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Grapevines are economically important woody perennial crops widely cultivated

for their fruits that are used for making wine, grape juice, raisins, and table grapes.

However, grapevine production is constantly facing challenges due to climate

change and the prevalence of pests and diseases, causing yield reduction, lower

fruit quality, and financial losses. To ease the burden, continuous crop

improvement to develop superior grape genotypes with desirable traits is

imperative. Polyploidization has emerged as a promising tool to generate

genotypes with novel genetic combinations that can confer desirable traits

such as enhanced organ size, improved fruit quality, and increased resistance

to both biotic and abiotic stresses. While previous studies have shown high

polyploid induction rates in Vitis spp., rigorous screening of genotypes among

the produced polyploids to identify those exhibiting desired traits remains a

major bottleneck. In this perspective, we propose the integration of the genomic

selection approach with omics data to predict genotypes with desirable traits

among the vast unique individuals generated through polyploidization. This

integrated approach can be a powerful tool for accelerating the breeding of

grapevines to develop novel and improved grapevine varieties.

KEYWORDS

genomic selection, grapevine, in vitro, omics, plant breeding, polyploidization
1 Introduction

Grapevines (Vitis spp.) are woody perennial crops belonging to the Vitaceae family.

These are extensively cultivated for their fruits, which are used in wine production, along with

for grape juice, raisins, and table grapes. The wine industry has a substantial influence on the

global economy. Additionally, grapes also contain beneficial compounds, such as resveratrol

and flavonoids, which have been shown to have antioxidant, anti-inflammatory, and anti-
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cancer properties and help prevent chronic diseases (Sabra et al.,

2021; Zhou et al., 2022; Cuciniello et al., 2023). Currently, grapevine

breeding is facing several environmental challenges such as

unforeseen climate change and pervasiveness of diseases and pests

(Marıń et al., 2021; Töpfer and Trapp, 2022). On the other hand,

pests and diseases lead to substantial yield losses and abridged fruit

quality. To overcome these challenges, grapevine breeders develop

drought-tolerant or disease-resistant varieties. However, producing

these varieties via traditional breeding methods can be an extensive,

lengthy, and complex process. One possible alternative to these

traditional breeding methods can be artificial polyploidization. In

the context of grapevine breeding, artificially increasing the number

of sets of chromosomes and creating a polyploid can be a promising

tool to generate genotypes with novel genetic combinations not

present in the parental lines. Polyploidization can confer

agronomically desirable traits, such as enhanced organ size,

improved fruit quality, and increased resistance to both biotic and

abiotic stresses (Touchell et al., 2020; Gantait and Mukherjee, 2021;

Beranová et al., 2022; Jin et al., 2022; Bharati et al., 2023).

Furthermore, this method offers a range of advantages over

traditional breeding techniques, such as rapid production of

polyploid individuals, increased genetic diversity, cost-effectiveness,

and applicability across a broad spectrum of plant species.

While synthetic polyploidization has proven to be a potent tool in

breeding various plants, its full potential in grapevine breeding

remains untapped. However, there are some plants such as

Anemone sylvestris (Šedivá et al., 2019), Thymus vulgaris

(Homaidan Shmeit et al., 2020), and Lycium ruthenicum (Rao

et al., 2020), where polyploidation has been used previously.

Synthetic polyploidization can quickly generate a high frequency of

polyploids, however, it necessitates meticulous genotype screening to

screen for desired traits. Genotype screening after polyploidization

may be more straightforward for crops with shorter life cycles or

those that exhibit early expression of desired traits, such as herbs.

However, when it comes to perennial crops like grapevines, this

process demands substantial labor and financial investments. This

could potentially explain the limited research on screening genotypes

with desired agronomic traits, such as increased yield and tolerance to

abiotic and biotic stress, after polyploidization in any Vitis species.

The genomic selection (GS) of the produced polyploids can be

an interesting option, while predicting the desirable genotypes

following the artificial polyploidization. In general, GS involves

using genomic information to predict the breeding value of plants

and selecting the best individuals with desired traits of interest for

further breeding (Newell and Jannink, 2014; Bhat et al., 2016;

Crossa et al., 2017). In the context of grapevine breeding, the

breeders can easily envisage the genetic potential of an individual

polyploid plant for a given trait, bypassing the time-consuming and

labor-intensive screening methods. In the current perspective, we

will discuss the current state of the polyploidization in the

grapevines towards crop improvement. Additionally, we aim to

identify the potential of polyploidization and GS integration

towards predictive breeding of grapevines. This integrated

approach can be a powerful tool for accelerating the breeding of

grapevines to develop novel and improved grapevine varieties. This

will not only help breeders obtain genotypes with high agronomic
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value but will also reduce the time, labor, and capital investments

that would otherwise become futile if poorly performing genotypes

are obtained.
2 Polyploidization in grapevine
improvement: current status
and limitations

Polyploidization has been used as a tool for crop improvement

for many years. To date, this technique has been successfully used in

many species to obtain traits such as increased fruit size, enhanced

disease resistance, and tolerance to a variety of stresses (Šedivá et al.,

2019; Homaidan Shmeit et al., 2020; Rao et al., 2020). Recent studies

have focused on inducing polyploids in Vitis through various

methods and anti-mitotic agents. In vivo methods, which involve

treating the entire plant or a part of a plant, have been attempted for

polyploidization in Vitis species, but have remained less effective

compared to in vitromethods. For example, in a study by Kara et al.

(2018), the use of colchicine treatment in grape genotypes resulted

in no tetraploid plants being identified, except for one grape cv

(Trakya I ̇lkeren), which showed aneuploidy at a specific

concentration of colchicine. Similarly, in another study by (Kara

and Doğan, 2022), the application of oryzalin and N2O to cuttings

of 41B Chasselas and Fercal (Vitis vinifera L.) rootstocks did not

result in the production of any polyploid individuals through in vivo

methods. Kara and Yazar (2021) also examined changes in stomata

guard cells but found no differences at the ploidy level. More

recently, Kara and Doğan (2023) utilized Oryzalin and N2O to

treat a total of 1200 plants belonging to two grapevine cultivars,

yielding only one tetraploid genotype for each cultivar. These results

suggest that in vivomethods for polyploidization in Vitis species are

not an effective approach in obtaining high frequency polyploids.

Recent progress with in vitromethods offers a promising avenue

for inducing polyploids in many Vitis species. Acanda et al. (2015)

found that the in vitro treatment of colchicine at a concentration of

0.2% was most effective for producing tetraploid plantlets in Vitis,

with a tetraploid rate of 25%. Xie et al. (2015) also achieved

successful polyploidization in Vitis through colchicine treatment,

with a polyploid induction rate of 37.78%, when pre-embryogenic

calli were used. Additionally, Sinski et al. (2014) found that both

colchicine and oryzalin were effective in inducing polyploids in

Vitis. Although, oryzalin was found to be more effective than

colchicine in polyploid induction efficiency in Vitis spp., ranging

between 1.66-10.5% compared to 3.2-5% (Table 1). These recent

developments in polyploidization techniques in Vitis species could

have significant implications for improving crop yield and quality in

viticulture. Interestingly, polyploidization in Vitis species under in

vitro conditions without the use of anti-mitotic agents has also been

observed. Catalano et al. (2021) regenerated grapevine plants via

somatic embryogenesis and observed a 9% tetraploid induction rate,

even though no anti-mitotic agents were used to induce

polyploidization. The overall findings of the studies suggest that

in vitro chromosome doubling could be a viable approach to

generate polyploid grapevines with desirable characteristics, which
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TABLE 1 List of major artificial polyploidization attempts in various Vitis Spp.

Reference Vitis species

Anti-
mitotic
agent
used

Mode of
treatment

Findings

Kara and
Doğan (2023)

41 B [Chasselas (Vitis
vinifera L.) × (Vitis
berlandieri Planch.)]
and Fercal [(Vitis
vinifera L. × Vitis

berlandieri) × 333 EM
(Cabernet-Sauvignon
×Vitis berlandieri)]

Oryzalin and
N2O

in vivo

A total of 1200 plants for each genotype and each anti-mitotic agent were used for
polyploid induction. For the 41 B genotype, one mixoploid plant and one tetraploid
plant were obtained. For the Fercal genotype, four mixoploid plants and one tetraploid
plant were obtained.

Kara and
Doğan (2022)

41 B Chasselas (Vitis
vinifera L. × Vitis

berlandieri Planch) and
Fercal [(Vitis vinifera x
Vitis berlandieri) × 333

EM]

Oryzalin and
N2O

in vivo
The application of oryzalin and N2O to cuttings of 41B and Fercal rootstocks did not
result in the production of any polyploid individuals through in vivo methods.

Kara and
Yazar, 2022

Vitis vinifera L. (Eks ̧i
Kara & Trakya Il̇keren)

Colchicine
(were

applied to
meristematic

part of
seedling

twice a day
(in 8.30 and
18:00) for 3

days)

in vivo

The viability of shoot tips varied among the cultivars and decreased with increasing
colchicine doses, except for the application of 1 g L-1 on ‘Eks ̧i Kara’ and 5 g L-1 on
‘Trakya Il̇keren’. In ‘Eks ̧i Kara’, the lowest shoot tip viability rates compared to the
control (100%) were observed at doses of 4 g L-1 (31.77%), 6 g L-1 (47.26%), and 3 g L-
1 (51.84%). Colchicine was administered to seedlings from two grape cultivars, resulting
in polyploidy induction, depending on the application methods and genotypes. 5 mg/L
was found to be effective for Eks ̧i Kara and 6 mg/L was effective for Trakya Il̇keren
seedlings.

Kara and
Yazar, 2021

Vitis vinifera L. Colchicine in vivo
Examination through chloroplast counts and FC analyses of stoma guard cells revealed
that these changes did not result in any differences at the genomic level.

Catalano et al.,
2021

Vitis vinifera L.
(Catarratto, Frappato,
and Nero d’Avola)

none in vitro
Grapevine plants regenerated via somatic embryogenesis in this study observed a nine
percent tetraploid induction rate.

Kara and
Yazar, 2020

Eks ̧i Kara (Vitis
vinifera L.)

Colchicine in vivo

Eight different colchicine concentrations (0, 1, 2, 3, 4, 5, and 7.5 g L-1) were
administered twice daily (at 8:30 AM and 6:00 PM) to the meristematic part of seedlings
for a duration of 3 days, starting when the first true leaves appeared. Although, flow
cytometric analysis confirmed that no polyploids were obtained indicating the employed
approach was ineffective.

Kara et al.,
2020

41 B Chasselas (Vitis
vinifera L. × Vitis

berlandieri Planch) and
‘Trakya Il̇keren’, ‘ Gök
Üzüm’ and ‘Ekşi Kara’
grape cultivars (Vitis

vinifera L.)

N2O in vivo
Flowcytometric analysis confirmed that the application of N2O failed in polyploidy
induction in grapevine genotypes used.

Kara et al.,
2018

41 B Chasselas (Vitis
vinifera L.) x

(Vitis berlandieri
Planch.), Gök Üzüm

(Vitis vinifera
L.), Trakya Il̇keren
(Vitis vinifera L.)

Colchicine in vivo

The use of colchicine treatment in grape genotypes used by authors revealed that all
untreated seedlings had diploid ploidy levels (2n=2x=38), and no tetraploid plants were
identified. Only the grape cv Trakya Il̇keren responded to the colchicine treatment,
inducing aneuploidy at a concentration of 5 gL-1, resulting in a ploidy level of
2n=2x=40.

Xie et al., 2015 Vitis X Muscadinia
Colchicine
and oryzalin

in vitro

This research accomplished the successful generation of a significant proportion of
tetraploid plants from hybrids of 101-14 Mgt X M. rotundifolia cv. Trayshed. Colchicine
treatment was found most effective, with the highest polyploid induction rate of 37.78%
when pre-embryogenic calli were used for treatment.

Acanda et al.,
2015

Vitis vinifera L. cv.
Mencı´a

Colchicine in vitro
In this study, the most effective concentration of colchicine for producing tetraploid
plantlets was found to be 0.2%, resulting in a tetraploid rate of 25%. No mixoploid or
chimeric plantlets were observed during the experiment.

Chang et al.,
2014

Victoria grape (Vitis
vinifera L.)

Colchicine in vitro
The most effective method to enhance chromosome duplication efficiency was observed
by treating the third and fourth buds with 0.05% colchicine for 48 hours or 0.1%

(Continued)
F
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could potentially have significant implications for the grape

industry. A list of major attempts to induce polyploids in a

number of Vitis species has been summarized in Table 1.

While the successful induction of polyploids in grapevines has

been documented in several studies, only a few have assessed the

resulting population for desirable agronomical traits, where these

assessments have primarily focused on stomatal and leaf

characteristics (Yang et al., 2006; Sinski et al., 2014; Xie et al., 2015;

Kara et al., 2018; Kara et al., 2020; Catalano et al., 2021; Kara and

Yazar, 2021; Kara and Doğan, 2022; Kara and Yazar, 2022). A study

has also delved into epigenetic regulation through DNA methylation,

shedding light on how changes in DNA methylation patterns can

impact gene expression and phenotypic traits in polyploid grapevine

(Xiang et al., 2023). Surprisingly, the essential agronomical traits with

economic value, including vigor, yield, berry size, berry color, Brix

levels, as well as ripening period, have received minimal attention in

this context. One notable exception is the study by Notsuka et al.

(2000), which comprehensively evaluated the generated polyploids

with a specific emphasis on grape-related traits, recognizing that

fruit-related traits require a more substantial investment of time and

effort. In this study, the authors explored the potential of in vitro

chromosome doubling across 29 diploid, 3 triploid, and 1 tetraploid

grape accession of Vitis spp., successfully achieving high polyploid

inductions of up to 47%. Subsequent field trials of these polyploids

unveiled a diverse range of desirable traits, including vigorous growth,

improvements in skin color, and enhanced berry size. However, it is

noteworthy that the performance of induced polyploids varied

significantly depending on the cultivar. In some cases, the induced

polyploids exhibited no significant changes and were akin to the

source genotypes. These findings suggest that the strategy of

individually subjecting each polyploid to phenotypic screening for

desired traits may not be an efficient and economical approach. The

uncertainty in phenotypic outcomes highlights the immediate need to

enhance our ability to control and refine genotype screening

processes post-polyploidization.

With the advent of sequencing technologies, such as genomics,

and the discovery of markers associated with genes/QTLs of
Frontiers in Plant Science 04
interest, a more indirect selection and screening method called

Marker-assisted selection (MAS) has emerged (Xu and Crouch,

2008; Ben-Ari and Lavi, 2012). MAS offers a promising solution for

screening genotypes with desired traits after polyploidization, where

specific molecular markers can be utilized to identify genotypes

possessing the desired traits. Nonetheless, the presence of

complexities, such as genome duplication, can present challenges

when developing markers closely linked to the desired traits (Crossa

et al., 2017). Moreover, MAS usually relies on a handful of loci with

significant effects, which might fail to encompass the complete

range of genetic variations accountable for the trait in question

(Ben-Ari and Lavi, 2012; Olatoye et al., 2019). The influence of

genome duplication further complicates the situation. Therefore,

accurately predicting the performance of a polyploid genotype

based solely on its molecular markers can be a challenging task.

As compared to MAS, a more promising approach for polyploid

screening generated from polyploidization could be GS, which uses

genomic information to predict the performance of plants, enabling

breeders to select desirable traits more efficiently and accurately

(Newell and Jannink, 2014; Bhat et al., 2016). GS has been shown to

be more effective than MAS in identifying desirable genotypes due

to its enhanced accuracy, reduced reliance on specific markers,

incorporation of non-additive effects, and reduced cost and time

(Lorenz et al., 2011; Jonas and De Koning, 2013; Crossa et al., 2017).

However, the predictive accuracy of the employed model is crucial

for the effectiveness of GS, thus, careful selection and optimization

of the prediction model are necessary to ensure its effectiveness.
3 Choosing the best individual:
omics based genomic selection
for polyploid screening

In general, GS includes all the genomics-driven strategies to

select the best individuals from a testing population (TE) for

breeding. The TE and the training populations (TR) are the key
TABLE 1 Continued

Reference Vitis species

Anti-
mitotic
agent
used

Mode of
treatment

Findings

colchicine for 24 hours. The primary generation cells displayed doubling rates of 33%
and 31% respectively.

Sinski et al.,
2014

Vitis vinifera L.
(Crimson seedless and

BRS Clara)

Colchicine
and oryzalin

in vitro
In this study, colchicine and oryzalin were both effective in inducing polyploids.
Oryzalin was found to be more effective in polyploid induction efficiency ranging
between 1.66-10.5%, than colchicine with 3.2-5%.

Yang et al.,
2006

Vitis vinifera L. cv.
Sinsaut

Colchicine in vitro

A total of 29 plantlets generated from embryos treated with colchicine were examined.
Out of the 29 plantlets, five (which constituted 17.2%) were found to be tetraploid (2n =
2x = 76), while all the remaining plantlets were diploid (2n = 2x = 38). The application
of colchicine to somatic embryos did not result in the production of any chimeras.

Notsuka et al.,
2000

Vitis vinifera L. and
American hybrids

Colchicine in vitro

Axillary buds of growing shoots were used to perform in vitro chromosome doubling on
29 diploid, 3 triploid, and 1 tetraploid grape accession of Vitis spp. The success rates

varied among the accessions, with the range being from 6% (for ‘Hakata White’) to 47%
(for ‘Pusa Seedless’) in V. vinifera, and from 4% (for ‘Fuefuki’) to 35% (for ‘Prima

Seedless’) in the American species.
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components of any genomic selection process. While TE refers to

individuals with only genomic data, TR includes the group of

individuals for whom both genomic and phenotypic data are

available. In the current context, the individuals generated via

polyploidization following genotyping will serve as the TE.

Previously, traditional techniques such as PCR-based techniques

and single nucleotide polymorphism (SNP) genotyping arrays have

been used (Viana et al., 2016; Brault et al., 2021; Brault et al., 2022).

However, in recent years, with the significant advancement and

reduction in sequencing costs, crop breeders have shifted their focus

towards omics-based strategies. The main advantage of multi-omics

data in the genomic selection approach is its ability to enhance

prediction accuracy by capturing diverse molecular interactions and

factors influencing phenotypic traits (Ye et al., 2020; Sen et al.,

2023). Although utilization of multi-omics data for GS in grapevine

is lacking, transcriptome and metabolome data have been used for

GS in maize breeding (Guo et al., 2016; Westhues et al., 2017).

Omics data such as genomics, transcriptomics, andmetabolomics

can provide valuable as well as novel insights on how to improve the

precision of genomic relationship estimation in polyploids. Since the

availability of the grapevine genome (initially in 2007 and later re-

sequenced in 2019), omics-based studies have been extensively used

to study polyploidy and heterozygosity in grapevines (The French–

Italian Public Consortium for Grapevine Genome Characterization,

2007; Liang et al., 2019). For example, in a recent study conducted by

(Han et al., 2023), the authors used reference genome-based RNA-

seq data analysis to identify the probable pathways involved in the

freezing response in grapevines. Likewise, a few studies were

conducted on grapevine breeding using various omics technologies

(Wang et al., 2021; Savoi et al., 2022). In addition to genomics,

metabolomics, and transcriptomics, derived and innovative omics

(such as epigenomics and epitranscriptomics) can also be used

for comprehensive understanding of the complex epigenetic

modifications in the induced polyploids. Recently, there has been

growing recognition of the important roles of epigenetic regulations

and memories in the stress response of crops, including grapevines

(Atanassov et al., 2022; Dal Santo et al., 2022; Jia et al., 2023).

Epitranscriptomics, which deals with chemical modifications on

RNA molecules, is yet to be applied in viticulture. However, there

are some instances where epitranscriptomic study has been used for

crop improvement (Hou and Wan, 2021). Nevertheless, despite the

fact that these omics technologies can provide substantial insights

into the molecular functioning of the genes of interest in grapes, they

have several disadvantages, such as an inadequate view of biological

processes. Crop traits and performance depend on multifaceted

interactions between different biological components. Hence, the

results obtained from single omics may miss the full system-level

understanding required for effective understanding of the novel and

influenced traits among the polyploid population. In this scenario,

we recommend using more informative multi-omics data to get a

comprehensive understanding of the grapevine traits and their

genetic basis prior to TE selection. While multi-omics for breeding

purposes grapevine are limited, these strategies are extensively used

in other plant species such as rice (Sun et al., 2022), and maize

(Farooqi et al., 2022). More details concerning the multi-omics in
Frontiers in Plant Science 05
plant breeding can be found in Mahmood et al., 2022. In the context

of grapevine breeding, data derived from multi-omics analyses can

be used to identify the major genes that might enhance

environmental adaptation and aid in the selection of crucial

agronomic traits. Inferring the exact link between the genes and

the final phenotype might be difficult due to the lack of middle omics

(from genomics to phenomics). Integration of genome-wide

association studies (GWAS) with other omics (such as

metabolomics and transcriptomics) will reduce the variety of

candidate genes and aid system analysis of gene function. For

instance, GWAS integration with transcriptome-wide association

studies (TWAS) can be used to discover expression QTLs (eQTLs)

(fine-mapping technique) in the induced polyploid grapevines. This

approach can be an excellent option to establish the relationship

between transcript abundance and phenotypic variance while

simultaneously gaining insights into the regulatory functions of

genetic variations responsible for phenotypic changes. Earlier, the

GWAS-TWAS integrative approach was used in rice (Anacleto et al.,

2019; Mahmood et al., 2022) and cotton (Li et al., 2020; Mahmood

et al., 2022). Combined GWAS and metabolome-wide association

studies (MWAS) can simultaneously screen a vast number of

grapevine accessions for possible associations between their

genomes and diverse metabolites. This collaborative approach will

offer significant insights into the genetic basis of complex traits and

the level of metabolic diversity within the population. Furthermore,

the integration of the eQTLs and metabolite quantitative trait loci

(mQTLs) can also complement GWAS while predicting the

phenotypic outcomes of the induced polyploid genotypes. This

integration contemplates the variations in mRNA expression and

metabolite production and will provide novel insights into the

eventual performance of the produced varieties in a comparatively

short time period, which otherwise would be time-consuming. The

multi-omics datasets can be integrated via correlation-based

integration, network-based integration, and pathway-based

integration. In the context of multi-omics data integration,

correlation-based methods aim to identify patterns of co-

expression across different omics datasets, whereas network-based

integration focuses on creating biological networks representing

various interactions between biomolecules, followed by the

integration of omics data onto these networks. The pathway-based

integration method focuses on mapping the omics data onto

predefined biological pathways. Even though these methods have

their own advantages and disadvantages, in practice, the choice of

the appropriate method depends on the research question and the

availability of data. Often, a combination of these methods can be

used for a more comprehensive understanding at the organismal

level. More details on systematic multi-omics data integration

approaches can be found in Fabres et al., 2017 and Jamil et al., 2020.

The genotyping of the TR population is followed by its

phenotyping. To ensure accurate phenotyping, it’s important to

carefully design experiments and select appropriate traits to

measure. Selection of traits and prioritization should be relevant

to the goals of crop improvement, such as yield, disease resistance,

drought tolerance, or nutritional quality. The previous GS studies

on grapevines assessed various traits related to agronomical
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characteristics, drought tolerance, and yield components. These

studies aimed to enhance understanding of these traits’ genetic

architecture and identify molecular markers associated with their

variation (Viana et al., 2016). Although data complexity increases,

including more traits might provide a broader representation of

phenotypic variation, allowing for a more comprehensive

assessment of an individual’s genetic potential. For instance,

(Flutre et al., 2022) phenotyped 279 Vitis vinifera training

cultivars and assessed a total of 127 traits. Additionally, they also

combined several other traits, making a total of 152. Despite using

an extensive dataset, the study achieved high prediction accuracy

for 50% of the response variables. Once phenotypic and genotypic

data have been obtained from the TR population, they can be

employed to construct prediction models, using phenotype as the

response and genotype as the predictor. To date, several parametric

models such as genomic best linear unbiased prediction (GBLUP),

Bayesian regression-based methods (like BayesA), sparse linear

mixed model methods (like BayesB), and Bayesian least absolute

shrinkage and selection operator (BLASSO) methods (like BayesC)

have been developed for GS. These models address different

challenges and offer unique advantages. For a comprehensive

understanding of these statistical models, one can refer to

Budhlakoti et al. (2022). Previous GS studies in grapevines

compared different prediction models and evaluated their

performance. For example, Flutre et al. (2022) compared two

multi-SNP models and determined that the dense RRBLUP/

GBLUP model was a relevant default, while the sparse varbvs

model achieved higher accuracy for traits closer to genetic

variation. Brault et al. (2022) used Ridge Regression (RR) and

LASSO models and found that predictive ability varied depending

on the scenario and trait. In the current context, BLASSO could be
Frontiers in Plant Science 06
an appropriate option as it provides a probabilistic framework that

can accommodate uncertainty in variable selection, making it useful

when dealing with multiple omics layers where interactions may be

complex. Although it is important to note that each model has its

strengths and weaknesses, the selection of a suitable model depends

on specific objectives, genetic architecture, and available data.

Comparisons and evaluations of different models are often

recommended for optimal performance in GS. Following the

model’s development, the next step is to select and validate the

model. After a prediction model has been prepared and validated, it

can be used to predict the Genomic Estimated Breeding Values

(GEBVs) of individuals in the breeding population. The GEBVs can

then be used as a parameter to rank individuals in the breeding

population according to their predicted genetic merit for the trait of

interest. Figure 1 describes the potential screening of elite genotypes

through omics-integrated genomic selection in a polyploid

population generated via in vitro polyploidization.
4 Current challenges
and the way forward

Artificial polyploidization in grapevines presents a bottleneck in

plant breeding, but the use of GS for genotype screening following

polyploidization offers a promising approach to address this issue.

Although, for successful prediction of elite polyploid genotypes, it is

crucial to consider the potential shortcomings to avoid or address

them. Genotyping the produced grape polyploids via omics-based

GS can introduce unique challenges, such as integration of the

multi-omics data along with their proper management and

interpretation and functional annotation and biological relevance
FIGURE 1

Flow diagram illustrating potential elite genotype screening via omics integrated genomic selection among polyploid population generated through
in vitro polyploidization. The diagram depicts the various phases involved in genomic selection. By utilizing genotypic and phenotypic data acquired
from the training population, the genomic selection models can be optimized, enabling the estimation of breeding values for superior genotypes.
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of omics markers. Multi-omics datasets, which are often produced

using diverse technologies and platforms, lead to data

heterogeneity, besides producing a high-dimensional and complex

data landscape. Hence, despite being informative and precise, the

volume and complexity of the data make its management difficult,

which might require dedicated tools and algorithms which are

competent of handling the dimensionality and complexity of

multi-omics data. In addition to these, multi-omics datasets

usually contain a large number of variables and features, which

complicates the downstream analyses. Besides data complexity, we

also recommend focusing on reference genome availability and

trait-marker associations. Alongside reference genome availability,

detection of the biologically significant links between omics markers

and complex traits in polyploids can also be intricate.

Synthetic polyploids are known to have better adaptability to a

wide range of environments compared to their diploid counterparts.

However, it is important to assess the Genotype × Environment

(G×E) interactions, as they can greatly influence the predictive

potential of GS (Mulder, 2016; Jarquıń et al., 2017). Additionally,

G×E is particularly relevant in crops such as grapevines, which are

highly sensitive to environmental factors that could influence both

the quantitative and qualitative characteristics of the crop (Dinu

et al., 2021; Dal Santo et al., 2022). Another potential challenge is

that, while traditional models show success in prediction, they often

overlook vital non-additive effects like genomic imprinting and

epistasis, impacting prediction accuracy (Jackson and Chen, 2010;

Endelman et al., 2018; Varona et al., 2018; Hunt et al., 2020).

Artificially induced polyploids exhibit substantial non-additive

effects on phenotype, particularly notable in grapevines

propagated by cutting and grafting, influencing traits and stress

responses (Tan et al., 2023). Understanding and utilizing these

additive effects is crucial for effective genomic prediction in

grapevine breeding. For that, machine learning models like

random forests, support vector machines, and deep neural

networks could be instrumental due to their ability to capture

complex marker-trait relationships, select markers, and handle

noise (Heslot et al., 2014; Crossa et al., 2017; Wang et al., 2018;

Van Dijk et al., 2021). Despite several challenges, integrated

polyploidization and GS strategy could be an excellent option for

grapevine breeding. An updated and detailed understanding of the

associated challenges will be the main key. Active collaboration

between the experts in genomics, bioinformatics, statistical genetics,
Frontiers in Plant Science 07
and grape breeding along with innovations in technology as well as

data analysis methods will definitely enable us to overcome these

impediments and leverage the full potential of omics-based GS in

grape polyploids.
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Tiss Organ Cult 123, 547–555. doi: 10.1007/s11240-015-0859-3

Anacleto, R., Badoni, S., Parween, S., Butardo, V. M., Misra, G., Cuevas, R. P., et al.
(2019). Integrating a genome-wide association study with a large-scale transcriptome
analysis to predict genetic regions influencing the glycaemic index and texture in rice.
Plant Biotechnol. J. 17, 1261–1275. doi: 10.1111/pbi.13051

Atanassov, H., Parrilla, J., Artault, C., Verbeke, J., Schneider, T., Grossmann, J., et al.
(2022). Grape ASR-silencing sways nuclear proteome, histone marks and interplay of
intrinsically disordered proteins. IJMS 23, 1537. doi: 10.3390/ijms23031537
Ben-Ari, G., and Lavi, U. (2012). “Marker-assisted Selection in Plant Breeding,” in
Plant Biotechnology and Agriculture (Cambridge, MA: Academic Press), 163–184.
doi: 10.1016/B978-0-12-381466-1.00011-0
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Kara, Z., and Doğan, O. (2023). Mutagenic effects of nitrogen protoxide and oryzalin
on “41 B” and “Fercal” grapevine rootstocks seedlings. Breed. Sci. 73, 23003.
doi: 10.1270/jsbbs.23003

Kara, Z., and Yazar, K. (2020). In vivo polyploidy induction by colchicine in grape
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Kara, Z., Yazar, K., Doğan, O., Sabir, A., and Özer, A. (2020). Induction of ploidy in
some grapevine genotypes by N 2 O treatments. Acta Hortic., 239–246. doi: 10.17660/
ActaHortic.2020.1276.34

Li, Z., Wang, P., You, C., Yu, J., Zhang, X., Yan, F., et al. (2020). Combined GWAS
and eQTL analysis uncovers a genetic regulatory network orchestrating the initiation of
secondary cell wall development in cotton. New Phytol. 226, 1738–1752. doi: 10.1111/
nph.16468

Liang, Z., Duan, S., Sheng, J., Zhu, S., Ni, X., Shao, J., et al. (2019). Whole-genome
resequencing of 472 Vitis accessions for grapevine diversity and demographic history
analyses. Nat. Commun. 10, 1190. doi: 10.1038/s41467-019-09135-8

Lorenz, A. J., Chao, S., Asoro, F. G., Heffner, E. L., Hayashi, T., Iwata, H., et al. (2011).
“Genomic Selection in Plant Breeding,” in Advances in Agronomy (Cambridge, MA:
Academic Press), 77–123. doi: 10.1016/B978-0-12-385531-2.00002-5

Mahmood, U., Li, X., Fan, Y., Chang, W., Niu, Y., Li, J., et al. (2022). Multi-omics
revolution to promote plant breeding efficiency. Front. Plant Sci. 13. doi: 10.3389/
fpls.2022.1062952
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