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Changes in weather patterns with emerging drought risks and rising global

temperature are widespread and negatively affect crop growth and

productivity. In nature, plants are simultaneously exposed to multiple biotic

and abiotic stresses, but most studies focus on individual stress conditions.

However, the simultaneous occurrence of different stresses impacts plant

growth and development differently than a single stress. Plants sense the

different stress combinations in the same or in different tissues, which could

induce specific systemic signalling and acclimation responses; impacting

different stress-responsive transcripts, protein abundance and modifications,

and metabolites. This mini-review focuses on the combination of drought and

heat, two abiotic stress conditions that often occur together. Recent omics

studies indicate common or independent regulators involved in heat or drought

stress responses. Here, we summarize the current research results, highlight

gaps in our knowledge, and flag potential future focus areas.
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Introduction

Plants are sessile organisms that cannot escape from adverse conditions, and are thus at

the mercy of biotic and abiotic environmental factors that strongly affect their growth,

survival and performance (Suzuki et al., 2014; Zhang et al., 2022). Furthermore, climate

change, especially the change of the limiting factors temperature and water availability,

vastly reduces crop yields, which threatens productivity and ultimately food security

(Bailey-Serres et al., 2019). These different environmental stresses can be perceived in the

same or in different tissues with specific systemic signalling and acclimation responses. For

example, plants generally recognize drought stress in the soil through the root system and

transmit a signal to the shoot (Takahashi et al., 2018; Maurel and Nacry, 2020), while high

temperature stress is predominantly perceived in the aboveground parts (Bita and Gerats,

2013; Hasanuzzaman et al., 2013; Quint et al., 2016). The response of plants to individual

heat or drought stress and the underlying specific signalling pathways are well-studied

(Quint et al., 2016; Vu et al., 2019b; Gupta et al., 2020), but in several cases these stresses

coincide (Figure 1) and thus likely impact plants differently than the individual stresses
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1250878/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1250878/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1250878&domain=pdf&date_stamp=2023-08-22
mailto:Ive.DeSmet@psb.vib-ugent.be
https://doi.org/10.3389/fpls.2023.1250878
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1250878
https://www.frontiersin.org/journals/plant-science


Xu et al. 10.3389/fpls.2023.1250878
(Suzuki et al., 2014; Zandalinas et al., 2020a; Zandalinas et al.,

2020b). When exposed to combined stressors, different types of

interactions, such as additive, synergistic, equalization, dominant,

and antagonistic effects can occur, leading to the induction of

diverse stress-responsive transcripts, proteins, and metabolites

(Shaar-Moshe et al., 2017). Omics studies provide a holistic view

on these change and can uncover complex regulatory pathways in

which a large number of transcripts, proteins, and metabolites

undergo similar or opposite changes, highlighting differences

between combined and individual stresses.

Here, we will discuss recent findings related to combined

drought and heat stress (referred to as combined stress). We will

focus on how plants adapt to this stress combination through

developmental and physiological processes and how different

omics levels are regulated. Since the majority of omics data is on

the aboveground parts of the plants, we mainly describe these

(unless stated otherwise) (Supplementary Table 1).
Developmental and physiological
responses to individual and combined
heat and drought stress

As air temperature rises, the water content in soil tends to

decrease, indicating that temperature and water availability stress

are likely to co-occur in field conditions (Lobell and Gourdji, 2012;

Konapala et al., 2020; Bevacqua et al., 2022; Coughlan de Perez et al.,

2023). This outcome of probabilistic meteorological models that

highlight the frequency of combined heat and drought events can

already be observed in the field (Figure 1). Both drought and heat

stress individually influence seed germination, cell division and

expansion, photosynthesis, and yield (Avramova et al., 2015; Quint
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et al., 2016; Nelissen et al., 2018; Vu et al., 2019b; Gupta et al., 2020;

Tiwari et al., 2022). Depending on the severity (water content in the

soil) and the duration, drought stress can vary considerably. Mild

drought stress slows down growth, resulting in a decrease in leaf

area and reduction in biomass, and reduces yield (Verelst et al.,

2013; Clauw et al., 2015). Severe drought stress has a far more

devastating impact on plant physiology, causing growth to nearly

cease, plants to wilt and ultimately resulting in plant death (Harb

et al., 2010; Muller et al., 2011). Drought also leads to stomatal

closure to reduce evaporation as a rapid defence against

dehydration (Buckley, 2019; Gupta et al., 2020). Similarly, the

impact of temperature stress also depends on the frequency,

severity and duration of the stress (Zhu et al., 2022). Exposure to

a mildly increased ambient temperature can induce various

alterations in plant architecture to move sensitive parts away

from high temperature and improve cooling capacity and trigger

floral transition (Quint et al., 2016; Vu et al., 2019b). A further

increased temperature and a high frequency and/or prolonged

duration of high temperature can decrease germination rates,

inhibit growth and floral transition, result in a reduction in yield

and even lead to plant death (Gan et al., 2014; Chiu et al., 2016;

Quint et al., 2016; Wu et al., 2017; Li et al., 2019; Vu et al., 2019b; Li

et al., 2020; Zhu et al., 2021; Ying et al., 2022; Zhu et al., 2022).

Elevated temperatures can have a positive effect on the

photosynthetic rate and carbon assimilation in plants, but this

beneficial effect is strongly suppressed once a certain threshold

temperature is exceeded (Yamasaki et al., 2002; Shaar-Moshe et al.,

2017; Yang et al., 2020). Finally, high temperatures lead to stomatal

opening and an increased stomatal conductance associated with leaf

cooling, and prolonged exposure to high temperature reduces the

stomata number (Yamori et al., 2006; Crawford et al., 2012).

The simultaneous occurrence of high temperature and drought

stress can further suppress plant growth and yield compared to their
FIGURE 1

Representative meteorological data of high temperature and water availability stress co-occurring in field conditions from the Shagbark Hills (2068)
station in Iowa - USA, sourced from SCAN (Soil Climate Analysis Network) (USDA Natural Resources Conservation Service, 2022). The 10-day moving
average of air temperature anomalies (orange), soil humidity (%) at 50 cm depth (green) and precipitation increments (blue) were plotted for the year
2021 in the location. Soil average moisture remained stable along the seasonal fluctuations of air temperature, but sharply decreased after the
temperature peaked and the 2021 Western North America heat wave (25/06/2021 - 07/07/2021) took place (highlighted in red) (Wikipedia
contributors, 2023). The soil moisture level was only restored to its previous level around late August. The data suggest that, in the surrounding crop
field areas, plants were exposed to moderate/high temperature stress prior to the exposure to drought.
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individual effects. When Arabidopsis and different food crops are

exposed to combined stress, stems are shorter and leaves are less

abundant, the fresh weight and viability of pollen are further

decreased, the seed yield and fresh weight are also further

decreased compared to control plants and/or to individual stress

conditions (Mishra et al., 2018; Choukri et al., 2020; Demirel et al.,

2020; Cohen et al., 2021; Lehretz et al., 2021; Li et al., 2022;

Mahalingam et al., 2022; Rahman et al., 2022). In contrast, under

combined stress, the transpiration response in Arabidopsis is

dominantly promoted by heat stress compared to the individual

stress, whereas in the individual stress, it is promoted by high

temperature but repressed by drought stress compared with normal

conditions (Rizhsky et al., 2004). In Arabidopsis and soybean, heat

and drought also antagonistically regulate stomatal movement, but

in this context drought dominantly decreases stomatal conductance

and photosynthesis in combined heat and drought stress conditions

(Rizhsky et al., 2004; Sinha et al., 2022).

To identify the molecular machinery involved in plant

regulation and acclimation under combined stress conditions, a

comprehensive analysis of the transcriptome, proteome, post-

translational modifications (PTMs) and metabolome is essential.
Transcriptome responses to combined
heat and drought

In Arabidopsis, drought stress significantly impacts gene

expression in plants, primarily of genes associated with hormone-

mediated growth regulation, response to osmotic stress, reactive

oxygen species, salt stress, cell wall modification and cell growth

(Clauw et al., 2015). High temperature predominantly induces an

up-regulated transcriptional response to heat, protein folding and

metabolic process in Arabidopsis (He et al., 2019). A 7-day

individual heat or drought treatment leads to more differentially

expressed genes (DEGs) compared to a 3-day treatment under

individual stress in the barley flag leaf (Mikołajczak et al., 2023).
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The biological processes associated with responses to a

chemical, a stimulus, an oxygen-containing compound, and to

stress are all highly enriched in drought, heat and combined

stress treatments in lentil leaves (Hosseini et al., 2021), indicating

overlapping signalling pathways. Combined stress induces

differentially expressed genes in food crops associated with the

ribosome pathway and with photosynthesis and chloroplast-related

processes compared with control conditions, and uniquely up- and

down-regulated genes enriched in metabolic and biosynthetic

processes of the organonitrogen compound, peptide and amide,

translation and cytoplasm-related terms (Hosseini et al., 2021; Tan

et al., 2023). Restructuring of the transcriptome due to the

simultaneous occurrence of heat and drought stress varies in

different studies. The transcriptomic signature, such as the

percentage of overlapping DEGs, indicates that either high

temperature or drought plays a major regulatory role in the

transcriptome under combined stress, such as the expression

patterns of most HEAT SHOCK TRANSCRIPTION FACTORS

(HSFs) are predominantly regulated by heat, while of most

abscisic acid (ABA)-related genes are primarily regulated by

drought (Rizhsky et al., 2004; Shaar-Moshe et al., 2017; Sinha

et al., 2022; Mikołajczak et al., 2023; Sinha et al., 2023) (Figure 2).

In addition, additive/synergistic transcriptional responses to

combined stresses, often with a dominant impact of one stress,

also occurs. For example, the expression of some HEAT SHOCK

PROTEINs (HSPs) quickly responds to individual high temperature

or drought stress with a significant increase, and the combination of

high temperature and drought additionally increases their

expression (Rizhsky et al., 2002; Rizhsky et al., 2004; Mahalingam

et al., 2022; Rahman et al., 2022) (Figure 2). However, plants

subjected to combined stress, also display different DEG response

patterns compared to individual heat or drought stress, indicating a

limited expression overlap among individual stresses and combined

stresses (Rizhsky et al., 2004; Liu et al., 2018; Hosseini et al., 2021;

Mikołajczak et al., 2023; Sinha et al., 2023; Tan et al., 2023). For

example in wheat, combined stress induces specific alternative
FIGURE 2

Combined heat and drought stress can differentially regulate plant transcriptome, proteome and PTMs (post-translational modification), and
metabolome in plants to adapt to environmental changes. Different omics reveal varying regulatory patterns for several regulators under conditions
of individual heat and drought or combined heat and drought stress. HSFs, Heat Shock Transcription Factors; HSPs, HEAT SHOCK PROTEINs; sHSPs,
small HEAT SHOCK PROTEINs. The icon with the thermometer and sun indicates the heat stress and the cracked land indicates the drought stress.
The arrows indicate increase, decrease or no change under indicated conditions.
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splicing that is absent under individual stresses, and some of these

alternatively spliced genes are associated with glutathione

biosynthesis and DNA methylation (Liu et al. , 2018).

Furthermore, under combined stress, a significant number of

transcripts are oppositely regulated compared to each individual

stress, or distinct from the effect of the individual stress showing

expression levels of untreated plants (Rizhsky et al., 2004; Sinha

et al., 2023). However, among these unique transcripts induced by

combined stress, a much lower overall similarity was found in

different soybean organs (Sinha et al., 2023), indicating a unique

transcriptional response in different plant organs, and emphasizing

the importance of focused studies to understand tissue and organ-

specific responses to combined stress conditions.

These different types of interactions of DEGs detected under

combined stress occur in different processes and pathways, which

are largely related to photosynthesis and encoding mitochondrial

proteins (Rizhsky et al., 2004; Hosseini et al., 2021). GO terms

associated with these unique DEGs also pinpoint the response to

ABA and the metabolic and biosynthetic processes of

organonitrogen (Rizhsky et al., 2004; Hosseini et al., 2021;

Mikołajczak et al., 2023).
Proteome responses to combined
heat and drought

Changes in gene expression will – to some extent – result in

changes at the protein level (Greenbaum et al., 2003); and

regulation of translation, protein abundance and protein activity

through, for example, post-translational modifications, add another

layer of regulation to the proteome.

Under drought conditions, there was a significant induction in

the abundance of proteins in maize related to carbohydrate

metabolism pathways, including glycolysis and the pentose

phosphate pathway (Vu et al., 2016). Conversely, proteins

involved in chromatin organization, including several histones,

exhibited an overall decrease in expression levels (Vu et al., 2016).

High-temperature stress significantly affects protein structure and

stability in Arabidopsis, especially those involved in ribosomal

proteins/nucleic acid binding, proteasomal proteins, and

cytoskeletal proteins (Volkening et al., 2019). These affected

processes of differentially expressed proteins (DEPs) also depend

on the species and on the developmental stage (Liu et al., 2015; Lu

et al., 2017; Zhang et al., 2017; Liu et al., 2021).

Based on a limited number of studies, the abundance of the

differentially regulated crop proteins under combined stress is

primarily associated with ribosomes, metabolic processes and

photosynthesis (Rollins et al., 2013; Zhao et al., 2016; Tang et al.,

2023). Combined stress, and either one or both individual stress

conditions, share a large proportion of DEPs of enzymes in maize

leaves, such as kinases, phosphatases, enzymes involved in

phytohormone signalling, or other metabolic enzymes (Zhao

et al., 2016). Some DEPs are predominantly regulated by a single

stress and/or exhibit additional regulation under combined stress.

For example, the abundance of the majority of identified HSPs

or chloroplast proteins in sweet potatoes is up-regulated by
Frontiers in Plant Science 04
heat stress and only slightly affected by drought stress, and under

combined stress, an additional increase is observed (Tang et al.,

2023) (Figure 2).

Post-translational modifications (PTMs) increase the functional

diversity of the overall proteome. While several studies have explored

PTMs under single drought or heat stress conditions (Scharf and

Nover, 1982; Castro et al., 2012; Zhang et al., 2014; Vu et al., 2016;

Botha et al., 2017; Chen et al., 2017; Benlloch and Lois, 2018; Vu et al.,

2018; Morrell and Sadanandom, 2019; Xu and Xue, 2019; Pengyan

et al., 2020; Zhang et al., 2020; Han et al., 2021; Han et al., 2022), there

are only a few studies that have investigated phosphorylation, under

combined stress conditions. Under drought conditions, the pathways

primarily associated with sodium transport, immune response, and

chromatin silencing of detected phosphorylated protein are affected

in maize leaves (Vu et al., 2016). Differentially phosphorylated

proteins upon mild heat in wheat leaves, compared to non-stress

conditions, are enriched in biological processes associated with heat,

protein folding, response to hydrogen peroxide and glucose transport

(Vu et al., 2018). Combined stress differentially regulates protein

phosphorylation in the maize leaf, and out of 282 phosphoproteins,

46 of them are common between individual stress and combined

stress (Hu et al., 2015). The phosphorylation level of detected HSPs

and small HSPs (sHSPs) in maize is mainly regulated in response to

heat and combined stress, but does not significantly change under

drought (Hu et al., 2015) (Figure 2). However, several

phosphoproteins related to photosynthesis, carbon metabolism and

protein processing are detected under combined high temperature

and drought conditions (Hu et al., 2015) (Figure 2).

Other common PTMs, such as ubiquitination and sumoylation,

targeting Lys residues, have also been studied under individual heat

and drought conditions (Catala et al., 2007; Miura et al., 2009;

Castro et al., 2012; Li et al., 2015; Wu et al., 2016; Xu and Xue, 2019;

Pengyan et al., 2020; Andrási et al., 2021; Han et al., 2021).

However, there is limited available data on the ubiquitinome and

sumoylome in the context of combined stress. Nevertheless, high

temperature or drought-induced ubiquitination regulates ABA

signalling (Chiu et al., 2016; Yu et al., 2016; Xu and Xue, 2019),

and ubiquitination regulates drought tolerance via the ABA

signalling pathway (Seo et al., 2012; Lim et al., 2017; Xu and Xue,

2019; Tong et al., 2021; Singh et al., 2022). High temperatures

inhibit Arabidopsis seed germination by dampening both protein

ubiquitination and proteasome activity in an ABA-dependent

manner (Chiu et al., 2016). The differently ubiquitinated proteins

under high temperatures are enriched in a wide range of molecular

functions (Li et al., 2015; Pengyan et al., 2020). Sumoylation can be

stimulated in plants under heat (Miller et al., 2010; Miller et al.,

2013; Hendriks and Vertegaal, 2016; Rytz et al., 2018; Han et al.,

2021) or drought stress (Catala et al., 2007; Miura et al., 2009;

Castro et al., 2012; Wu et al., 2016; Joo et al., 2022) and largely

depends on SUMO E3 ligase SAP AND MIZ1 DOMAIN-

CONTAINING LIGASE 1 (SIZ1). SIZ1 facilitates conjugation of

SUMO to protein substrates, and positively regulates plant heat

tolerance and acquired thermotolerance (Yoo et al., 2006; Kim et al.,

2017; Rytz et al., 2018). Sumoylation occurring on chromatin is

associated with gene expression in response to high temperature

(Niskanen et al., 2015; Han et al., 2021). The transcripts that are
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differentially regulated by sumoylation are largely involved in

responses to heat stress and development-related processes (Han

et al., 2021). Some studies exhibit that SIZ1 has both positive and

negative effects on drought tolerance (Catala et al., 2007; Miura

et al., 2009; Vu et al., 2016; Benlloch and Lois, 2018; Xu and Xue,

2019). So far as we know, there are no omics data on sumoylation

under drought or combined stress conditions, but overexpression of

SIZ1 enhances photosynthesis performance and yield compared to

the wild type under combined stress (Mishra et al., 2017). This

suggests a complex regulation of sumoylation via SIZ1, which might

be affected by the stress intensity and potentially plays an important

role under drought or combined heat and drought stress.
Metabolome responses to combined
heat and drought

Under combined stress, plants may experience a reduction in

growth and yield as mentioned above. Under such conditions, the

levels of biological markers of oxidative stress, such as

malondialdehyde (MDA) and H2O2, further increase (Jin et al.,

2016; Rahman et al., 2022).

To safeguard cells from stress-induced damage, plants adapt by

reprogramming their metabolic pathways. While there are several

metabolome datasets under individual drought and heat stress (Ye

et al., 2016; Sun et al., 2019; Abdelrahman et al., 2020; Lecourieux

et al., 2020; Guo et al., 2021; Lu et al., 2022; López et al., 2023; Xie

et al., 2023), there are only a few studies with respect to combined

stress (Zinta et al., 2018; Alhaithloul et al., 2019; Lawas et al., 2019;

Qaseem et al., 2019; Xie et al., 2020; Yousaf et al., 2022; Ru et al.,

2023). Under combined stress, the processes of carbohydrate

metabolism, amino acid metabolism and organic acid are

differentially affected compared with a non-stress condition (Zinta

et al., 2018; Lawas et al., 2019). There is an increase in stress-

responsive metabolites in flowering spikelets, particularly in terms

of their abundance under severe combined heat and drought stress,

compared to mild combined stress conditions (Lawas et al., 2019).

Under combined stress, there is a significant and strong transient

increase in the concentration of most soluble sugars, such as glucose,

fructose, and raffinose (Figure 2), although the concentration of

sucrose and starch decreased compared to a non-stress condition

(Zinta et al., 2018; Alhaithloul et al., 2019). These soluble sugars

increase the osmotic potential in the cell, drawing water into these

cells to maintain the turgor pressure (Fàbregas and Fernie, 2019), and

act as protectants to cope with rapid stress (Rosa et al., 2009; Du et al.,

2019). Under combined stress, some results show that the total

amount of soluble sugar further increased compared to individual

heat and drought stress (Qaseem et al., 2019; Ru et al., 2023).

However, this increased effect of soluble sugar exhibits variation

across different varieties and species, in response to combined stress

compared with individual stress or control conditions, providing a

possible explanation for the variable tolerance observed among

different varieties and species (Zhou et al., 2017; Qaseem et al.,

2019; Alsamadany et al., 2023; Ru et al., 2023).

The concentrations of amino acids exhibit a distinct profile

when subjected to combined stress (Zinta et al., 2018). Under
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as histidine, isoleucine, leucine, methionine, and proline, are

observed (Figure 2), while alanine, asparagine, and aspartate do

not show a difference under these combined treatments (Zinta et al.,

2018; Lawas et al., 2019; Xie et al., 2020; Yousaf et al., 2022).

The concentration of fatty acids is also differentially impacted

by combined stress compared with a non-stress condition, and both

saturated (SFA) and unsaturated fatty acids (UFA) exhibit specific

temporal patterns. The concentration of mainly SFAs increases

during exposure to stress (Figure 2), while mono- and poly-UFAs

mostly decrease or remain unchanged during stress (Zinta et al.,

2018). The increase in SFAs and decrease in UFAs following

prolonged stress could potentially be linked to the adaptation of

membranes in managing fluctuations in fluidity. The membrane

plays an important role in signal perception and transduction (Inda

et al., 2014; Niu and Xiang, 2018). For example, high temperature

promotes membrane fluidization, while hyperosmotic stress can

reduce membrane fluidity (Laroche et al., 2001; Los and Murata,

2004; Mansilla et al., 2004; Martinière et al., 2011; Leach and

Cowen, 2014; Vu et al., 2019a). The pH value surrounding the

cell membrane can affect its permeability and polarity, and drought

stress can trigger cytoplasmic alkalinisation, thereby impacting

membrane dynamics (Geilfus, 2017; Angelova et al., 2018). The

different modifications of signal perception under combined

stresses might lead the distinct signal transduction, which can

also influence the activity of membrane-associated proteins and

downstream targets (Niu and Xiang, 2018; Vu et al., 2019a).
Conclusion

Omics experiments under combined heat or/and drought stress,

provide systems level knowledge on how plant growth and yield,

and the associated physiological and biochemical responses, are

regulated under stress (Figure 2). Heat and drought stress may exert

distinct effects on various tissues or organs. However, due to the

limited number of omics datasets, and the majority of studies being

conducted on leaf or whole plants, the potential interplay between

organs and signalling pathways remains largely unexplored.

Although the initial sensing of these stresses likely occurs locally

and specifically, the resulting biochemical signals can be quickly

transferred to and perceived by other tissues and organs. This

coordinated regulation between local and transferred signals might

explain the different regulations observed under combined stress

that are absent under a single stress. There are several conserved

responses to both heat and drought stress, including those related to

ABA signalling and heat shock proteins (Rizhsky et al., 2002;

Rizhsky et al., 2004; Zhao et al., 2016; Marıń-de la Rosa et al.,

2019; Andrási et al., 2021; Tamang et al., 2021; Wang et al., 2021;

Mahalingam et al., 2022; Tang et al., 2023).

Different omics reveal varying regulatory patterns for several

regulators or metabolites under individual heat or drought stress

and combined heat and drought conditions (Figure 2), such as the

HSPs that are differentially regulated at the transcript, protein and

phosphoprotein level as mentioned above (Rizhsky et al., 2002;

Rizhsky et al., 2004; Hu et al., 2015; Zhao et al., 2016; Mahalingam
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et al., 2022; Rahman et al., 2022; Tang et al., 2023). The expression

of HSPs and the HSP protein level is higher under combined stress

compared to individual stress. However, the phosphorylation of

HSPs is up-regulated under drought stress and down-regulated

under heat stress, while no significant change in phosphorylation is

observed under combined stress.

Breeding stress-tolerant crop varieties under increased

temperature and drought is a fundamental way to help deal with

climate change and to assure future food security. Understanding

the underlying mechanisms of abiotic stress tolerance in crops is

crucial to address how abiotic stress affects crop yield and quality

effectively, and to provide useful markers and genes for genetic

improvement. Selecting the crucial players under combined heat

and drought stress, allows us to further understand how plants

perceive different stresses and integrate these signals into various

tissues and organs, which can be used for targeted breeding to

improve plant tolerance under heat and drought stress. Despite the

numerous transcriptomes, there have been relatively few studies on

post-translational modifications (PTMs), such as phosphorylation,

ubiquitination, and SUMOylation, under combined heat and

drought stress. PTMs play an important role as rapid and

reversible molecular switches, effectively regulating biological

pathways and processes within cells (Blazek et al., 2015; Coll-

Martıńez and Crosas, 2019; Xu et al., 2019), and a comprehensive

understanding of protein modification under combined stress is

thus crucial to fully capture signalling mechanisms. Furthermore,

the integration of other omics data, such as the translatome, and the

integration of these multiple omics data is the next key step (Li et al.,

2022; Tang et al., 2023).

Finally, we advocate for more omics studies under combined

stress conditions, focusing on different species and different

organs. In order to investigate plant responses under combined

stress, it is crucial to consider the intensity, duration, and timing of

the stress conditions. Optimal wet lab experimental setups should

incorporate representative climate data to ensure accuracy.

Additionally, studying responses directly in the field allows for

the consideration of other environmental variables, providing more

comprehensive results.
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