76

Eggplant

Healthy 92

Insect

EB Epilachna Beetle 74

FB Flea Beetle 36

JAS Jassid 34

MIT Mite 75

MIT EB Mite and Epilachna Beetle 95

Nutritional Deficiency

K Potassium Deficiency 106

N Nitrogen Deficiency 67

N K Nitrogen and Potassium Deficiency 106

Ridge gourd Healthy 70

(Continued)
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scaled to accommodate resource restrictions. Finally, while our

dataset comprises Red-Green-Blue (RGB) photographs, color

transformation is an alternative that has previously shown

promi s ing r e su l t s (Kr i shna swamy Ranga r a j an and

Purushothaman, 2020; Schuler et al., 2021).
Frontiers in Plant Science 05
Closing remarks

We believe our dataset will encourage researchers to embark on

novel endeavors that will stretch their abilities. In particular, the

dataset will inspire more realistic detection algorithms that can
TABLE 1 Continued

Crop Primary Class Secondary Class Abbrv. Secondary Class Full Form Sample Size

Insect

PLEI Pumpkin Leaf Eating Insect 80

PLEI IEM Pumpkin Leaf Eating Insect and Insect Egg Mass 40

PLEI MIT Pumpkin Leaf Eating Insect and Mite 25

PC Pumpkin Caterpillar 33

Nutritional Deficiency N Nitrogen Deficiency 152

N Mg Nitrogen and Magnesium Deficiency 34

Snake gourd

Healthy 59

Disease LS Leaf Spot 33

Nutritional Deficiency

K Potassium Deficiency 56

N Nitrogen Deficiency 102

N K Nitrogen and Potassium Deficiency 206

Tomato

Healthy 236

Insect

LM Leaf Miner 207

MIT Mite 200

JAS MIT Jassid and Mite 32

Nutritional Deficiency

K Potassium Deficiency 36

N Nitrogen Deficiency 47

N K Nitrogen and Potassium Deficiency 40
FIGURE 1

Example members of the OLID I dataset.
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recognize many stressors in a single picture. With a plethora of

plant species and stress categories, OLID I offers a dataset that

embraces scientific rigor and aims to eliminate oversights in data

labeling, reducing the likelihood of feeding erroneous data to the

algorithm and creating misinterpretation. The effective use of our

dataset will result in considerable improvements in plant stress

recognition, while simultaneously building trust in AI.
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