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Introduction: Increasing global warming has made heat stress a serious threat to

crop productivity and global food security in recent years. One of the most

promising solutions to address this issue is developing heat-stress-tolerant

plants. Hence, a thorough understanding of heat stress response mechanisms,

particularly molecular ones, is crucial.

Methods: Although numerous studies have used microarray expression profiling

technology to explore this area, these experiments often face limitations, leading to

inconsistent results. To overcome these limitations, a random effects meta-analysis

was employed using advanced statisticalmethods. Ameta-analysis of 16microarray

datasets related to heat stress response in Arabidopsis thaliana was conducted.

Results: The analysis revealed 1,972 significant differentially expressed genes

between control and heat-stressed plants (826 over-expressed and 1,146 down-

expressed), including 128 differentially expressed transcription factors from

different families. The most significantly enriched biological processes,

molecular functions, and KEGG pathways for over-expressed genes included

heat response, mRNA splicing via spliceosome pathways, unfolded protein

binding, and heat shock protein binding. Conversely, for down-expressed

genes, the most significantly enriched categories included cell wall

organization or biogenesis, protein phosphorylation, transmembrane

transporter activity, ion transmembrane transporter, biosynthesis of secondary

metabolites, and metabolic pathways.

Discussion: Through our comprehensive meta-analysis of heat stress

transcriptomics, we have identified pivotal genes integral to the heat stress

response, offering profound insights into the molecular mechanisms by which

plants counteract such stressors. Our findings elucidate that heat stress

influences gene expression both at the transcriptional phase and post-

transcriptionally, thereby substantially augmenting our comprehension of plant

adaptive strategies to heat stress.

KEYWORDS

Arabidopsis thaliana, heat stress, meta-analysis, microarray, transcription factor,

biological process, differentially expressed genes (DEGs), gene ontology (GO)
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1 Introduction

In recent years, global warming has emerged as a critical

consequence of climate change, and it poses a significant threat to

crop productivity worldwide (Abbas et al., 2018). The rising

temperatures, which often surpass the optimal tolerance range for

plants, result in what’s known as heat stress -a major abiotic

stressor. This condition significantly affects plant growth and

overall agricultural output (Li et al., 2011). Heat stress induces

oxidative stress and ultrastructural alterations in various plant parts,

causing membrane fluidization, lipid bilayer disintegration (Los

et al., 2013), unsaturated fatty acid peroxidation, and the promotion

of reactive oxygen species (Boca et al., 2014). These affect

photosynthesis and nutrient uptake and reduce plant growth and

yield (Ali et al., 2020).

To mitigate future risks to global food security, the development

of heat-tolerant crops with enhanced productivity holds great

promise. Understanding the physiological, molecular, and genetic

mechanisms that govern the response to heat stress in model plants

is of great value. It can offer insights into improving heat stress

tolerance in other plant species, including important agricultural

crops (Singh et al., 2019). Consequently, it is crucial to investigate

potential mechanisms enabling plants to respond to heat stress and

identify genes involved in this response. Despite extensive use of

transcriptional profiling assays to identify heat stress-related genes

and potential tolerance-inducing mechanisms, there remains a

substantial unexplored territory regarding signaling pathways,

plant hormones, and transcription factors (TFs) associated with

heat stress response (Zhao et al., 2020). Furthermore, the outcomes

of these studies often exhibit inconsistencies and fail to fully capture

the real-world heterogeneity due to variations in transcript levels

resulting from environmental conditions and plant development.

Additionally, the high cost of analysis often limits the number of

repetitions considered in studies, typically allowing only two

(Haynes et al., 2017; Zhang et al., 2017).

Meta-analysis represents a potent approach that effectively

mitigates the limitations often encountered in individual

expression profiling studies. It plays a pivotal role in enhancing

the reproducibility and reliability of results by enhancing statistical

power for detecting expression changes, thus providing a more

robust and precise identification of differentially expressed genes

(DEGs) (Haynes et al., 2017). Microarray technology has been

extensively employed to investigate the heat stress response in

Arabidopsis thaliana, producing vast datasets amenable to meta-

analyses. These meta-analyses are important in the quest to

pinpoint key genes and elucidate the mechanisms vital to the

plant’s response to heat stress. In this context, this study is

dedicated to the identification of genes exhibiting both

upregulation and downregulation in response to heat stress.
Abbreviations: AE, Array Express database; AV, Absolute Value; AUC, Area

Under the ROC Curve; BP, Biological Process; DEGs, Differentially Expressed

Genes; ES, Effect Size; FDR, False Discovery Rate; GO, Gene Ontology; HSF, Heat

Shock Transcription Factor; HSP, Heat Shock Protein; MF, Molecular Function;

ROC, Receiver Operating Characteristic; SES, Summary Effect Size; TF,

Transcription Factor.
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Furthermore, we explored how biological processes, molecular

functions, and pathways are affected by the identified DEGs in

both upregulated and downregulated directions.
2 Materials and methods

2.1 Dataset collection and processing

In this study, the Gene Expression Omnibus (GEO) (Edgar

et al., 2002) and ArrayExpress (AE) (Brazma et al., 2003) databases

were utilized to select A. thaliana expression profiling datasets

related to heat stress conditions. Searches were conducted using the

keywords “heat stress“, “heat shock“, and “abiotic stress“ and

filtering results by “Arabidopsis thaliana“ and “Expression

Profiling by Array“. Abstracts and keywords of the datasets were

carefully examined, and only datasets meeting all the following

criteria were used for meta-analyses:
• Dataset derived from mRNA expression profiling using

single-channel microarray technology: Single-channel

microarrays are widely used for gene expression profiling,

making it easier to combine and compare data from

different sources.

• Probe-gene mapping annotation from the Affymetrix

platform [http://www.affymetrix.com/technology/

index.affx]: It is a well-established and reputable

microarray platform. Its use allows for consistent

annotation and interpretation of gene expression data and

reduces platform-specific complications.

• At least two controls and two case samples: The presence of

multiple replicates in each dataset allows for assessing the

heterogeneity of effects across datasets.

• Control samples originated from plants not exposed to heat

stress or any other stress, while case samples originated

from plants exposed solely to heat stress.

• Processed gene expression data: To reduce the data

complexity and ensures data consistency across the

selected datasets.
Each dataset was manually curated to exclude samples exposed

to other treatments than heat stress, even in combination. The

random-effects meta-analysis was used to account for the presence

of heterogeneity, including factors such as light intensity, humidity,

recovery time, and plant age , allowing the combination of different

studies (Borenstein et al., 2009). To find out how mutant samples

affected the different results, two meta-analyses were done: one with

all the chosen samples, and the other with only wild-type A.

thaliana samples, leaving out the mutant samples.

We downloaded the expression data and all available

annotations for the selected datasets from AE database. The GEO

datasets were automatically obtained using the MetaIntegrator

package (Haynes et al., 2017). Classes (1 for heat stressed samples

and 0 for control samples) were manually assigned for each dataset.

For all selected datasets, the normalization was unnecessary, as the

median values of the samples were similar within each dataset, and
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the data was already in log scale due to expression values ranging

from 0 to 15.
2.2 Meta-analysis and differentially
expressed genes identification

A flowchart was created to summarize the meta-analysis

methodology employed in this study (Figure 1). The meta-

analysis of the selected microarray datasets was conducted using

the MetaIntegrator R package. Hedges’ g effect size (Borenstein

et al., 2009) was calculated for each gene in each dataset to

determine the effect size (ES). The computed ESs were combined

using a random-effects model with the inverse-variance method to

obtain the summarized effect size (SES). The p-value for each gene

was calculated using z-statistics based on a standard normal

distribution, using the SES and its corresponding standard error

(Khatri et al., 2013). To minimize false-positive results, p-values

were adjusted for multiple hypothesis testing using the Benjamini-

Hochberg False Discovery Rate (FDR) correction (Benjamini and

Hochberg, 1995). Cochran’s Q value was also calculated to assess

the heterogeneity of the ES estimates between datasets. Cochran’s Q
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p-value was computed and adjusted with the Benjamini-Hochberg

FDR correction (Haynes et al., 2017).

DEGs involved in the heat stress response were identified using

the FilterGenes function in the MetaIntegrator R package by

adjusting filtering parameters. The cutoffs for the absolute value

and the false discovery rate (FDR) of the SES were 1 and 0.001,

respectively. The gene must show consistent over- or under-

expression across all included datasets to be included in the DEGs

list. To examine the heterogeneity of gene expression among

different selected datasets, the heterogeneity of the ES was chosen

as a cutoff of 0 to retain heterogeneously expressed genes and a

cutoff of 0.05 to remove all significantly heterogeneous genes.
2.3 Visualizing and validating the
resulting DEGs

The performance of the identified DEGs in the conducted meta-

analyses was evaluated to differentiate between heat-stressed samples

and control samples in each dataset. This evaluation involved

validation of specificity and sensitivity using Receiver Operating

Characteristic (ROC) curves and Area Under the ROC Curve (AUC)

measurements, facilitated by theMetaIntegratorR package. Todisplay

the ES of the obtained DEGs across different datasets and offer an

overview of the expression profiles of the selected DEGs in all datasets,

a heatmap was generated using the MetaIntegrator R package.
2.4 Gene ontology annotation and
pathway analysis

GO terms facilitate an understanding of the fundamental

biological processes and molecular functions mediated by genes.

The g:Profiler database (Raudvere et al., 2019) was used to perform

GO enrichment analysis for both over-expressed and down-

expressed genes with a significant p-value < 0.05 to uncover

significantly enriched biological processes and molecular functions.

The identified DEGs were converted to TAIR-LOCUS using

Gene ID conversion in the g:Profiler platform, as the Affymetrix

Arabidopsis ATH1 Genome Array [ATH1-121501] uses open

reading frames (ORFs) to map probe sets. Unknown ORFs in this

database were manually matched using available information from

the GPL198 platform in the GEO database.

TheREVIGOdatabase (Supeket al., 2011) andTreemapRpackage

were employed to summarize extensive and complex lists of biological

process GO terms by identifying a representative subset of these terms

using a clustering algorithm based on semantic similarity measures.

Pathway enrichment analysis for DEGs was conducted based on the

Kyoto Encyclopedia of Genes and Genomes (KEGG) using the

DAVID v.6.8 database (Huang et al., 2009).
2.5 Identifying transcription factors

The list of A. thaliana TFs was obtained from the Plant

Transcription Factor Database PlantTFDB v5.0 (Jin et al., 2017).
FIGURE 1

Methodology Flowchart for the Conducted Meta-Analyses.
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The identified DEGs were then matched with the TFs list using the

merge function in R to pinpoint over- and down-expressed TFs.
2.6 Co-expression network analysis

To identify DEGs with similar expression patterns and hub

genes, we used the Search Tool for the Retrieval of Interacting

Genes/Proteins (STRING) v11.0 database (Szklarczyk et al., 2019).

We used co-expression evidence from the String database. This

database relies on extensive gene-by-gene correlation tests from a

vast array of gene expression datasets. These datasets are compiled

by processing and mapping numerous experiments archived in

GEO database as described by Franceschini et al. (2013).

The complete list of detected DEGs was submitted, including

upregulated and downregulated genes. We set the organism to A.

thaliana and the co-expression network analysis was conducted by

setting the minimum required interaction score to the highest

confidence level (0.9). Additionally, we concealed disconnected nodes

within the network for enhanced clarity. Nodes represent the encoded

proteins, while edges indicate significant co-expression scores. Using

Cytoscape software (3.10.1), hub genes were identified based on their

extensive connectivity within the network (Shannon et al., 2003).
2.7 Computing platform

We used high-performance computing through an account

with access to the HPC-MARWAN computing cluster [https://

www.marwan.ma/index.php/services/hpc] to perform all analyses.

The necessary statistical calculations were conducted using the R

programming language (version 3.6.2), which can be downloaded

from [https://cran.r-project.org/], along with associated packages.
3 Results

3.1 Dataset selection

Using the keywords mentioned in the Materials and Methods

section and filtering for A. thaliana and Expression Profiling by
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Array, we found 54 and 58 related datasets in the GEO and AE

databases, respectively, with 37 found in both databases. Out of the

75 datasets, 19 met all the criteria specified in the Materials and

Methods section (17 from GEO database and 2 from AE database)

with the following accession numbers: GSE112161, GSE103398,

GSE83136, GSE63372, GSE63128, GSE58620, GSE58616,

GSE44053, GSE44655, GSE26197, GSE26266, GSE19603,

GSE12619, GSE16222, GSE6154, GSE4760, GSE4062, E-MEXP-

1725, and E-MEXP-98. These datasets consisted of 214 samples

(including mutant samples), with 92 control samples (untreated

plants) and 122 case samples (exposed to heat stress).

All selected datasets were published between 2004 and 2019 and

derived from the Affymetrix Arabidopsis ATH1 Genome Array

[ATH1-121501] [https://www.ncbi.nlm.nih.gov/geo/info/

geo_affy.html]. The datasets included samples from whole

seedlings, shoots, and leaves that ranged from 4 and 58 days of

age. Control plants were maintained at temperatures between 20

and 24°C, while heat-stressed plants (cases) were exposed to

temperatures ranging from 30 to 44°C for 30 minutes to 1 day,

with or without recovery time whether in light or dark conditions

(Table S1).
3.2 Microarray meta-analyses including/
excluding mutant samples

A gene is considered differentially expressed between control and

heat-stressed samples when it meets specific criteria. First, the absolute

SES value must be greater than or equal to 1. Second, the SES FDR

should be less than or equal to 0.001. In addition, the gene is required

to show significant over- or under-expressed in all used datasets.

Two meta-analyses were performed, one including samples from

mutant plants and the other excluding them (Table 1). In the meta-

analysis that included mutant samples (encompassing 19 datasets,

218 samples with 92 controls and 126 cases), a total of 2779

differentially expressed genes were identified (1038 over-expressed

and 1741 under-expressed). However, when significantly

heterogeneous DEGs were removed by adjusting the heterogeneity

threshold to 0.05 in the filtering parameters only 473 genes (177 over-

expressed and 296 under-expressed) were detected as DEGs. In this

case, 82.97% of the DEGs were found to be heterogeneous across the
TABLE 1 DEGs obtained under different meta-analysis conditions, with keeping or removing significantly heterogeneous genes.

Meta-
analyses

Conditions No.
of
datasets

No. of
samples
(control/
case)

No. of DEGs with heter-
ogenous genes (over/
down expressed)

No. of DEGs without het-
erogeneous genes (over/
down expressed)

1st

Meta-
analysis

Including mutant samples 19 218 (92/126) 2779 (1038/1741) 473 (177/296)

2nd

Meta-
analysis

Removing mutant samples 18 131 (56/75) 2008 (862/1145) 1998 (853/1145)

3rd

Meta-
analysis

Removing mutant samples
and E-MEXP-1725 and E-
MEXP-98 datasets

16 123 (52/71) 1986 (838/1148) 1972 (826/1146)
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datasets. Tables S2 and S3 provide lists of DEGs (with and without

heterogeneous DEGs, respectively), along with their SESs and

Cochrane’s Q values with their respective FDRs.

In the meta-analysis excluding mutant samples (including 18

datasets, 131 samples with 56 controls and 75 cases), 2008 DEGs

were identified (862 over-expressed and 1145 under-expressed).

After the removal of significantly heterogeneous DEGs, 1998 DEGs

remained (853 over-expressed and 1145 under-expressed). In this

case, only 0.49 % of the DEGs were found to be heterogeneous

across the datasets. Tables S4 and S5 present the lists of DEGs and

all associated statistics for this second meta-analysis, both with and

without heterogeneity removal. Notably, the first meta-analysis

exhibited a much higher rate of heterogeneous DEGs, whereas the

second meta-analysis had a very lower rate (0.49%).
3.3 Assessment of identified DEGs

A heatmap was created for the selected DEGs from both the first

and second, meta-analyses using the MetaIntegrator R package.

This visualization enabled the comparison of expression patterns

for selected genes across different datasets and provided an

overview of the selected DEGs’ expression profiles in all datasets.

The heatmap revealed that the expression patterns of datasets E-

MEXP-1725 and E-MEXP-98 were inconsistent with other datasets

and the combined expression pattern. These discrepancies became

more apparent after removing mutant samples (Figure S1).

The meta-analysis was conducted without including mutant

samples, as well as excluding the E-MEXP-1725 and E-MEXP-98

datasets (comprising 16 datasets, 123 samples with 52 controls, and

71 cases). This analysis resulted in 1986 DEGs, with 838 over-

expressed and 1148 under-expressed (Table 1). After removing

significant heterogeneity, 1972 DEGs were obtained: 826 over-

expressed and 1146 under-expressed. Tables S6 and S7 list the

DEGs and their associated statistics for this third meta-analysis,

both with and without heterogeneity removal.
Frontiers in Plant Science 05
Given the varied nature of results stemming from the inclusion of

mutant samples and the inconsistent findings in the E-MEXP-1725

and E-MEXP-98 datasets, we focused exclusively on the differentially

expressed genes (DEGs) derived from the third meta-analysis. This

involved excluding all mutant samples, excluding the E-MEXP-1725

and E-MEXP-98 datasets, and removing genes showing significant

variability. These selected DEGs were then used for further analysis in

this research. Table S7 includes the whole list of DEGs. Additionally,

Figure S2 displays a heatmap illustrating the ES of the 1972 significant

DEGs identified in the meta-analysis across the 16 selected datasets.

The heatmap in the Figure 2 illustrate the most prominently

upregulated and downregulated DEGs among these 16 datasets.

The Receiver Operating Characteristic Curve (ROC-Curve) and

the pooled Area Under the Curve (AUC) were employed to evaluate

the performance of the selected DEGs in discriminating between

heat-stressed samples and control samples across the 16 datasets

used in the meta-analysis. Out of the sixteen datasets, fifteen

exhibited excellent AUC values (100%), while the remaining one

demonstrated a high AUC (91.7%). The pooled AUC of the selected

16 datasets reached 91% (Figure 3).
4 Gene ontology enrichment analysis

4.1 Enriched biological processes

>For over-expressed genes, 109 biological processes (BPs) were

significantly enriched by 826 genes. The most critical processes were:

response to heat (GO:0009408), protein folding (GO:0006457), and

response to temperature stimulus (GO:0009266), with p-values of

1.51×10-34, 1.19×10-19, and 3.24×10-18, respectively. In contrast, 69

significant BPs were enriched by 1146 under-expressed genes. The

most critical among them were transmembrane transport

(GO:0055085), carbohydrate metabolic process (GO:0005975), and

cell wall organization or biogenesis (GO:0071554), with p-values of

2.24×10-12, 5×10-10, and 2.02×10-8, respectively (Tables S2, 3).
FIGURE 2

Heatmap of Prominently Upregulated and Downregulated DEGs in Meta-Analysis Across 16 Datasets (Effect Size > 2, FDR < 10-9, Heterogeneity
Cutoff ≤ 0.05).
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The REVIGO database and Treemap R package were employed

to summarize the extensive lists of BP GO terms obtained. The

summarized results are presented in Figures 4A, B, where different

colors represent superclusters and rectangle sizes are adjusted to

reflect the p-value. The 109 enriched BP terms for over-expressed

genes were condensed into 9 superclusters, with the most important

being responses to heat (18 subsets), mRNA splicing via

spliceosome (12 subsets), and chaperone-mediated protein folding

(4 subsets). A similar process was conducted for the 69 BP GO

terms for under-expressed genes, resulting in 13 superclusters.

Protein phosphorylation, ion transmembrane transport, and

secondary metabolite biosynthesis were the most represented,

with 9, 7, and 12 subsets, respectively.
4.2 Enriched molecular functions

We also used g:Profiler to do Molecular Function (MF) gene

ontology enrichment for both over- and under-expressed genes, with

a 0.05 p-value cutoff. From the eight molecular functions enriched

for over-expressed genes, unfolded protein binding (GO:0051082),

heat shock protein binding (GO:0031072), and misfolded protein

binding (GO:0051787) were the top three enriched functions, with

adjusted p-values of 1.30×10-13, 6.24×10-13, and 2.66×10-07,

respectively. Among the 26 enriched molecular functions for

under-expressed genes, transmembrane transporter activity

(GO:0022857), transporter activity (GO:0005215), and ion

transmembrane transporter activity (GO:0015075) were the most
Frontiers in Plant Science 06
enriched, with adjusted p-values of 9.82×10-13, 2.40×10-11, and

7.42×10-09, respectively (Table 2).
4.3 Enriched KEGG pathways

KEGG pathways for over- and under-expressed genes were

identified using the DAVID database, with an FDR < 0.05. The top

three significant KEGG pathways enriched for over-expressed genes

were Ath03040: Spliceosome, Ath04141: Protein processing in the

endoplasmic reticulum, and Ath03050: Proteasome, with FDR values

of 1.43×10-14, 2.96×10-09, and 0.046959, respectively. Six significant

KEGG pathways were identified for under-expressed genes, with the

most enriched pathway being ath01110: Biosynthesis of secondary

metabolites, with an FDR of 1.99×10-4 (Table 3).

4.4 Over- and under-expressed
transcription factors in response to
heat stress

Identifying TFs is crucial for understanding the heat stress

response mechanism in A. thaliana. In this species, 1717 loci encode

2296 TFs, classified into 58 families according to the PlantTFDB (Jin

et al., 2017). Over and under-expressed TFs in response to heat stress

were identified among the DEGs. The TF encoded by each gene was

determinedusingSTRAINGv.11 (Table4). From1972DEGsobtained

through meta-analysis in response to heat stress, 128 (6.49%) genes

encode TFs belonging to 35 families, with 50 over-expressed and 78
FIGURE 3

ROC Curves for Individual Datasets and Pooled ROC Curve with AUC Determination and Pooled AUC with Standard Error within 95% Confidence
Interval for Selected DEGs in Response to Heat Stress in A. thaliana.
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under-expressed TFs. The highest number of over-expressed TFs

belonged to the Ethylene Responsive TFs family (ERF) with 9 genes,

followed by the bZIP family with 8 genes, and the Heat Shock Factor

family (HSF)with 7 genes. The largest number of under-expressedTFs

belonged to thebHLHfamilywith 7 genes, followedby theMYB family

with6 genes, and theARF,MYB-related, andGRAS families, eachwith

5 genes. The GRAS, WRKY, G2-like, GATA, NAC, C2H2, MYB-

related, C3H,NF-YB, Trihelix, ERF, and bZIP families contained both

over- and under-expressed genes. Notably, only under-expressed TFs

were detected in the LBD, LSD,MIKC-MADS,NF-YA,HD-ZIP, Nin-

like, SBP, and ZF-HD.
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4.5 Co-expression network analysis

We utilized the complete list to explore their co-expression

interactions via the String v.11 platform. By setting the minimum

required interaction score at the highest confidence level (0.9), we

identified 266 edges connecting the 1959 submitted genes. Notably,

10 genes with a high degree of centrality emerged as hub genes using

Cytoscape (v 3.10.1), indicating their extensive connectivity within

the network. These hub genes include Imp4, Eda7, At5g08420, Rh36,

At3g12050, At1g12650, Atpd, Eda14, Pae1, and Sqn, each scoring 16,

14, 11, 11, 11, 10, 10, 10, 10, and 10, respectively (Figure 5). In the
FIGURE 4

REVIGO Treemap Analysis of Biological Process GO Terms for Over-Expressed (A) and Down-Expressed (B) Genes in A. thaliana Using Treemap R
Package: Clustering Algorithm Based on Semantic Similarity Measures, Superclusters Visualization, and P-Value Representation.
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network, nodes represent genes, while edges represent interactions

based on co-expression evidence.
5 Discussion

5.1 Identified DEGs

There is no doubt that the analysis of genes and mechanisms

involved in heat stress in plants is crucial for the development of

heat-tolerant crops in the context of global warming. To this

purpose, we considered that the meta-analysis using

transcriptomic data is a very useful tool for several reasons.

Firstly, variations in transcript levels due to environmental

conditions and plant development can cause differences in gene

expression across similar studies. Secondly, the high cost of analysis

often limits the number of repetitions considered in studies (usually

only two). Thirdly, identifying significant genes through meta-

analysis of independent studies addressing the same biological

question provides a statistically robust strategy (Balan et al.,

2018). In this work, we aimed to highlight key biological

processes, molecular functions, and pathways associated with the

heat stress response in A. thaliana and to suggest candidate genes as

heat stress biomarkers using a random effects meta-analysis.

Performing meta-analysis exclusively on wild type A. thaliana

was the optimal approach to identify the most consistent

differentially expressed genes (DEGs) since the mutant plants in

this study increased result heterogeneity. This was demonstrated by

comparing the meta-analysis heterogeneity of DEGs when using

only wild-type samples (W) or a combination of wild-type and

mutant samples (W/M). Heterogeneous DEG rates were 82.98% for
TABLE 2 List of molecular function GO terms enriched for the over- and
down-expressed genes with a p-value <0.05 in response to heat stress in
A. thaliana.

Molecular function GO Term
Adjusted
p-value

No.
of
DEGs

Up regulated molecular functions

GO:0051082: unfolded protein binding 1.30E-13 30

GO:0031072: heat shock protein binding 6.24E-13 17

GO:0051787: misfolded protein binding 2.66E-07 10

GO:0003723: RNA binding 9.03E-05 82

GO:0051879: Hsp90 protein binding 0.000295 6

GO:0051087: chaperone binding 0.00157 9

GO:0060590: ATPase regulator activity 0.003461 6

GO:0017069: snRNA binding 0.007737 7

Down regulated molecular functions

GO:0016773Phosphotransferase activity,
alcohol group as acceptor

4.82E-07 108

GO:0015291Secondary active transmembrane
transporter activity

2.08E-06 45

GO:0008509Anion transmembrane
transporter activity

4.86E-06 38

GO:0016740Transferase activity 2.02E-05 263

GO:0016301Kinase activity 5.67E-05 113

GO:0015293symporter activity 0.001052 23

GO:0008514organic anion transmembrane
transporter activity

0.00126 24

GO:0008324cation transmembrane
transporter activity

0.002719 46

GO:0022890inorganic cation transmembrane
transporter activity

0.002803 44

GO:0046943carboxylic acid transmembrane
transporter activity

0.003981 18

GO:0005342organic acid transmembrane
transporter activity

0.003981 18

GO:1901505carbohydrate derivative
transmembrane transporter activity

0.006338 18

GO:0016772transferase activity, transferring
phosphorus-containing groups

0.008135 120

GO:0060089molecular transducer activity 0.010387 32

GO:0005524ATP binding 0.029816 150

GO:0036094small molecule binding 0.030196 199

GO:0015077: monovalent inorganic cation
transmembrane transporter activity

0.035992 30

GO:0004674: protein serine/threonine
kinase activity

0.04211 68

GO:0005338: nucleotide-sugar transmembrane
transporter activity

0.044498 8
TABLE 3 Enriched KEGG pathways by over and down- DEGs with an
FDR < 0.05 in response to heat stress in A. thaliana.

Term
No.
of DEGs

FDR

Over expressed pathways

ath03040: Spliceosome 38 1.43E-14

ath04141: Protein processing in
endoplasmic reticulum

33 2.96E-09

ath03050: Proteasome 9 0.046959

Down expressed pathways

ath01110: Biosynthesis of secondary metabolites 71 1.99E-04

ath01100: Metabolic pathways 106 5.32E-04

ath00040: Pentose and
glucuronate interconversions

11 0.026269

ath00520: Amino sugar and nucleotide
sugar metabolism

15 0.026269

ath00710: Carbon fixation in
photosynthetic organisms

10 0.032732

ath00062: Fatty acid elongation 7 0.033125
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W/M, while W yielded a significantly lower heterogeneity rate of

0.5% (Table 1). Including mutant samples introduced significant

variability, which posed challenges in the identification of consistent

DEGs. Excluding mutant samples allowed us to focus on the

responses of wild-type plants to heat stress.

In this study, 1972 genes were identified as differentially

expressed in response to heat stress treatment, with 826 (41.59%)

over-expressed and 1146 (58.41%) down-expressed under the

significance threshold of FDR ≤ 0.001 and an absolute value of

SES ≥ 1. Furthermore, these genes exhibited significant over or

down-expression without substantial heterogeneity across all 16

datasets used.

We used the Area Under the ROC Curve (AUC) to show how

well the chosen DEGs could tell the difference between heat-stressed

samples and control samples in the 16 datasets that made up this

meta-analysis. Fifteen out of the sixteen datasets exhibited an

exceptional AUC value (100%), while the remaining dataset

achieved a high AUC (91.7%), leading to a combined AUC value

of 91.5%. Consequently, the selected DEGs could distinguish

between heat-stressed and non-heat-stressed A. thaliana with an

extremely low probability of false positives. This indicates that the

expression patterns of the DEGs can differentiate between heat-

stressed and non-heat-stressed A. thaliana plants, validating the

significant relevance of these DEGs to the heat-stress

response (Figure 3).

Among the DEGs, 8 genes were highly over-expressed with an

SES greater than 3; At4g23493 was the most over-expressed gene

(with a yet unknown function and encoded protein) and had an SES

of 3.57. The other most over-expressed genes included At5g25450,

At2g29500, At2g20560, Til (AT5G58070), Hsp70 (AT3G12580),

At1g53540, and GolS1 (AT2G47180). For the down-expressed

genes, At4g25260, Rkl1 (AT1G48480), and Scl22 (At3g60630)

(were the top three with an SES less than -2.40. Notably, the Til

gene exhibited strong over-expression due to its involvement in

thermotolerance, potentially by inhibiting plasma membrane lipid

peroxidation caused by intense heat shock. Boca et al. (2014)

demonstrated that Til knockout A. thaliana is much more

sensitive to heat stress than the wild type. Conversely, At4g25260,

At1g48480, and At3g60630 were the most down-expressed genes

with an SES less than -2.40 (Table S7, Figure 2).
TABLE 4 Over- and down-expressed TFs in response to heat stress in
A. thaliana.

TF
Family

Over-expressed TFs Down-
expressed TFs

AP2 _ ADAP, RAP2.7, SMZ, AIL6

ARF _ MP, ETT, ARF16,
ARF8, ARF4

ARR-B _ RR14, RR12, RR10

B3 ABS2 _

BBR-
BPC

BPC4 _

BES1 _ BEH1

bHLH _ SCRM2, AT1G29950,
AT3G07340, AT3G61950,
MYC4, BIM1, bHLH071

bZIP GBF4, bZIP44, EEL, ABF4,
BZIP25, GBF2, AHBP-1B, OBF5

bZIP2

C2H2 HD2C, ZAT6, RHL41 ZFP7, ZFP4, IDD14,
IDD5, AT4G17810

C3H AT5G40880, AT5G51980 AT5G12850

DBB LZF1 _

Dof _ OBP2, DOF1,
AT2G28810, DOF2

ERF CRF7, RAP2.6, RAP2.4, DREB19,
AT2G40350, DREB2B, RAP2.2,
CRF6, DREB2A

AT4G16750,
CRF2, AT5G07580

G2-like AT1G49560 AT5G05090

GATA ZML1 CGA1

GRAS SCL14 SCL27, SCR, SCL22,
HAM3, AT5G66770

HD-
ZIP III

_ PHB, HB-8

HSF HSFA2, HSFA1E, HSFA7A, AT-
HSFA7B, HSF4, HSFA3, HSFB2A

_

LBD _ LBD21

LSD _ LOL1

MIKC-
MADS

_ AGL16

MYB _ FLP, AT1G49010, AS1,
MYB30, MYB16, MYB28

MYB-
related

TRFL3, AT2G13960 MYBL2, ETC2, AT3G16350,
AT5G47390, AT5G58900

NAC ATAF1, NAC13, NAC069,
RD26, NTL11

NAC1, NAC083

NF-X1 NFXL1 _

NF-YA _ NF-YA6

NF-YB NF-YB12, NF-YB13 NF-YB2

NF-YC NF-YC3, NF-YC2 _

(Continued)
TABLE 4 Continued

TF
Family

Over-expressed TFs Down-
expressed TFs

Nin-like _ AT2G17150, AT4G35270

SBP _ SPL11, SPL9

TALE _ BLH7, ATH1, BLH6

TCP _ TCP3, TCP10, TCP4, TCP2

Trihelix GT-1, AT3G10030 GTL1

WRKY WRKY32 WRKY17,
WRKY47, WRKY11

ZF-HD _ HB34, HB23
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5.2 Enriched GO terms and TFs

In response to extreme environmental conditions, such as heat

stress, plants undergo extensive transcriptomic, proteomic, and

metabolic adjustments to adapt and survive. Our meta-analysis

revealed the enrichment of several important pathways, molecular

functions, and biological processes. As anticipated, the most

significantly up-regulated processes included responses to heat,

mRNA splicing via spliceosome, protein transport, chaperone-

mediated protein folding, and protein folding. On the other hand,

processes such as protein phosphorylation, secondary metabolite

biosynthesis, anatomical structure morphogenesis, carbohydrate

metabolism, organic substance metabolism, response to

endogenous stimuli, cell wall organization or biosynthesis,

carbohydrate derivative metabolism, and general metabolism were

significantly down-regulated in response to heat stress (Table S2, S3,

Figures 4A, B). Molecular functions associated with unfolded

protein binding, misfolded protein binding, heat shock protein

binding, RNA binding, HSP90 protein binding, chaperone

binding, and ATPase regulator activity were significantly up-

regulated. In contrast, phosphotransferase activity, alcohol group

as acceptor, secondary active transmembrane transporter activity,

anion transmembrane transporter activity, transferase activity,

kinase activity, and symporter activity were the most down-

regulated molecular functions under heat stress conditions

(Table 2). Spliceosome, protein processing in the endoplasmic

reticulum, and proteasome were the significantly up-regulated

pathways in this study. Down-regulated pathways in response to
Frontiers in Plant Science 10
heat stress included biosynthesis of secondary metabolites,

metabolic pathways, pentose and glucuronate interconversions,

amino sugar and nucleotide sugar metabolism, carbon fixation in

photosynthetic organisms, and fatty acid elongation (Table 3).

Regarding transcription factors, 128 differentially expressed

transcription factors were identified, belonging to 35 families,

with 78 being down-expressed and 50 being over-expressed.

Among these transcription factor families, bHLH, HSF, ARFs,

AP2, TCP, ERF, bZIP, Dof, MYB and MYB-related, C2H2, NAC,

and GRAS were the most represented in response to heat stress in

this study. Down-expressed transcription factors were detected in

the bHLH, ARF, AP2, TCP, MYB, and Dof families, while only

over-expressed transcription factors were found in the HSF family.

The AP2 transcription factor family specifically binds to the

GCC-box found in the promoters of certain genes. In this family, 30

transcription factors were identified in A. thaliana, and four were

found to be significantly down-expressed in this study, including

RAP2.7 and SMZ, both of which repress the transition to flowering.

Heat stress has been shown to cause a reduction in the number of

flower buds for many plants (Ali et al., 2020). Perhaps, reducing the

expression of these two repressors could be a strategy developed by

A. thaliana to mitigate the impact of heat on floral development.

Further studies are needed to confirm this hypothesis.

Auxin response factor (ARF) is a transcription factor family and

specifically binds to the DNA sequence 5’-TGTCTC-3’ located in

auxin-responsive promoter elements. Five significantly down-

expressed transcription factors were detected belonging to the

ARF family, including MP, ETT, ARF16, ARF8, and ARF4.
FIGURE 5

Network Analysis of Selected DEGs Identifying 10 Hub Genes (IMP4, EDA7, AT5G08420, RH36, AT3G12050, AT1G12650, ATPD, EDA14, PAE1, SQN)
with High Network Connectivity.
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Reducing the expression of some transcription factors involved in

activating or repressing auxin-responsive genes alters the cellular

response to auxin.

The MYB family contains 168 transcription factors in A.

thaliana that bind to the DNA in promoter cis-regulatory

elements 5’-GGCGCGC-3’ of cell cycle genes. All six significant

transcription factors found in this study encoding for the MYB

family are down-expressed, including FLP, AT1G49010, AS1,

MYB30 (positive regulator of the hypersensitive response induced

by pathogens), MYB28 (involved in the upregulation of aliphatic

glucosinolate biosynthesis), and MYB16. The bHLH family is the

largest family with 225 members. This study highlights seven

differentially expressed transcription factors belonging to this

family. Similar to ARF, AP2, and MYB transcription factor

families, only down-expressed transcription factors were detected

in the bHLH family, including SCRM2 (response to deep-freezing),

AT1G29950, AT3G07340, AT3G61950 (all involved in regulation

of transcription), MYC4 (involved in jasmonic acid gene

regulation), BIM1 (positive brassinosteroid-signaling protein), and

bHLH071 (possibly involved in stomatal guard cell differentiation).
5.3 Heat stress induces the response to
several abiotic stresses

Among the differentially expressed genes (DEGs), we observed

61 DEGs linked to response to heat and 73 DEGs linked to the

response to temperature stimulus, exhibiting the lowest p-value of

less than 3 x 10-18 among the enriched biological processes GO

terms. These findings emphasize the significance of temperature-

related stress in A. thaliana’s adaptive mechanisms.

Notably, heat stress is usually associated with oxidative stress

and the accumulation of reactive oxygen species in plants

(Pucciariello et al., 2012; Fortunato et al., 2023). This could

explain the activation of response to oxidative stress and response

to hydrogen peroxide biological processes in heat-stressed plants,

which help counter the effects of oxidative stress. Additionally, our

analysis revealed several other GO terms that highlight the plant’s

response to abiotic stimuli, such as heat acclimation, cellular

responses to heat and stress, as well as responses to high-light

intensity, hypoxia, decreased oxygen levels, and oxygen levels.

Additionally, the Ethylene Responsive Element Binding Factor

(ERF) family, with 193 transcription factors in A. thaliana, is

involved in response to various abiotic stresses (Xie et al., 2019).

Nine over-expressed and three down-expressed genes belonging to

this family were detected in this study. The over-expressed ERF

transcription factors include CRF7, RAP2.6, RAP2.4, DREB19,

AT2G40350, DREB2B, RAP2.2, CRF6, and DREB2A, which are

involved in various stress responses and plant development;

whereas AT4G16750, AT5G07580, and CRF2, the down-

expressed ERF transcription factors, are involved in the

development of cotyledons, leaves, and embryos.

It isworthmentioning that aprevious study reported commonality

inbiological processes amongdifferent stress conditions inA. thaliana,

including drought, heat, and cold stresses. These shared processes

included responses to temperature stimulus and responses to heat
Frontiers in Plant Science 11
(Pathania and Kumar, 2022). This suggests that A. thaliana employs

overlapping molecular mechanisms to cope with a variety of

environmental stresses.
5.4 Heat stress increases the repairing
protein damage

Heat Shock Proteins (HSPs) and other chaperones play a crucial

role in protein-related processes, including proper folding, stabilizing

partially unfolded proteins, and preventing unwanted protein

aggregation (Park and Seo, 2015). Our meta-analysis revealed the

upregulation of several important pathways, molecular functions, and

biological processes related to protein processing. Specifically, the

upregulated pathways included Protein processing in endoplasmic

reticulum and Proteasome. Moreover, we observed various

upregulated molecular functions, such as unfolded and misfolded

protein binding, heat shock protein binding, misfolded protein

binding, Hsp90 protein binding, and chaperone binding. In parallel,

the upregulated biological processes included responses to

topologically incorrect proteins, protein folding, and cellular

responses to unfolded proteins. These findings underscore the

significance of these processes in maintaining proper protein

structure and function under heat stress conditions.

Additionally, among the 25 HSF transcription factors identified

in A. thaliana, seven were significantly over-expressed in this study

(HSFA2, HSFA1E, HSFA7A, AT-HSFA7B, HSF4, HSFA3, and

HSFB2A) (Table 4). HSFA2 is involved in the acquisition of heat

memory. It has been shown that hsfa2 knockout A. thaliana exhibits

a faster decline in heat shock protein (HSP) expression in response

to heat stress compared to the wild type (Lämke et al., 2016).

HSFA1E is involved in inducing the expression of HSFA2

(Nishizawa-Yokoi et al., 2011). HSF transcription factors

stimulate the expression of heat shock proteins (HSPs), which in

turn prevent and repair protein damages (Anckar and Sistonen,

2011). In this study, numerous HSPs were identified as highly over-

expressed, such as HSP70b, HSP101, HSP70T-2, HSP17.6II, and

HSP70, each with an SES greater than 2. Xu et al. (2018) reported

the over-expression of HSP70 in all analyzed fine fescue cultivars

under heat stress conditions. The over-expression of these proteins

is aimed at repairing protein damage caused by heat stress, which

also explains the activation of chaperon-mediated protein folding

biological pathway, unfolded protein binding molecular function,

heat shock protein binding molecular function, and chaperone

binding molecular function.
5.5 Heat stress induces alternative splicing

It becomes evident that heat stress exerts a significant impact on

gene regulation in plants, not only at the transcriptional level but

also through post-transcriptional mechanisms, particularly

alternative splicing. Alternative splicing increases the diversity of

functional proteins by generating multiple mRNA products from a

single pre-mRNA transcript (Xue et al., 2023). The meta-analysis

conducted on A. thaliana in this study identified 46 upregulated
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DEGs associated with RNA splicing under heat stress conditions,

emphasizing the importance of this process in the plant’s response

to high temperatures. Notably, several biological processes related

to mRNA splicing, (mRNA splicing via spliceosome, RNA splicing

via transesterification reactions with bulged adenosine as

nucleophile, and RNA splicing via transesterification reactions)

exhibited significant upregulation (P-value < 1.2 x 10-13), along

with the Spliceosome KEGG pathway (P-value < 1.4 x 10-14). These

findings underscore the role of alternative splicing as a means to

diversify the functional proteins generated from a single pre-mRNA

transcript under heat stress conditions, a process that seems less

pronounced under normal conditions (Laloum et al., 2018).

Alternative splicing events have been observed in various plant

species in response to heat stress. For instance, in Brachypodium

distachyon, a total of 1,973 alternative splicing events were

identified among 451 differentially expressed genes following

exposure to a temperature of 42°C (Chen and Li, 2017). In Oryza

sativa, the temperature and drought-responsive gene DREB2B

undergoes alternative splicing. Under normal conditions, exon 2

inclusion results in a non-functional isoform. However, high-

temperature exposure leads to exon 2 skipping, forming a

functional isoform consisting of exons 1 and 3 (Matsukura et al.,

2010). In Zea mays, a modest increase in the occurrence of

alternatively spliced forms for both ZmHsf04 and ZmHsf17 when

subjected to a heat stress treatment at 42°C (Zhang et al., 2020).
5.6 Heat stress alters mineral transport

It has been reported that the translocation and accumulation of

minerals are severely disrupted under heat-stress conditions (Ali

et al., 2020). This may be related to the down-expression of genes

involved in mineral transport molecular functions and biological

processes. In this study, the most significantly down-regulated

molecular functions in response to heat stress included

transmembrane transporter activity, transporter activity, ion

transmembrane transporter activity, inorganic molecular entity

transmembrane transporter activity, and active transmembrane

transporter activity (Table 2). Ion transmembrane transport was

among the most down-regulated biological process subclusters,

which include ion transmembrane transport, ion transport, anion

transmembrane, establishment of localization, carbohydrate

derivative transport, and carbohydrate transport biological

processes (Figure 4B, Table S3).
5.7 Heat stress alters fatty acid biosynthesis

In response to heat stress, there was a significant down-

regulation of the fatty acid biosynthetic and lipid metabolic

pathways, as well as the KEGG pathway responsible for fatty acid

elongation, particularly in the production of polyunsaturated fatty

acids (as shown in Table 3). This could account for the decrease in

polyunsaturated fatty acid levels in cellular membranes, a

mechanism that increases membrane stability in response to heat

stress in plants (Higashi et al., 2015). Polyunsaturated fatty acids are
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known to be more susceptible to peroxidation (Boca et al., 2014),

which can compromise membrane integrity while also increasing

membrane fluidity (Los et al., 2013). Consequently, A. thaliana

adapts to heat stress by decreasing polyunsaturated fatty acid

content in its membranes, thus strengthening its ability to

withstand the thermal stress more effectively.
5.8 Hub genes

Ten hub genes were identified through co-expression network

analysis among the list of DEGs. With their ES values greater than 1,

very low FDR (less than 0.1%), and consistent differential expression

across all 16 selected datasets. These ten genes are inferred to hold

pivotal roles in the response to heat stress. They include At1g63780

(IMP4), At5g08420, At3g12050, Atpd, At1g53850 (Pae1), RH36,

At2g15790 (Sqn), EDA14, At1g12650 (RRP36), and At3g56990

(Eda7). These genes are involved in a diverse array cellular processes,

encompassing ribosomal RNA processing, ribosome assembly, and

plant development. Their consistent differential expression and

significant enrichment values underline their central importance in

orchestrating the cellular response to heat stress.
5.9 Genes of unknown function

Several genes, including At4g23493, At3g17110, At1g27590, and

At4g17130, were found to be significantly differentially expressed in

this study. However, their specific functions remain unknown,

emphasizing the need for further research to elucidate their roles

in the biological processes.
6 Conclusion

In this study, we conducted a random-effects meta-analysis to

investigate the transcriptomic response of A. thaliana to heat stress.

Our aim was to overcome the limitations of transcription profiling

using microarray technology and reveal a more accurate and precise

set of differentially expressed genes (DEGs). As a result, we

identified 1972 DEGs, including 826 over-expressed and 1146

down-expressed genes. These genes may serve as a resource for

potential candidate genes and molecular biomarkers for engineering

heat-stress-tolerant plants. The over-expressed genes are primarily

involved in heat response and RNA splicing BP, and unfolded protein

binding KEGG pathways, while the down-expressed genes are mainly

associated with the organization or biogenesis BP, transmembrane

transporter activityMF, and secondarymetabolite biosynthesis KEGG

pathways. Furthermore, we identified 128 differentially expressed

transcription factors (TFs) belonging to 35 TF families; co-

expression network analysis revealed 10 hub genes.

By providing a comprehensive understanding of the molecular

mechanisms involved in heat stress response, this research would

serve as a valuable foundation for developing heat-stress-resistant

crops, ultimately contributing to global food security in a

warming world.
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