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Oolong tea cultivars
categorization and germination
period classification based on
multispectral information
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Longyue Chen1, Fan Wang1, Bo Xu1, Dandan Duan1*,
Ping Jiang2, Xiangyu Meng1 and Guijun Yang1*

1Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China,
2Hunan Agricultural University College of Mechanical and Electronical Engineering, Changsha,
Hunan, China
Recognizing and identifying tea plant (Camellia sinensis) cultivar plays a

significant role in tea planting and germplasm resource management,

particularly for oolong tea. There is a wide range of high-quality oolong tea

with diverse varieties of tea plants that are suitable for oolong tea production.

The conventional method for identifying and confirming tea cultivars involves

visual assessment. Machine learning and computer vision-based automatic

classification methods offer efficient and non-invasive alternatives for rapid

categorization. Despite advancements in technology, the identification and

classification of tea cultivars still pose a complex challenge. This paper utilized

machine learning approaches for classifying 18 oolong tea cultivars based on 27

multispectral characteristics. Then the SVM classification model was executed

using three optimization algorithms, namely genetic algorithm (GA), particle

swarm optimization (PSO), and grey wolf optimizer (GWO). The results revealed

that the SVM model optimized by GWO achieved the best performance, with an

average discrimination rate of 99.91%, 93.30% and 92.63% for the training set,

test set and validation set, respectively. In addition, based on the multispectral

information (h, s, r, b, L, Asm, Var, Hom, Dis, s, S, G, RVI, DVI, VOG), the

germination period of oolong tea cultivars can be completely evaluated by

Fisher discriminant analysis. The study indicated that the practical protection of

tea plants through automated and precise classification of oolong tea cultivars

and germination periods is feasible by utilizing multispectral imaging system.
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1 Introduction

In most nations, tea plant (Camellia sinensis) is a significant

economic crop, with potential medicinal application (Pan et al.,

2022). Most tea plantation management activities are conducted

without the utilization of intelligent technology. The procedure of

growing and producing tea heavily depends on skilled human

workers, resulting in a labor-intensive and inefficient process

(Zhang et al., 2023). Identifying tea cultivars plays a crucial role

in the tea industry as it directly impacts the commercial tea’s yield

and quality. There is great variation in taste and quality among

different cultivars of the tea plant (Camellia sinensis) (Yue et al.,

2023; Zaman et al., 2022). Improving the identification and

assessment of tea cultivars is essential in tea processing to ensure

the production of tea with high quality and yield. The identification

of tea plant cultivars is typically reliant on human observation, and

it requires expert judgement and time to manually determine the

cultivar type. It becomes challenging to differentiate between a

series of tea plant cultivars when they appear highly similar, making

manual identification difficult. Biochemical and molecular methods

used for laboratory analysis are expensive, complex, and can cause

damage to the sample. Oolong tea is a famous Chinese tea category,

which quality is significantly affected by the cultivar of tea plant (Lin

et al., 2022). Most oolong tea products are named after their cultivar

names, like Benshan, Dahongpao, Tieluohan. Accurate

identification and classification of oolong tea cultivar contribute

to the protection and preservation of different genetic resources,

preventing the loss and reduction of genetic diversity. Cultivar

identification enable targeted quality control measures to ensure

oolong tea product consistency and quality stability. Oolong tea

cultivars identification provides guidance for cultivation

management, including suitable growing environments,

fertilization, and pest control measures. Therefore, there is an

urgent need for a fast and non-invasive method to identify

oolong tea plant cultivars.

The extensive use of remote sensing techniques for plant

monitoring in the field has made it feasible to quickly identify tea

cultivars. While it is possible to classify various types of vegetation

using remotely sensed images, the identification of different

cultivars is relatively uncommon. Several studies have

differentiated between tea plantations and extract tea plantations

using multispectral satellite image, as demonstrated by Chen et al.

(Chen et al., 2022) and Zhu et al. (Zhu et al., 2019). Bao et al. (Bao

et al., 2023) utilized a UAV platform to detect tea leaf blight, while

Tu et al. (Tu et al., 2018) employed hyperspectral information

obtained from a UAV to classify tea plant cultivars. The use of

thermal images holds promise for applications in plant research.

For example, thermal cameras were utilized by Batchuluun et al.

(Batchuluun et al., 2022) for the purpose of classifying plants and

identifying diseases. Furthermore, the integration of spectral

information and image information through spectral imaging

analysis, such as hyperspectral (Zhao et al., 2022), near-infrared

spectral, and multispectral, has demonstrated significant benefits in

nondestructive detection, identification, quality evaluation, and

safety control of agricultural products. Zou et al. (Zou et al.,

2023) evaluated Mengding mountain green tea varieties using
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hyperspectral image. Wang et al. (Wang et al., 2021) applied

near-infrared hyperspectral imaging to analyze spatial distribution

of total polyphenols in tea. Cao et al. (Cao et al., 2022a) combined

hyperspectral and multispectral information to monitor tea

plant growth.

Typical spectral images obtained through multispectral imaging

can also offer plentiful information regarding the object of

detection. Multispectral imaging (MSI) technology has been

demonstrated in numerous studies to allow for non-invasive and

unbiased identification of plant phenotyping (Chen et al., 2021),

including but not limited to assessing fruit quality (Liu et al., 2015)

and distinguishing between different crop varieties (Liu et al., 2016).

By utilizing MSI technology, Cao et al. (Cao et al., 2022b)

successfully developed a model for distinguishing 16 different

types of tea cultivars, achieving highly accurate classification

results. Th e use of multispectral imaging in conjunction with

machine learning algorithms in these applications has established

a foundation of knowledge and expertise for utilizing MSI

technology to accurately identify tea cultivars. Currently, there are

few studies on techniques for on-site identification of specific tea

varieties, particularly for oolong tea varieties. Therefore, it is urgent

to investigate a quick and efficient alternative to the traditional

laborious and subjective methods used for categorizing oolong tea

cultivars. The aim of this study was to utilize MSI to enhance the

identification of tea cultivars for effective tea plant management and

to facilitate phenotyping for cultivars with high yield. In this study,

multispectral images of the canopies of different oolong tea cultivars

were captured using a multispectral camera (RedEdge-MX,

Micasense, Seattle, WA, USA). Then, oolong tea cultivars were

classified based on the color indicators, spectral characteristics, and

texture features of the tea canopies.
2 Data and methods

2.1 Data acquisition

The experiment was done in a tea farm located in Anxi County,

Quanzhou City, Fujian Province, China. Fujian is one of the major

producing areas of oolong tea. Anxi has been producing tea for

thousands of years and is renowned as the birthplace of Anxi

Tieguanyin and “the hometown of Chinese Oolong Tea (Famous

Tea)”. It is considered the top tea-producing county in China and is

widely recognized as “China’s Tea Capital”. The research site

possesses a marine monsoon climate of mid-subtropical region in

the southern hemisphere, with an average yearly temperature

ranging from 19 to 21°C and an annual precipitation of 1600

mm, which renders it an appropriate environment for the growth

of tea plants. Figure 1 displays information regarding the oolong tea

cultivars examined in this experiment.

The examined set consisted of 18 types of plant cultivars that are

suitable for producing oolong tea. These cultivars originated in

Fujian, and were subsequently introduced to Guangdong, Zhejiang,

and Jiangnan tea regions. Based on their germination period, they

can be divided into three stages: early species (Baxian, Yellow Rose,

Huangyan, Dangui, Jinmudan), mesophytic species (Baijiguan,
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Beidou, Benshan, Maoxie, Foshou), late species (Shuixian, Rougui,

Jiulongpao, Qilan, Ruixiang, Dahongpao, Tieluohan, Tieguanyin).

In this experiment, a multispectral camera with five bands,

including blue (B), green (G), red (R), near infrared (NIR), and red

edge (RED) was used. The center wavelengths of these bands were

475nm, 560nm, 668nm, 840nm, and 717nm. The images were

captured on a sunny day between 10:00 am and 3:00 pm to

minimize the impacts of illumination changes. The camera was

positioned 120cm above tea plant canopy. A barium sulfate (BaSO4)

reference board was placed on the tea plant canopy to calibrate the

spectral reflectance. The calibration equation was calculated using:

Ri =
DNi*Rs

DNs
(1)

where,DNs andDNi represented the digital number of the stand

reference board and multispectral images, respectively, and Rs and

Ri indicated the reflectance of the standard reference board and

multispectral images, respectively.

Over the course of two years, in May 2020 and October 2021, a

total of 3639 multispectral images were captured for 18 different

oolong tea cultivars.
2.2 Multispectral data processing

The initial stage of processing multispectral images involves the

registration of images and fusion of bands to correct for any spatial

deviation or misalignment that may have occurred during image

acquisition due to sensor layout and movement. The SIFT

algorithm has proven to be effective in both multispectral image

band fusion and information sampling, as it facilitates the

automatic selection and matching of feature points within each

band image. To eliminate the impact of soil, shadows, and other

backgrounds, the raw images were used to isolate the fresh leaves of

the tea plant canopy. Previous research has shown that ExGR is

effective in extracting plant and crop images. The ExGR value was

determined using the following formula:

ExGR = (2*G − R − B) − (1:4*R − G) (2)

The ExGR can be utilized to improve the distinctive features of

tea leaves in multispectral images of the tea plant canopy and
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enhance their contrast with other objects on the ground, facilitating

the differentiation of tea leaves from the background. The Otsu

method was employed to segment the images, followed by

background masking to isolate the tea leaves of the tea plant

canopy. For a comprehensive understanding of the multispectral

image processing procedures, please refer to Cao et al. (Cao

et al., 2022b).
2.3 Multispectral feature extraction

The multispectral images provide abundant information that

can be analyzed. Color, texture, and spectral behaviors are the key

monitoring indicators of tea plant growth and markedly differ

among tea cultivars. For this study, data on color values, texture,

and reflectance were obtained from five different bands of tea

canopy images. Additionally, various color and vegetation indices

were calculated as the primary characteristics. A sum of 86

indicators were chosen for this study, encompassing color value,

color indicators, texture data, single band reflectance, and

vegetation indices.

2.3.1 Color information
For describing color information, we have selected three color

models: RGB, HSV, and CIE L*a*b*. We obtained basic color

indicators for each sample by calculating the mean of 9 color

values (r, g, b, h, s, v, L*, a*, b*) from masked images.

Furthermore, advanced color indicators were derived by

computing 7 color indices., as listed in Table 1.

2.3.2 Texture information
To quantitatively describe the texture features of the tea plant

canopy and differentiate among the 18 oolong tea cultivars, texture

analysis methods such as grey-level co-occurrence matrix (GLCM)

and local binary patterns (LBP) were utilized. The GLCM was

proposed by Haralick et al. (Haralick et al., 1973) in 1970s. The

principle of GLCM involves analyzing the relationship between the

gray values of pixels in a grayscale image. This is achieved by

calculating the probability (Pij) of a particular gray value occurring

in a fixed pixel, alongside the gray value of another pixel located at a

certain distance (d) and direction (q) within the image area. The
FIGURE 1

Oolong tea cultivars and count.
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values of q include 0°, 45°, 90°, and 135°. By analyzing these

relationships, GLCM can provide useful statistical information

about the texture of an image, such as contrast, homogeneity, and

entropy. The LBP operator is frequently employed to characterize

the texture properties of grayscale images due to its ability to

maintain gray and rotational invariance. The principle of LBP

operator is to compare the intensity values of a central pixel with

its surrounding pixels in a circular neighborhood. The pixels are

then classified as 1 or 0 based on whether their intensity values are

greater than or less than that of the central pixel. This process

generates a binary code that represents the local texture of the

image. The LBP operator has the advantage of being able to

maintain gray invariance, which means that it is not affected by

changes in illumination. It is also rotation invariant, meaning that

the texture features can be extracted regardless of the orientation of

the image. This texture information can then be used for image

processing tasks such as feature extraction, segmentation, and

classification. This study involved the calculation of 8 features

using GLCM and 7 features using LBP, as shown in Table 2.

2.3.3 Spectral information
The pigments present in plants mainly influence their

reflectance in the visible range, while the reflectance in the NIR

range is primarily determined by the cellular structure and canopy
Frontiers in Plant Science 04
morphology (Yuan et al., 2019). The reflectance values in the Red

and NIR bands provide valuable information that can be used to

assess the biophysical condition of plants. For the original dataset,

we utilized both the reflectance values of individual bands and

various vegetation indices. We evaluated a set of 50 traditional

vegetation indices that are linked to plant pigments, water levels,

plant stress, and other biochemical characteristics including

cellulose and lignin. Table 3 lists the formula for calculations.
2.4 Feature selection

The primary purpose of feature screening is to decrease the data

dimensionality, simplify post-processing, and eliminate irrelevant

or incorrect information that may affect the final classification

outcomes. Due to the high dimensionality of the extracted data,

feature selection was performed prior to modeling. The feature

selection technique was utilized to identify a subset of indicators

that had minimal collinearity, negligible redundancy, and valuable

information to effectively represent all the multispectral data.

Uninformation variable elimination (UVE) has a notable

advantage in selecting wavelengths, as it combines both noise and

spectral information to extract the characteristic wavelengths of the

spectrum. The outcomes of UVE’s selection process are more
TABLE 2 Texture indices (TI) calculated by GLCM and LBP.

TI Formula Method TI Formula Method

Asm o
i
o
j

P(i, j)2 GLCM (3) m
o
L−1

g=0

gP(g)
LBP (11)

Ent −o
i
o
j

p(i, j)log(p(i, j)) GLCM (4) s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oL−1

g=0 (g − m)2P(g)
q

LBP (12)

Con o
Ng−1
n=0 n2fo

Ng

i=1o
Ng

j=1p(i, j)gji−jj=n GLCM (5) S
o
L−1

g=0

(g − m)3P(g) LBP (13)

Cor oioj(ij)p(i, j) − mxmy

sxsy

GLCM (6) K 1
s 4 o

L−1

g=0

(g − m)4P(g) LBP (14)

Mea
o
N−1

i,j=0

i(Pi,j)
GLCM (7) G

o
L−1

g=0

P(g)2
LBP (15)

Var s2
i = o

N−1

i,j=0

Pij(i − mi)
2  s2

j = o
N−1

i,j=0

Pij(j − mj)
2 GLCM (8) E

−o
L−1

g=0

P(g) log2½P(g)� LBP (16)

Hom
o
N−1

i,j=0

Pi,j

1 + (i − j)2
GLCM (9) R 1

1 + s 2
LBP (17)

Dis
o
N−1

i,j=0

Pi,jji − jj GLCM (10)
frontiers
TABLE 1 Color indicators complied from the literature.

CIs Formula Reference CIs Formula Reference

LI L*-b* (Wahono et al., 2019) AI b*-a* (Wahono et al., 2019)

AL a*/L* (Wahono et al., 2019) AB a*/(L*-b*) (Wahono et al., 2019)

NDLBI (L*-b*)/(L*+b*) (Wahono et al., 2019) NDALI (a*-L*)/(a*+L*) (Wahono et al., 2019)

NDABI (a*-b*)/(a*+b*) (Wahono et al., 2019)
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straightforward and easier to interpret. The UVE approach utilizes

the partial least squares regression coefficient as the primary

criterion for wavelength selection (Wang et al., 2020), enabling

the identification of valuable wavelengths while removing irrelevant

or redundant data. This method ensures that only useful

wavelengths are retained for further analysis. Wang et al. (Wang

et al., 2022) utilized the UVE method to enhance the predictive

accuracy of the nitrogen and carbon content assessment model for

maize canopy by utilizing NIR spectra. Shen et al. (Shen et al., 2022)

applied UVE algorithm to select variables from THz spectra, for

determining the origin of wheat. Previous research has shown that

the parameters obtained by UVE method of the prediction mode

are superior to the full-spectrum modelling model.

Least Absolute Shrinkage and Selection Operator (LASSO) is a

shrinkage estimation algorithm proposed by Tibshirani (Robert, 1996).
Frontiers in Plant Science 05
It is a regression analysis method that performs both variable selection

and regularization to improve the accuracy and interpretability of the

model. The principle of LASSO is to minimize the sum of the squared

errors between the predicted values and the actual values, subject to a

constraint that the sum of the absolute values of the coefficients is less

than or equal to a specified constant. This constraint forces some of the

coefficients to be exactly zero, effectively performing variable selection

and removing irrelevant or redundant features from the model. The

LASSO algorithm uses l to control the strength of the constraint and

balance the trade-off between model complexity and predictive

accuracy. By adjusting the value of l, the LASSO algorithm can

produce a sequence of models with different numbers of non-zero

coefficients. The use of LASSO variable selection has become more

popular in the fields of bioinformatics and stoichiometry (Massaro

et al., 2023). Based on the advantages of UVE and LASSO algorithms,
TABLE 3 Vegetation indices complied from the literature.

VIs Formula Reference VIs Formula Reference

NDVI (NIR-R)/(NIR+R) (Main et al., 2011) RVI NIR/R (ELeblanc, 2000)

DVI NIR-R (ELeblanc, 2000) EVI 2.5(B-G)/(B+6G-7.5R+1) (Ahamed et al., 2011)

VOG (B-G)/(R+RED) (VOGELMANN et al., 1993) MTCI (B-G)/(R-RED) (Main et al., 2011)

GNDVI (NIR-G)/(NIR+G) (Merzlyak, 1996) RDVI (NIR-RED)/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(NIR + RED)

p
(ELeblanc, 2000)

OSAVI 1.16(NIR-RED)/(NIR+RED+0.16) (Kramer, 2001) NLI (NIR2-RED)/(NIR2+RED) (Kramer, 2001)

TGI G-0.39R-0.61B (Bannari et al., 2011) ExG 2G-R-B (Mortensen, 1995)

VARI (R-G)/(G+R-B) (Merzlyak et al., 1999) NDRE (NIR-RED)/(NIR+RED) (Merzlyak et al., 1999)

WDRVI (0.1NIR-R)/(0.1NIR+R) (Ahamed et al., 2011) GRVI (G-R)/(G+R) (Ahamed et al., 2011)

PSRI (R-G)/RED (Merzlyak et al., 1999) PGR R/G (Haboudane et al., 2004)

CCCI ((NIR-RED)/(NIR+RED))/((NIR-R)/(NIR
+R))

(Haboudane et al., 2004) MCARI ((RED-R-0.2(RED-G))*(RED/
R)

(Haboudane et al., 2004)

BGI B/G (Frutos, 2005) BI (NIR+R+G)/ √ 3 (Frutos, 2005)

GI G/R (Frutos, 2005) SIPI (NIR-B)/(NIR+R) (Main et al., 2011)

PVI (1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:172 + 1

p
 )(NIR-1.17R-3.37) (ELeblanc, 2000) SAVI (NIR-R)/(NIR+R+0.5)*1.5 (Ahamed et al., 2011)

SR NIR/R (Ahamed et al., 2011) GDVI NIR-G (Merzlyak et al., 1999)

RI RED/R (Kramer, 2001) RGI R/G (Ceccato et al., 2001)

BRI B/R (Major et al., 1990) GMR G-R (Wang et al., 2013)

NRI R/(R+G+B) (Ansari et al., 2021) NGI G/(R+G+B) (Ansari et al., 2021)

INT (R+G+B)/3 (Kawashima and N., 1998) NBI B/(R+G+B) (Ansari et al., 2021)

NDI 128(G-R)/(R+G) (Woebbecke et al., 1993) WI (G-B)/(|R-G|) (Mortensen, 1995)

ExR 1.4*R-G (Castillo-Martinez et al.,
2020)

ExGR ExG –ExR (Castillo-Martinez et al.,
2020)

CIVE 0.441R-0.811G+0.385B+18.78745 (Castillo-Martinez et al.,
2020)

NGRDI (G-R)/(G+R) (Castillo-Martinez et al.,
2020)

VEG G/R2/3*B1/3 (Hague et al., 2006) COM1 ExG+CIVE+ExGR+VEG (Lu et al., 2022)

COM2 0.36ExG+0.47CIVE+0.17VEG (Lu et al., 2022) RGBVI (G2-R*B)/(G2+R*B) (Bendig et al., 2015)

MGRVI (G2-R2)/(G2+R2) (Bendig et al., 2015) MExG 1.262G-0.884R-0.311B (Burgos-Artizzu et al., 2011)

NDYI (G-B)/(G+B) (Sulik and Long, 2016) GLI (2G-R-B)/(2G+R+B) (Louhaichi et al., 2001)
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this paper introduced them into the feature screening of tea canopy

spectral image information.
2.5 Classification models of oolong tea
cultivar

Previous research has suggested that the SVM algorithm exhibits

certain benefits in categorizing different types of tea plants, achieving

a relatively high level of precision (Cao et al., 2022b). The SVM

algorithm was utilized as the primary classification technique for

identifying oolong tea cultivars in this study. One major benefit of the

SVM algorithm as a supervised classification approach is that it does

not necessitate prior knowledge. The fundamental idea of SVM

learning is to determine the separation hyperplane that can

effectively divide the training dataset with the greatest margin

(Phillips and Abdulla, 2021). This hyperplane is selected to have

the largest possible margin, representing the distance between the

hyperplane and the nearest data points from each class. By

maximizing the margin, SVM aims to achieve improved

generalization performance and robustness. The penalty factor “c”

and kernel parameter “g” have a great influence on the performance

of SVM in tea cultivars classification, directly affecting the accuracy

and reliability of classifier model. The optimization problem of SVM

involves finding the optimal hyperplane parameters that minimize

the classification error while maximizing the margin. This is

formulated as a convex optimization problem, which can be solved

efficiently using optimization algorithms. Therefore, it is necessary to

find an intelligent algorithm that can be employed for optimizing

SVM parameters to improve classification accuracy. The current

study utilizes and explores GA, PSO, and GWO algorithms to acquire

the optimal c and g values, thereby enhancing the accuracy of SVM-

based tea cultivar identification.

Genetic algorithm (GA) is a powerful optimization technique

inspired by biological evolution and natural selection, which

employs adaptive probabilities to search for the optimal solution

globally. Initially introduced by Professor Holland as a heuristic

search method based on Darwin’s theory of evolution, GA produces

the succeeding generation of solutions using heredity operations

such as selection, crossover, and mutation. This process ensures that

only individuals with high fitness function values are preserved,

while those with low values are gradually eliminated. By repeating

this cycle, optimal solutions that meet the specified constraints can

be obtained, enabling optimization objectives to be achieved. GA

has global search capabilities. It effectively searches the parameter

space of SVM through genetic operations, making it suitable for

fine-tuning SVM model parameters.

Particle swarm optimization (PSO) is derived from the behavior

of bird predation patterns. In PSO, each bird is represented as a

random particle, characterized by its position and speed. The

particle’s initial position and speed are randomly assigned, and

through iterative updates, the particle moves towards an optimal

solution. During each iteration, the algorithm generates the global
Frontiers in Plant Science 06
extreme value, which is the optimal solution across the entire

population, as well as the individual extreme value, which is the

optimal solution for each individual particle. PSO has both global

and local search capabilities. It effectively addresses the parameter

optimization of SVM by updating particle positions and velocities

to explore the parameter space and find the optimal solution. PSO

converges quickly and produces good results for SVM parameter

optimization. The detail algorithm described SVM optimized by

PSO can be referenced in Liu et al. (Liu et al., 2019).

Grey Wolf Optimization Algorithm (GWO) is a nature-

inspired algorithm that mimics the hunting behavior of wolves to

search for optimal prey. The hunting process involves three main

stages: tracking, encircling, and attacking. In the context of

parameter optimization, GWO can efficiently search for the

optimal penalty parameter c and kernel parameter g for tea tree

variety classification model system, thereby achieving the objective

of parameter optimization. GWO algorithm demonstrates good

convergence and speed and strong global search capabilities. It

effectively addresses the parameter optimization of SVM by

updating parameter values based on the search behavior of grey

wolves, aiming to find the optimal solution, yielding favorable

results for SVM parameter optimization. It has been found to be

a promising technique for improving accuracy in classification

problems by optimizing SVM parameters by GWO. (Barman and

Choudhury, 2020).

The datasets were split into training, testing, and validation sets in

a 6:2:2 ratio, resulting in a total of 3639 datasets. The model’s

accuracy was determined by calculating the ratio of correct samples

to total samples for each tea cultivar. All data analysis was performed

using Matlab 2017b ((MathWorks Inc., Natick, MA, USA)).
3 Results

3.1 Characteristic indicators analysis

Initially, a total of 86 characteristics were extracted as input data.

However, after applying the UVE algorithm, only 57 indicators

remained. Subsequently, the LASSO algorithm was employed

following UVE. In the first step, cross-validation was used to select

the optimal l for the model. This ensured minimal fluctuation and

stability of the cross-validation error. Ultimately, 27 indicators were

retained after UVE-LASSO algorithms. These indicators are h, s, r, b,

L*, Asm, Var, Hom, Dis, s, S, G, RVI, DVI, VOG,MTCI, NLI, VARI,

MCARI, BGI, SR, RI, GMR, ExR, AL, NDLBI, and NDALI. Figure 2

depicts the process of indicators selected by LASSO.
3.2 Classification results based on different
parameter optimization algorithms

The multispectral imaging system has shown to be a valid

method for qualitatively and quantitatively monitoring tea quality
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(Chen and Yan, 2020; Chen et al., 2021), and can assist in

identifying tea plant varieties using the SVM method (Cao et al.,

2022b). Initially, the SVM algorithm was applied to classify oolong

tea cultivars, and achieved average accuracies of 99.79%, 91.31%

and 90.62% for the training, test, and validation sets. However, the

identification rate for the Huangyan cultivar was less than 80%. To

improve the efficiency of oolong tea cultivars, optimized algorithms,

including GA, PSO, and GWO, were proposed to optimize the

parameters c and g of the SVM model. In the GA-SVM model,

satisfactory results were obtained with best c and g values of 31.2540

and 8.3673, respectively, and the average accuracies for the training,

testing, and validation sets were 99.96%, 92.43%, and 91.76%,

respectively. The cross-validation accuracy was 87.4027%. With

the GA-SVM model, the identification accuracy for each oolong tea

plant cultivar was above 80%. Results of oolong tea cultivars’

identification by the GA-SVM model are shown in the Figure 3.

In the PSO-SVM, the average accuracies for the training,

testing, and validation sets were 99.91%, 93.05%, and 92.37%,
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respectively, with best c and g values of 20.7432 and 8.0080. The

identification accuracies for the Ruixiang, Benshan, and Foshou

cultivars in the testing and validation sets were improved compared

to the GA-SVM model. The detailed results of each cultivar

identification rate by PSO-SVM are shown in Figure 4.

Lastly, when the GWO algorithm was used to optimize the SVM

classification model for identifying oolong tea cultivars, the average

accuracies were higher than the PSO-SVM model, with 99.91%,

93.30%, and 92.63% for the training, testing, and validation sets,

respectively. In the GWO-SVM, the best c and g values were 23.7723

and 7.4001, respectively. The identification rates for Shuixian,

Ruixiang, and Dahongpao cultivars in the testing and validation

sets further improved compared to the PSO-SVM model. However,

the identification rates of other cultivars remained the same as the

PSO-SVM model. Figure 5 displays the identification results of 18

oolong tea cultivars by GWO-SVM. GWO, based on gray wolf

behavior, has advantages over GA and PSO in optimizing SVM

models. GWO mimics the behavior of gray wolves, which allows for
FIGURE 3

Results of oolong tea cultivar categorization by GA-SVM.
A B

FIGURE 2

The process of indicators selected by LASSO.
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better exploration and utilization of the search space. The algorithm’s

simplicity in parameter settings and fast convergence rate also

contribute to its potential superiority. Therefore, SVM recognition

results optimized by GWO are better than GA and PSO in this study.
3.3 Germination period classification of 18
oolong tea cultivars

The 18 selected oolong tea cultivars can be classified into three

types, early, mesophytic and late species. Additionally, 27 indicators

have been selected for evaluating oolong tea cultivars. The average

values of these indicators are used as characteristics for each

cultivar. Color, texture, and spectral behaviors of the oolong tea

cultivars vary among three germination periods, and Fisher

discriminant analysis was used to evaluate the germination period

of the cultivars. The mean value of 27 indicators of 18 oolong tea

cultivars as input was Fisher discriminated, and the discriminant
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functions were as follows:

Y1 = −4:876*h + 9:114*s − 18:636*r + 12:217*b − 3:143*L − 5:471

*Asm − 3:089*Var − 16:540*Hom + 14:565*Dis−

2:819*s + 5:969*S + 15:693*G + 0:101*RVI − 0:244*DVI + 3:937

*VOG

(3)

Y2 =3:941*h + 7:469*s + 12:911*r − 8:468*b − 2:090*L − 4:088

*Asm − 3:011*Var + 7:450*Hom − 5:551*Dis

+ 4:832*s − 3:818*S−

1:803*G + 3:083*RVI − 6:684*DVI + 6:749*VOG

(4)

The class mean projection matrix represents the class center

position of the three species. As can be seen in Table 4, tea cultivars

of early, mesophytic and late species were correctly identified. The

scatterplot, generated by plotting the two discriminant scores of three
FIGURE 5

Results of oolong tea cultivar categorization by GWO-SVM.
FIGURE 4

Results of oolong tea cultivar categorization by PSO-SVM.
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species, as shown in Figure 6, indicates a significant separation effect

among different cultivars. This suggests that indicators (h, s, r, b, L,

Asm, Var, Hom, Dis, s, S, G, RVI, DVI, VOG) distinguishes the early,
mesophytic and late species based on Fisher discriminant analysis.
4 Discussion

4.1 Effects of different scales of datasets on
oolong tea cultivar identification

The identification accuracies of the 18 different oolong tea

cultivars were found to be above 80% with GA-, PSO-, and

GWO-optimized SVM classification models, as seen in Figures 3–

5. The GWO-SVM achieved high accuracies for both average

identification rate and each species, with the identification rates of

Shuixian, Baxian, Rougui, Dahongpao, Tieluohan, Benshan,

Maoxie, Huangyan, Dangui, and Jinmudan improving in both test

and validation sets. This research involved capturing and analyzing

3639 sets of images to explore how dataset size affects identification

accuracy. The 18 oolong tea cultivars dataset was randomly divided

into five parts (1/5, 2/5, 3/5, 4/5, and 5/5), and each dataset was then

used for GWO-SVM modeling. These datasets were further divided

into training, test, and validation sets (at a ratio of 3:1:1). As shown

in Figure 7, the accuracies in the test and validation sets were less

than 80% when the dataset was only 1, 2, or 3 folds. However, the

accuracies of the test and validation sets improved with the increase

in data scales, while the identification rate of the training set was not

significantly affected by the scale of the dataset.

Furthermore, the number of datasets used for each tea variety

was reduced by the same amount, and the GWO-SVM was

employed to create a tea cultivar recognition model. Figure 8

illustrates that 10 sets of images were randomly selected and

reduced for each variety during each trial. Despite minimal

changes in the accuracy of the training set, the recognition

accuracy of the test and validation sets decreased as the dataset

size decreased. When the number of images obtained from each

oolong tea cultivar decreased by 60 sets, the recognition accuracy of

the model decreased significantly, with the accuracy of the

validation set falling below 85%. Similarly, when 90 data sets of

each oolong tea cultivar were reduced, the accuracy of the

verification set decreased to less than 80%.
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4.2 Variable importance analysis of
selected indicators

This study used UVE-LASSO to select 27 indicators that can be

used for oolong tea cultivar identification. To investigate the

contribution of these selected indicators, the variable importance

in the projection algorithm was employed. Figure 9 shows that all 27

factors are significantly important, with VIP scores ≥ 0.5. Among

these, s, AL, NDALI, s, b, r, G, MTCI, and L contributed the most

(VIP >1.0). Compared to Cao (Cao et al., 2022b), it is evident that s
plays a crucial role in identifying tea plant varieties, including

oolong tea cultivars. Additionally, color information plays a more

important role in the classification of oolong tea cultivars than other

tea plant cultivars.
4.3 Analysis of factors influencing the
discriminant results

The Baijiguan, Shuixian, Yellow Rose, and Benshan differ greatly

in color. Additionally, the texture information of 18 oolong tea

cultivars is distinct. The spectral information of five bands is

mainly related to quality components such as moisture,

polyphenols, chlorophyll, and amino acids. This information varies

between different oolong tea cultivars, providing the basis for tea

plant identification using a multispectral imaging system. The

confusion matrix of the test and validation sets is shown in

Figure 10. It can be observed that Baxian was sometimes misjudged

as Dahongpao in both the test and validation sets, likely due to their

similar color. Figure 9 also indicates that color characteristics play an

important role in oolong tea cultivar classification. Jiulongpao

cultivar was wrongly discriminated as Baxian, Rougui, Qilan,

Ruixiang, Dahongpao, and Tieguanyin. The majority of wrongly

discriminated cultivars were late species. Qilan was consistently

discriminated as Baxian, Jiulongpao, Ruixiang, and Huangyan in

both the test and validation sets. Ruixiang was misjudged as Qilan

and Rougui. Tieluohan was misclassified as Yellow Rose and Dangui,

likely due to their similar leaf texture and phenotypic appearance.

Benshan was wrongly identified as Huangyan, likely due to their

similar canopy structure and appearance. Jinmudan was wrongly

discriminated as Foshou, possibly due to the similar texture and

appearance of their leaves. Overall, the optimization of the GWO-
TABLE 4 Discriminant analysis of the corresponding confusion matrix and projection matrix.

Species Confusion matrix Class mean projection matrix

From/To Early species Mesophytic species Late species Function 1 Function 2

Early species 5 0 0 0.353 -2.845

Mesophytic species 0 5 0 -7.907 0.984

Late species 0 0 8 4.721 1.163
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SVM model improved the recognition rate of oolong tea cultivars.

The factors influencing misjudgment mainly included similar canopy

structure, leaf color and texture, and germination period of tea plants.

Oolong tea cultivars with the same germination period can be

misjudged. This model has demonstrated a high recognition rate

specifically for the 18 oolong tea varieties. For other unmentioned

cultivars, it is essential to collect data, optimize the model, and

readjust the parameters accordingly. Moreover, when expanding

the dataset, it is necessary to consider the variations in traits of tea

varieties cultivated in different seasons and ecological environments

across various regions.
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5 Conclusion

Both spectral analysis and machine learning methods are

valuable for processing multispectral data in tea classification

and are effective in extracting useful information. This paper

proposes, for the first time, the combination of UVE and

LASSO to select proper multispectral indicators for tea cultivar

identification and evaluation. The selected 27 factors combined

with the GWO-optimized SVM classification model showed good

identification. Tea cultivar recognition with computer technology,

instead of traditional manual identification, is an inevitable
FIGURE 6

Discriminant analysis of germination period of oolong tea cultivars.
FIGURE 7

The results of GWO-SVM based on different scales of dataset.
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FIGURE 8

The results of GWO-SVM based on equal reduction of each cultivar.
FIGURE 9

VIP scores plot of indicators selected by UVE-LASSO.
A B

FIGURE 10

Confusion matrix of predict cultivar and actual cultivar in test and validation sets.
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attempt. Furthermore, based on the multispectral information, the

Fisher discriminate analysis completely divided these oolong tea

cultivars into early, mesophytic, and late species, indicating the

feasibility of oolong tea cultivar germination classification by

effective multispectral information. The rapid and accurate

classification and identification of tea cultivars and germination

period have practical implications across various areas of the tea

industry, including variety conservation and management, tea

quality control, market competitiveness, fraud prevention, and

scientific research and genetic resource conservation.
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