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For the past two decades, the study of alternative splicing (AS) and its

involvement in plant development and stress response has grown in

popularity. Only recently however, has the focus shifted to the study of how

AS regulation (or lack-thereof) affects downstream mRNA and protein

landscapes and how these AS regulatory events impact plant development and

stress tolerance. In humans, protein phosphorylation represents one of the

predominant mechanisms by which AS is regulated and thus the protein

kinases governing these phosphorylation events are of interest for further

study. Large-scale phosphoproteomic studies in plants have consistently found

that RNA splicing-related proteins are extensively phosphorylated, however, the

signaling pathways involved in AS regulation have not been resolved. In this mini-

review, we summarize our current knowledge of the three major splicing-related

protein kinase families in plants that are suggested to mediate AS phospho-

regulation and draw comparisons to their metazoan orthologs. We also

summarize and contextualize the phosphorylation events identified as

occurring on splicing-related protein families to illustrate the high degree to

which splicing-related proteins are modified, placing a new focus on elucidating

the impacts of AS at the protein and PTM-level.
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1 Introduction

Alternative splicing (AS) is of particular importance for plants, with upwards of ~40-

80% of multi-exonic genes undergoing AS (Filichkin et al., 2010; Marquez et al., 2012;

Thatcher et al., 2014; Chen et al., 2020; Liu et al., 2022). Correspondingly, plants possess a

wide range of spliceosome-related proteins, of which, serine/arginine-rich (SR) proteins

and heterogeneous nuclear ribonuclear proteins (hnRNPs) function as positive and

negative regulators of RNA splicing, respectively (Barta et al., 2010; Busch and Hertel,

2012; Erkelenz et al., 2013). Many of the genes encoding plant SR proteins are themselves

alternatively spliced in response to wide-range of environmental changes, including:

changes in light (Filichkin et al., 2010; Petrillo et al., 2014; Tognacca et al., 2019),
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temperature (Calixto et al., 2018; Li et al., 2021c; Ling et al., 2021),

osmolarity (Tanabe et al., 2007; Ding et al., 2014; Albaqami et al.,

2019), amongst others (Lazar and Goodman, 2000; Isshiki et al.,

2006; Hartmann et al., 2018), with these AS events found to confer

stress tolerance in an isoform-dependent manner (Albaqami et al.,

2019). Examination of SR protein over-expression and loss-of-

function plant lines have shown a variety of developmental

phenotypes (Ishizawa et al., 2019; Xu et al., 2019; Lee et al.,

2020b) and impacts on gene expression (Hartmann et al., 2016;

Wu et al., 2016; Yan et al., 2017), with many of these studies

uncovering developmental ramifications as a result of dysregulated

AS. However, the ways in which AS is regulated through post-

translational modifications (PTMs), such as phosphorylation, has

only recently become of interest.

In human cells, AS regulates essential functions such as

autophagy (Paronetto et al., 2016; Lv et al., 2021), apoptosis

(Singh et al., 2016; Kędzierska and Piekiełko-Witkowska, 2017;

Stevens and Oltean, 2019), protein localization (Link et al., 2016),

and transcription factor activity (Chen et al., 2022), amongst others

(Baralle and Giudice, 2017). Therefore, it is no surprise that AS

dysregulation results in several medical conditions including:

cancer (Da Silva et al., 2015; Wang et al., 2016), heart disease (Liu

et al., 2019; Hasimbegovic et al., 2021), neurological disorders (Low

et al., 2021; Zhang et al., 2022; Nishanth and Jha, 2023) and multiple

genetic disorders (Maule et al., 2019; Ajiro et al., 2021; Jiang and

Chen, 2021). Hence in humans, PTM regulation and the signaling

pathways governing AS, have been extensively studied, offering

opportunities for comparative analysis of new findings being made

in plants.

Comparative analyses of human and plant AS regulation have

highlighted the largely conserved functionality of AS across

eukaryotes, while also revealing unique AS regulation specific to

plants (Chaudhary et al., 2019). In both humans and plants,

phosphorylation of SR proteins has been found to induce

nucleocytoplasmic shuttling (Rausin et al., 2010; Botti et al., 2017;

Park et al., 2017), to initiate binding on pre-mRNA (Zhou and Fu,

2013), and facilitate spliceosome assembly (Saha and Ghosh, 2022).

In humans, the interactive networks between splicing-related

protein kinases and their SR protein substrates are an active area

of research, revealing roles in the regulation of vascular endothelial

growth factor A (VEGF-A) signaling (Li et al., 2021b), protein

kinase B (AKT)/ERK pathways (Zhou et al., 2012), along with the

targeting of rapamycin complex 1 (mTORC1)/ribosomal S6 kinase

1 (S6K1) (Lee et al., 2018) pathway; all of which involve human

SRPK (HsSRPK) phosphorylation of SR proteins. CDC2-LIKE

KINASEs (CLKs), alongside HsSRPK1, have also been shown to

be involved in SR protein mediated AS (Aubol et al., 2003; Ngo

et al., 2005; Kulkarni et al., 2017). However, in plants, the intricate

links between signal transduction, protein phosphorylation, and AS

is just beginning to emerge.

In this mini-review, we describe the current state of splicing-

related protein kinase research in plants, relating this knowledge to

our established understanding of these proteins kinases in humans.

We then examine the extent to which splicing-related proteins are

phosphorylated and touch upon AS dysregulation in plants. Finally,

we briefly discuss what is next for understanding plant AS from a
Frontiers in Plant Science 02
protein-centric perspective and the implications behind PTM-

level regulation.
1.1 Splicing-related protein kinases: An
overview

Splicing-related protein kinases are conventionally categorized

by their ability to phosphorylate splicing factors or components of

the spliceosome. Here we summarize the roles and current

understanding of the three major splicing-related protein kinase

families studied in plants, focusing on the model plant Arabidopsis

where most of the recent research has emerged.

1.1.1 Serine arginine protein kinases
The Arabidopsis SRPK family (AtSRPKs) consists of five

members divided into two groups: Group I (SRPK1: AT4G35500,

and SRPK2: AT2G17530) and Group II (SRPK3: AT5G22840,

SRPK4: AT3G53030, SRPK5: AT3G44850) SRPKs (Rodriguez

Gallo et al., 2022). These AtSRPK groupings first become clear

with the emergence of spermatophytes, suggesting duplication of

the family early in the land plant lineage. SRPK peptide sequences

are characterized by a bi-partite kinase domain separated by a

spacer region, which is conserved across both the animal and plant

kingdoms. The SRPK spacer domain has been found to be required

for the nucleocytoplasmic shuttling of HsSRPKs, but not necessary

for their kinase activity (Ding et al., 2006; Koutroumani et al., 2017;

Sigala et al., 2021). Nonetheless, the presence of the spacer domain

has been shown to increase HsSRPK phosphorylation rate by

facilitating nucleotide release (Plocinik et al., 2011; Aubol et al.,

2012). Although the function of the spacer domain of AtSRPKs

remains to be determined, it most likely aids in nucleocytoplasmic

shuttling similar to its human orthologs as localization experiments

of Group II AtSRPKs have demonstrated both nuclear and

cytoplasmic localizations (Wang et al., 2023).

HsSRPK have been implicated in various developmental and

stress-related pathways. Similarly, AtSRPKs seem to be involved in

a variety of biological processes. For example, AtSRPK1 seems to be

stress-induced due to its transcriptional up-regulation under

various abiotic stresses (cold, heat, osmotic, salt) (Rodriguez Gallo

et al., 2022). Further, all AtSRPKs exhibit diel regulation, with peak

transcriptional expression occurring mid-night (ZT18) in seedlings,

suggesting that AtSRPKs may be a part of circadian regulated

processes or involved in circadian mediated AS events.

Accordingly, Group II AtSRPK loss-of-function lines displayed a

late-flowering phenotype and an up-regulation of FLOWERING

LOCUS C (FLC) gene expression; the major negative regulator of

flowering (Wang et al., 2023). In the same study, Group II AtSRPKs

were implicated in the phosphorylation of a number of SR proteins

and beyond, including proteins involved in ribosome biogenesis,

abiotic stress, hormone signaling and carbohydrate responses. The

authors found phosphorylation motifs ‘xxxxxxSPxxxxx’ and

xxxxSxSxxxxxx’ to be enriched amongst differentially abundant

phosphorylation events in Group II deficient (sprk3 4 5/sprkii-1)

plants and suggested they may be Group II specific

phosphorylation motifs.
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1.1.2 Arabidopsis Fus3 complement
There are three members comprising the AFC family in

Arabidopsis: AFC1 (AT3G53570), AFC2 (AT4G24740), and AFC3

(AT4G32660). AFCs belong to the family of LAMMER kinases,

which are characterized by a conserved ‘AHLAMMERILG’motif in

their catalytic kinase domain that is important for substrate

recognition (Lee et al., 1996; Kang et al., 2010) as well as their

dual tyrosine and serine/threonine kinase activity profile (Ben-

David et al., 1991; Yun et al., 1994). In humans, the CLKs

represent the AFC orthologs of plants and have been shown to

phosphorylate a multitude of substrates, including SR proteins (Ngo

et al., 2005; Varjosalo et al., 2013). CLKs bind to SR proteins but

lack the mechanism to release phosphorylated SR proteins,

requiring an HsCLK/HsSRPK complex for the release of SR

proteins (Aubol et al., 2016; Aubol et al., 2018). In Arabidopsis,

AFCs have been found to phosphorylate plant SR proteins in vitro

(Lin et al., 2022), however, the extent to which AFCs phosphorylate

non-SR proteins remains unknown.

Phylogenetic analysis of the photosynthetic eukaryote AFCs

indicates that the AFC3 group diverged in gymnosperms, while the

AFC1 and AFC2 groups emerged later with the evolution of

monocots, suggesting that these AFCs may perform non-

redundant functions specific to flowering plants (Rodriguez Gallo

et al., 2022). To date, AtAFCs have been implicated in

thermoregulation, of which AtAFC2 controls high-temperature

AS, with afc2 loss-of-function plants exhibiting aberrant splicing

patterns under high temperatures (Lin et al., 2022). Furthermore,

AtAFC2 gene expression in shoot tissue is significantly up-regulated

under cold stress (Rodriguez Gallo et al., 2022). Connections have

also been drawn between temperature, flowering, and AS, with the

major spliceform of FLOWERING LOCUS M (FLM) contributing

to temperature-responsive flowering in Arabidopsis (Capovilla

et al., 2015; Jin et al., 2022). Furthermore, Arabidopsis splicing

factor 1 (SF1) interacts with FLM pre-mRNA in a temperature-

dependent manner, inducing the production of FLM-b transcripts,

and thus modulating flowering time in response to temperature

fluctuations (Lee et al., 2020b). Similarly, the metazoan CLKs also

have roles in temperature-dependent AS, whereby lower body

temperatures activate HsCLKs, resulting in high SR protein

phosphorylation both in vitro and in vivo (Haltenhof et al., 2020).

The same study also connects CLK temperature-dependent activity

with the circadian-regulation of internal body temperature.

Similarly, AtAFCs are also expressed in a diel manner, with peak

expression occurring mid-night (ZT18) (Rodriguez Gallo

et al., 2022).

1.1.3 Pre-mRNA processing factor 4 protein
kinases

The last major family of characterized splicing kinases are the

PRP4Ks. There are three members to the Arabidopsis PRP4K

family: PRP4Ka (AT3G25840), PRP4kb (AT1G13350), and

PRP4Kc (AT3G53640). PRP4Ks were the first protein kinases to

be characterized to have a regulatory impact on mRNA splicing in

both fungi and mammals (Ltzelberger and Käufer, 2012). HsPRP4K

is encoded by a single gene (PRPF4B) and is a snRNP-associated
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kinase. Similar to HsCLKs, HsPRP4K is also a dual-specificity

kinase, but unlike the other two families of splicing-related

protein kinases, HsPRP4K has been found to associate with major

spliceosome proteins (Dellaire et al., 2002) and is required for the

formation of the early spliceosome (Schneider et al., 2010). In

humans, HsPRP4K plays an essential role in ovarian and other

epithelial cancers, with a reduction in HsPRP4K levels leading to

anoikis sensitivity (Corkery et al., 2018). To date, our understanding

of PRP4Ks across plants is lacking, with only atprp4ka loss-of-

function plants being phenotypically and biochemically

characterized. Here, phosphoproteomic data identified multiple

SR splicing factors (e.g. AtSR30, AtRS41, AtRS40, AtSCL33, and

AtSCL30A) as possessing significant changes in their

phosphorylation status compared to wild-type plants (Kanno

et al., 2018).
1.2 Phosphorylation of splicing-related
proteins

1.2.1 Phosphorylation abundance
The phosphorylation state of SR proteins can change their

activity (Xiang et al., 2013; Keshwani et al., 2015), localization

(Stankovic et al., 2016), interaction with other proteins and/or RNA

to initiate RNA splicing reactions (Kim et al., 2015). Further,

Arabidopsis splicing-related proteins have been reported to be

extensively phosphorylated in large-scale phosphorproteomic

studies (De La Fuente Van Bentem et al., 2006; Marondedze

et al., 2016; Mehta et al., 2021). Using plant SPEAD (Chen et al.,

2021; http://chemyang.ccnu.edu.cn/ccb/database/PlantSPEAD/

index.php), in conjunction with PTM containing databases:

PTMviewer (Willems et al., 2019; https://www.psb.ugent.be/

webtools/ptm-viewer/index.php) and qPTM plants (Xue et al.,

2022; http://qptmplants.omicsbio.info/), the extent to which

diverse splicing-related protein families are phosphorylated

highlights the need to resolve the function of these regulatory

events (Figure 1).

In Arabidopsis , studies show that the most highly

phosphorylated splicing-related proteins are plant specific

hnRNPs and the A/B hnRNP family, followed by plant non-

specific hnRNPs (Figure 1). The hnRNPs were originally

discovered by electron micrographs (Gall, 1956) in metazoans

and in the years following, were characterized biochemically

(Samarina et al., 1966), and then categorized for their binding to

nascent transcripts (Beyer et al., 1977). The hnRNPs are involved in

a diverse set of processes such as telomere maintenance (Kwon and

Chung, 2004; Lee and Kim, 2010; Shishkin et al., 2019),

transcription (Li and Liu, 2010; Rauch et al., 2010; Molitor et al.,

2016), and pre-mRNA splicing (Tange et al., 2001; Dreyfuss et al.,

2002; Streitner et al., 2012; Geuens et al., 2016). Moreover, human

hnRNPs undergo nucleocytoplasmic shuttling which has been

proposed to be a way of transporting mRNA to the cytoplasm

(Beyer et al., 1977; Yeap et al., 2019; Dabral et al., 2020). In the

context of RNA splicing, hnRNPs are antagonistic partners to SR

splicing factors, where upon binding to splicing silencing sequences
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on the pre-mRNA, function to repress the formation of early

spliceosome (Wang et al., 2004; Matlin et al., 2005; Rahman et al.,

2015; Lin et al., 2020). Due to their involvement in the multiple

stages of mRNA transcription, maturation, and shuttling, their

regulation must be finely tuned and as such, a high-degree of

phosphorylation could be expected.

Interestingly, SR proteins have almost five times more

phosphorylation events than any other splicing factor protein

group in Arabidopsis (Figure 1). In humans, SR proteins play

crucial roles in multiple stages of mRNA maturation, including:

splice site selection (Jia et al., 2019; Li et al., 2021a), recruitment of

spliceosome proteins (Cho et al., 2011), facilitating mRNA

transport to the cytosol (Müller-McNicoll et al., 2016; Jeong,

2017), and mRNA stability (Howard and Sanford, 2015; Grosse

et al., 2021). They serve as key determinants of specificity and are

believed to integrate multiple signaling pathways mediated by

phosphorylation through SRPKs. Human SR proteins are

categorized as containing one or two RNA-recognition motifs
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(RRMs) at their N-termini and a C-terminal RS domain

containing at least 50 amino acids with > 40% RS/SR content

dipeptide repeats (Manley and Krainer, 2010; Howard and Sanford,

2015) While plant SR proteins are categorized as having one or two

RRMs on the N-terminus and a downstream RS domain of at least

50 amino acids and a minimum of 20% RS/SR dipeptide repeats

(Barta et al., 2010).

Certain SR proteins shuttle between the nucleus and the

cytoplasm depending on their phosphorylation status. The

subcellular trafficking of SR proteins is more resolved in humans,

with the phosphorylation by HsSRPKs and hyperphosphorylation

by CLKs being the driving force behind shuttling SR proteins from

the cytoplasm to nucleus and from nuclear speckles to areas of

nascent pre-mRNA (Lai et al., 2000; Ngo et al., 2005; Ghosh and

Adams, 2011; Jang et al., 2019). As such their movement is highly

contingent on their phosphorylation status. In plants,

phosphorylation-mediated SR shuttling has also been documented

(Tillemans et al., 2006; Rausin et al., 2010; Stankovic et al., 2016;
FIGURE 1

Number of unique protein phosphorylation events identified on splicing-related proteins in Arabidoposis. Identified phosphosites were collected
from PTMviewer (Willems et al., 2019; https://www.psb.ugent.be/webtools/ptm-viewer/index.php) and qPTM (Xue et al., 2022; http://qptmplants.
omicsbio.info/). Selection and categorization of splicing-related proteins were acquired from plantSPEAD (Chen et al., 2021; http://chemyang.ccnu.
edu.cn/ccb/database/PlantSPEAD/index.php) and the number of proteins related to each family is plotted. Number of phosphorylation events for
select protein families were converted to a colour intensity gradient.
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Park et al., 2017). Recently, fluorescent co-localization experiments

have determined that the phosphorylation of certain splicing factors

by Group II AtSRPKs induced their nucleocytoplasmic shuttling

(Wang et al., 2023). But the specific phosphorylation events and

upstream signals/signaling pathways driving the shuttling of SR

proteins to the nucleus and then to active splice sites remains to be

fully characterized.

Lastly, we find that U1 snRNPs are the most highly

phosphorylated snRNP group in Arabidopsis (Figure 1). U1

snRNPs are partly responsible for splice site selection (Lacadie and

Rosbash, 2005; Kondo et al., 2015), inducing the ordered assembly of

the remaining snRNPs to form the early and catalytic spliceosome

(Cho et al., 2011). Metazoan U1 snRNP performs functions beyond

pre-mRNA splicing, for instance, it is important for mRNA 3’ end

cleavage (Kaida et al., 2010), polyadenylation (Ashe et al., 1997; Berg

et al., 2012) and transcription (Chiu et al., 2018). The function of the

plant U1 snRNP is not well characterized, with some evidence of

human U1 snRNP interacting with SR proteins, suggesting a complex

interaction for splice site selection (Chiu et al., 2018). It is conceivable

that proteins involved in the fundamental steps of RNA splicing

would require extensive phosphorylation to ensure accurate and

timely initiation of AS.
1.3 Tissue specific phospho-regulation of
splicing-related proteins

In humans, there is a high degree of tissue-specific AS events in

which the inclusion levels of certain exons differ. Correspondingly,
Frontiers in Plant Science 05
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2007; Buljan et al., 2012). Therefore, we compiled the

phosphorylation events identified as occurring on splicing-related

proteins based on tissue type using the PTMviewer data repository

(Figure 2). Here, Arabidopsis tissues related to reproduction

(inflorescences and flowers) exhibit a high degree of splicing-

related protein phosphorylation. Many exogeneous and

endogenous cues determine flowering timing, including:

photoperiod (Kang et al., 2015; Nakamichi, 2015; Seaton et al.,

2015), temperature (Lee et al., 2020a; Cao et al., 2021; Jin and Ahn,

2021), and aging (Jung et al., 2016; Hyun et al., 2017). Further,

flowering is in part regulated through AS variants that either repress

or promote flowering, such as FLC and CONSTANS (CO) (Park

et al., 2019). The AS variants of these genes can be specifically

produced in response to environmental cues and thus require finely

tuned activation of specific splicing factors.

Surprisingly, root tissue was found to have the lowest number of

phosphorylation events. This may be due to: 1) root tissues being

under sampled in phosphoproteomic databases, or 2) regulatory

differences exist in roots relative to other tissues. Interestingly

however, the application of GEX1A and Pladienolide B (PB), both

spliceosome specific inhibitors in humans, produced short root

phenotypes in Arabidopsis seedlings (AlShareef et al., 2017;

Ishizawa et al., 2019), suggesting spliceosome function is integral

for root development. Although both studies explored the

transcriptional landscape changes in inhibited tissues, neither

study analyzed the phosphoproteome. Therefore, it may be

possible that fewer, more integral phosphorylation events are

necessary for normal root growth and development.
FIGURE 2

Number of unique protein phosphorylation events identified on splicing-related proteins in Arabidopsis tissues. Tissue-specific phosphosites were
collected from PTMviewer (Willems et al., 2019; https://www.psb.ugent.be/webtools/ptm-viewer/index.php).
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2 Concluding remarks

The study of AS and its regulation through PTMs represents an

exciting new avenue of research for plant biology and plant cell

regulation. Acquired proteomic data relating the intersection of

protein phosphorylation and AS has gained momentum over the

last five years, with the characterization of splicing-related protein

kinases now emerging. Through the comparison of metazoans to

plants, it is evident that many aspects of the AS regulatory

machinery is evolutionarily conserved, however, the extent to

which this machinery is functionally conserved remains to

be uncovered.
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