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The viability of Zea mays seed plays a critical role in determining the yield of corn.

Therefore, developing a fast and non-destructive method is essential for rapid

and large-scale seed viability detection and is of great significance for agriculture,

breeding, and germplasm preservation. In this study, hyperspectral imaging (HSI)

technology was used to obtain images and spectral information of maize seeds

with different aging stages. To reduce data input and improve model detection

speed while obtaining more stable prediction results, successive projections

algorithm (SPA) was used to extract key wavelengths that characterize seed

viability, then key wavelength images of maize seed were divided into small

blocks with 5 pixels ×5 pixels and fed into a multi-scale 3D convolutional neural

network (3DCNN) for further optimizing the discrimination possibility of single-

seed viability. The final discriminant result of single-seed viability was determined

by comprehensively evaluating the result of all small blocks belonging to the

same seed with the voting algorithm. The results showed that the multi-scale

3DCNN model achieved an accuracy of 90.67% for the discrimination of single-

seed viability on the test set. Furthermore, an effort to reduce labor and avoid the

misclassification caused by human subjective factors, a YOLOv7 model and a

Mask R-CNN model were constructed respectively for germination judgment

and bud length detection in this study, the result showed that mean average

precision (mAP) of YOLOv7 model could reach 99.7%, and the determination

coefficient of Mask R-CNN model was 0.98. Overall, this study provided a

feasible solution for detecting maize seed viability using HSI technology and

multi-scale 3DCNN, which was crucial for large-scale screening of viable seeds.

This study provided theoretical support for improving planting quality and

crop yield.

KEYWORDS

viability detection, maize seeds, hyperspectral imaging, YOLOv7 model, 3D convolution
neural network
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1 Introduction

Single-seed sowing is a crucial strategy to boost corn

production, save seeds, and reduce labor, but it demands high-

quality seeds (Li et al., 2017). On October 11th, 2020, a new

standard has been released by China, which raises the

germination rate index for single-seed sowing from 85% to 93%.

The viability is a critical indicator for evaluating the quality and

practicality of seed. Assessment of seed viability could ensure each

seed has the potential for germination and healthy growth and

promotes the popularization of single-seed sowing. This not only

facilitates mechanized sowing and reduces the laboriousness of

manual interplanting and seedling transplantation, but also

significantly reduces the amount of seed used and conserves a

considerable amount of seed production area (Liang et al., 2020).

Therefore, the determination of seed viability is of utmost

importance in reducing the cost and time loss resulting from

planting failures and conserving human resources.

Seed viability is a quality characteristic at the individual level

rather than a quantitative trait at the population level. Loss of

viability among individuals in the same population is not

synchronous, making it challenging to detect the viability of

single-seed. According to the International Seed Testing

Association (ISTA) rules (Association, I.S.T, 1999), common

methods for seed viability detection include germination and

staining (Cheng et al., 2023). The conventional germination

method is the most accurate, but it is time-consuming and

requires a lot of material resources. On the other hand, staining is

only suitable for a small number of samples. Therefore, it is

necessary to develop a rapid-nondestructive technique for single-

seed viability detection in large quantities.

In the field of seed quality detection, hyperspectral imaging

technology has been widely utilized. However, research on seed

viability detection is relatively limited. Jannat Yasmin et al. (2022)

presented an online detection system of watermelon seed viability

based on longwave near-infrared (LWNIR) HSI, demonstrating its

potential application in predicting seed viability. Wang et al. (2021)

developed the discrimination models of seed viability using the

feature wavelengths and full wavelengths of the visible and

shortwave near-infrared (Vis-SWNIR), the result revealed that

both models attained an accuracy rate surpassing 95%, suggesting

that the seeds with different aging stages exhibited unique spectral

features, and the characteristic wavelengths can effectively provide

the key information of Zea mays seed quality. Pang et al. (2021)

conducted a germination experiment on maize seeds with different

aging stages, a 2D convolutional neural network (2DCNN) model

was developed by combing deep learning algorithms with

hyperspectral technology. The accuracy of this model reached

99.96%, which was significantly higher than machine learning and

one-dimensional convolutional neural network (CNN). It was

worth pointing out that the model demonstrated a relatively fast

convergence speed, which highlighted the feasibility and

effectiveness of combining deep learning with hyperspectral

technology to determine the viability of single-seed. Ambrose

et al. (2016) investigated the feasibility of using HSI technology to

differentiate the viability of maize seeds. One group of maize
Frontiers in Plant Science 02
samples was subjected to microwave heat treatment, while the

other group served as the control. PLS-DA was employed to

classify the heat-treated (aged) and untreated (normal) maize

seeds. The results showed that the classification model achieved

the highest classification accuracy in the LWNIR region, with

calibration set accuracy of 97.6% and prediction set accuracy of

95.6%. These studies achieve high accuracy by predicting the aging

level or treatment condition of seeds instead of the actual results of

germination experiments. And they mainly rely on overall image

information for seed viability classification. However, they overlook

the significance of local information within seeds and fail to

consider subtle variations and characteristics in different

seed regions.

Generally, the evaluation of germination rate of seeds mainly

depends on manual labor, which is time-consuming and

cumbersome. Zhao et al. (2022) proposed a detection method for

the germination rate of rice seeds using deep learning models,

which took an average of 0.011 seconds for each image while

achieving a mAP of 0.9539, meeting the demands of real-time

detection, indicating that the YOLO-r model had great potential for

rapidly and precisely determining the germination status of seeds.

Bai et al. (2023) developed an improved discriminative approach for

the detection of seed germination using YOLOv5. This technique

enables the swift evaluation of parameters such as wheat seed

germination rate, germination potential, germination index, and

average germination days.

The emergence ability of seedlings is crucial for seed growth and

crop yield improvement (Cui et al., 2020). In recent studies,

significant progress has been made in correlating seed germination

ability and seedling growth through various measurement methods.

However, traditional manual measurement techniques for assessing

parameters like bud length have been found to be inefficient and

prone to errors due to the complex and twisted nature of buds. To

address this issue, Adegbuyi and Burris (1988) found there was a

significant correlation between seed germination ability and seedling

growth by measuring comprehensive growth parameters. However,

manual measurement method of bud length is inefficient and error-

prone due to their curved and twisted nature. Gaikwad et al. (2019)

developed a semi-automated tool for measuring leaf length, width,

and area. Abdelaziz Triki et al. (2021) used the Mask R-CNN

algorithm to effectively segment and measure leaf characteristics

and obtained an error rate of around 5%. An enhanced algorithm

based on the mask RCNN was introduced by Shen et al. (2023) to

recognize defective wheat kernels. The experimental outcomes

showed that this refined algorithm facilitated quicker and more

precise detection of unsound kernels, effectively tackling issues

linked to kernel adhesion. Masood et al. (2021) propose an

automated method that utilizes the Mask RCNN model to achieve

precise localization and segmentation of brain tumors. Cui et al.

(2022) constructed a recognition model using hyperspectral data and

feature extraction algorithms to predict maize root length, showing a

significant correlation between root length and viability. Therefore, it

is of great significance to measure and predict the seed viability using

computer technology.

The above study highlighted the significance of seed viability

determination and emphasized the need of developing rapid and
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non-destructive technology for single-seed viability detection. HSI

has been established as a useful tool for seed quality detection, and

the integration of deep learning and hyperspectral technology can

establish an effective seed viability detection model. However,

previous studies commonly used relatively simple models, and

lacking the prediction model of maize seeds viability developed

by 3DCNN and hyperspectral images. This study proposed an

improved method for identifying the viability of maize seeds

based on germination experiments. The aim of the study is to

explore the potential of using hyperspectral images and 3DCNN to

identify the viability of maize seeds. Specifically, the objectives are

to: (1) select characteristic wavelengths that represent seed viability,

(2) combine HSI with 3DCNN to establish the optimal classification

model for maize seed viability, (3) evaluate the feasibility of using

YOLOv7 model instead of the human eye to determine the seed

germination status, (4) evaluate the ability of Mask R-CNN in bud

segmentation and bud length prediction.
2 Materials and methods

2.1 Maize sample preparation

2.1.1 Aging experiment
Due to the high quality and the resistance to multiple stressors,

“Jingke 968”maize is extensively cultivated in eastern and northern

China. Therefore, it was selected as the experiment sample in this

study. To ensure the accuracy of the experiment, seeds with uniform

size and shape were manually selected, then all seeds were

disinfected by soaking them in a 0.5% sodium hypochlorite

solution for 5 minutes, followed by rinsing with distilled water

five times, and air-dried under natural conditions.

To simulate the natural aging process of seeds, the experiment

samples were artificially aged. All seeds were exposed to high

temperature and high humidity conditions (45 °C and a relative

humidity of 95%) and stirred twice a day to ensure uniform

exposure (Zhang et al., 2020). 150 maize seeds were taken out

randomly at aging 2, 4, 6, and 8 days, respectively. Additionally, 150

untreated seeds were selected as the control group (CK). Therefore,

a total of 750 maize seeds within five aging stages were obtained and

used for subsequent experimentation.

2.1.2 Hyperspectral imaging system
Two HSI systems, the Vis-SWNIR and LWNIR, have been built

in the Intelligent Detection Laboratory of the China Agricultural

Equipment Technology Research Center (Fan et al., 2018). The Vis-

SWNIR system is capable of acquiring hyperspectral images within

the wavelength range of 327-1098 nm, encompassing 1000 spectral

variables, while the LWNIR system can capture images within the

range of 930-2548 nm, containing 256 spectral variables. The Vis-

SWNIR system includes an imaging spectrometer, an electron-

multiplying charge-coupled device camera with a resolution of

502×500, a camera lens, and a spectraCube data acquisition

software. Similarly, the LWNIR system includes an imaging
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spectrometer, a charge-coupled device camera with a resolution of

320×256, a camera lens, and a spectral acquisition software (Tian et

al., 2021). And the acquisition software of both systems was

developed using LabVIEW (National Instruments Inc., Austin,

TX, USA) to facilitate the acquisition of spectral images, as well

as to manage the camera and motor operations. Both systems share

two 300-watt halogen lamps to provide stable illumination. In

addition, an electrically operated moving platform and a

computer are available for sample placement (Capable of

accommodating up to 96 samples simultaneously) and

hyperspectral image acquisition (Figure 1A) (Liu et al., 2022).

To ensure the accuracy and reliability of the hyperspectral

images (Eraw), calibration operation is essential to eliminate the

effects of uneven illumination of the light source and camera dark

current changes (An et al., 2022). The calibration operation

involved using a white reflection board (with a reflectance of

99%) (Ew) to acquire a standard white reference image in the

same sampling environment as the sample, while turning off the

light source and covering the lens to obtain a black reference image

(with a reflectance of 0%) (Ed). The calibrated image can be

calculated using the following formula:

Ec =
Eraw − Ed
Ew − Ed

(1)

After calibration, in the Vis-SWNIR region, a subset of 347

spectral variables within the 420-1000 nm range was selected for

further analysis, considering the abundance of spectral data and the

presence of duplicate information in adjacent spectra. On the other

hand, in the near-infrared region, due to the limited number of

available bands, all spectral variables (256) were directly included in

the analysis. To separate maize seeds from the background, a mask

was applied to segment the hyperspectral image. The gray-scale

images at 801 nm and 1098 nm were selected as the mask images for

the Vis-SWNIR and LWNIR bands, respectively. The average

spectral curves were obtained by calculating the mean reflectance

under the mask. Lastly, in order to eliminate the influence of the

instrument, the Savitzky-Golay (SG) and Standard Normal Variate

(SNV) methods were utilized to preprocess the spectra.

2.1.3 Standard germination test
A transparent box measuring 25cm×25cm was used as a

germination chamber, and 75 seeds were placed in each box. A

total of 10 boxes were used in the experiment. Prior to the

germination test, the germination boxes were sterilized with 75%

ethanol (Suksungworn et al., 2021), and three layers of gauze were

placed in each germination box to provide continuous moisture for

the seeds. A black gauze was placed on the top layers as the

background for photography (Figure 2A). An equal amount of

distilled water was added to each box, and the temperature was set

to 25°C with 12-hour intervals of light and dark (Figure 2B).

Throughout the 7-day germination experiment (Long et al.,

2022), the germination progress of maize seeds was monitored

daily at specific time intervals. According to the ISTA standard, the

germination rate was determined (Wang et al., 2022c).
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2.1.4 RGB image acquisition
RGB images of maize seeds were captured using BASLER

industrial cameras (acA1920-25um/uc, BASLER AG, Germany,

2.4 MP,100 fps) during germination test (Figure 2D) (Shen et al.,

2023). An adjustable camera platform was built to ensure

consistency of the images and prevent camera shake. The position

of the germination box relative to the lens was kept fixed during

each image capture. Indoor lighting was turned on and curtains

were drawn for each capture. After placing the seeds into the boxes

(Day 0), images of each box were immediately captured.

Subsequently, images were captured every 15 hours for 7

consecutive days (Figure 2C). The dataset used in this study

consisted of a total of 3000 maize seeds (All the captured RGB

images collectively contain 3000 seeds). Among them, 2250 seeds

were designated as training samples, while the remaining seeds were

allocated to the test set.
2.2 Data processing

2.2.1 Successive projections algorithm
Hyperspectral data typically consists of numerous bands, and

certain bands may exhibit high correlation or contain redundant
Frontiers in Plant Science 04
information (Han et al., 2022).When training 3DCNN with full-

band data, it will lead to a significant increase in the number of

networks training parameters, resulting in a more complex model.

This phenomenon is commonly referred to as the curse of

dimensionality. (Köppen, 2000). However, band selection (Sun

and Du, 2019) allows retaining spectral bands that are closely

related to seed vigor assessment while removing irrelevant bands,

thereby enhancing the feature extraction and discriminative

capabilities of the model.

Additionally, the use of dimensionality reduction data sets can

effectively reduce the complexity of the model, mitigating the risk of

overfitting and enhancing the model’s generalization ability and

stability (Aloupogianni et al., 2023). Moreover, fewer computing

resources are required during model training and inference, leading

to a significant improvement in the computational efficiency of the

model (XingJia et al., 2022).

Successive projections algorithm is a classical band selection

method that can map high-dimensional spectral data to a low-

dimensional space through multiple projections(de Almeida et al.,

2018). SPA is a forward iterative search method used for selecting

spectral information with minimal redundancy to address

collinearity issues. The steps of SPA are shown in Table 1. The

SPA is widely used in hyperspectral image processing attributed to
B

C

D

A

FIGURE 1

Diagram of the 3DCNN for hyperspectral image classification (A) Hyperspectral image acquisition device, (B) Regional voting, (C) Conventional
3DCNN model, (D) Multi-scale 3DCNN model.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1248598
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Fan et al. 10.3389/fpls.2023.1248598
its advantages of fast computation speed and easy implementation

(Chen et al., 2023b). Therefore, the SPA was used in this study to

perform feature selection on the processed average spectra of Vis-

SWNIR and LWNIR, in order to perform dimensionality reduction

on the hyperspectral data.

2.2.2 Machine learning
Support Vector Machine (SVM) (Cortes and Vapnik, 1995) is a

powerful algorithm for classification and regression that finds an

optimal hyperplane to separate data points of different classes. It

handles high-dimensional datasets, avoids overfitting, and can handle

non-linear problems using kernel functions. K-Nearest Neighbor

(KNN) (Zhang, 2022) is a basic algorithm that selects the K nearest

samples based on their feature values and uses their labels as

predictions. Subspace Discriminant Analysis (SDA) (Zhao and

Phillips, 1999) is a pattern classification method that aims to find a

low-dimensional subspace to maximize the separation between
Frontiers in Plant Science 05
different classes. In this study, the aforementioned machine

learning methods were used to classify the viability of maize seeds

at different aging stages for optimal classification accuracy.

2.2.3 Deep convolutional neural network
The CNN combines the concepts of convolutional filtering and

neural networks by utilizing local receptive fields and weight

sharing to reduce the number of network parameters and speed

up model training (Ghaderizadeh et al., 2021). Compared to the

widespread use of two-dimensional convolution, three-dimensional

convolution is less commonly used in practice. However, HSI

contain rich spectral information, and using two-dimensional

convolution may make the interband correlations of HSIs

underutilized (Ge et al., 2020). To address this issue, this study

introduced a 3DCNN, which can thoroughly extract feature

relationships across different feature channels (Figure 1C),

thereby enabling it to concurrently extract integrated spectral and

spatial features from hyperspectral imagery (Sun et al., 2022).

Before inputting hyperspectral images into the network,

standardization is performed to ensure that the data is within the

same scale and range, enabling the network to learn weights faster and

converge more easily during training. Moreover, data standardization

can help avoid the problems of gradient disappearance or explosion,

and improve the stability and generalization ability of the network. To

obtain multiple convolutional features of HSI, multi-scale convolution

is employed in the same convolutional layer, which can acquire both

global and local information. Four different convolution kernels of

3×3×3, 3×3×5, 3×5×5, and 5×5×5 were selected to extract feature

information and fused on the channel. This method can enhance the

classification accuracy of the model. As illustrated in Figure 1D, each
B

C
D

A

FIGURE 2

Diagram of the standard germination experiment (A) Corn seed samples, (B) Germination of seeds in a climate chamber, (C) Sprouted seeds, (D) RGB
iamge acquisition device.
TABLE 1 Successive projections algorithm.

Input:Dataset with features and target variable
Output:Feature subset for analysis

Step 1: For each feature in the dataset:
a. Compute projection coefficients with respect to the target variable.
b. Store the computed coefficients.

Step 2: Initialize an empty feature subset.
Step 3: Repeat until desired subset size is reached or stopping criterion met:

a. Find the feature with the maximum projection coefficient.
b. Add the selected feature to the feature subset.
c. Project out the influence of selected features on remaining features.
d. Recalculate projection coefficients of remaining features.
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convolution kernel in the first convolution module has 16 filters, each

kernel in the second convolution module has 32 filters, and each kernel

in the third convolution module has 64 filters. The activation function

in the three-dimensional convolution module uses Rectified Linear

Unit (RELU) and is compressed by the pooling layer to reduce the

amount of data and parameters, as well as alleviate the overfitting

phenomenon. To ensure that the features extracted by different

convolution kernels in the same module can be effectively connected,

different parameters need to be set according to different situations,

such as stride and padding. Finally, the output is produced through 1

fully connected layer and 1 output layer, and the output layer employs

the SoftMax activation function.

To extract features from hyperspectral images of maize seeds at

a more microscopic level and increase the amount of data, a window

size of 5×5 was selected for segmentation (Figure 1B). To eliminate

the influence of background on classification, small blocks

containing 0-pixel points were discarded. As the size of maize

seeds varies, the number of blocks obtained from different segments

of maize seeds is also inconsistent. To address this issue, this study

employed a majority principle labeling aggregation method,

as Table 2.

In this study, the germination experiment showed that 404

viable samples and 346 nonviable samples were collected from 750

seeds. Given that the hyperspectral images were collected in a

sequential manner based on the aging gradients of the seeds, it

was crucial to maintain a balanced distribution of germinated and

non-germinated samples in the test set. Therefore, a representative

test set was carefully selected, consisting of 75 seeds, including the

first seed, the 10th seed, the 20th seed, and so on. The remaining 675

seeds were allocated for the training phase. Through this meticulous

approach, it was ensured that the test set encompassed samples

from diverse categories, enabling an accurate evaluation of the

classification model’s performance.

2.2.4 Establishment of Mask R-CNN model for
bud length detection

In order to measure the length of maize seed bud, the Mask R-

CNN (He et al., 2017) (With resnet50_fpn as backbone) model was
Frontiers in Plant Science 06
utilized to segment the bud from single-seed image firstly, then a

skeleton extraction algorithm was applied to extract the skeleton of

the bud (Figure 3A). Next, the bud length detection algorithm was

used to remove the branches in the skeleton for obtaining the

central skeleton image. Finally, the actual bud length was calculated

by converting pixels to actual length (Figure 3B).

Mask R-CNN is a deep learning model that combines object

detection and instance segmentation. It extends Faster R-CNN by

generating binary masks for each region of interest (ROI), achieving

pixel-level segmentation. The network consists of three main

components: a backbone network, a Region Proposal Network

(RPN) responsible for generating candidate object regions, and

two parallel branches dedicated to object detection and mask

prediction. Mask R-CNN excels in instance segmentation, object

detection, and keypoint detection, making significant contributions

to computer vision advancements (Casado-Garcıá et al., 2019). The

model employs a multi-task loss function, comprising classification

loss (Lcls), bounding box loss (Lbbox), and predicted mask loss

(Lmask), as represented by equations (2) to (5) (Cong et al., 2023).

L  ¼  Lcls + LLbox  + Lmask (2)

Lcls  =  o
i
− log pipi* + 1 − pi*

h i
1 − pi½ �

h i
(3)

Lbbox
1

Nreg
o
i
pi*R ðti − ti*) (4)

Lmask  =   −
1
m2 o

1≤ i, j≤ m
y*ij log yij + 1 − y*ij

h i
log 1 − yij

� �h i
(5)

Lcls measures the deviation between predicted and actual values

for overall accuracy assessment. Lbbox quantifies the disparity

between predicted and actual position parameters, assessing the

model’s accuracy in bud localization. Lmask evaluates the model’s

confidence in pixel-level classification using binary cross-entropy.

Combining these components into a multi-task loss function allows

for comprehensive evaluation across multiple tasks, resulting in

enhanced overall performance.

The skeleton extraction algorithm is a technique used to extract

the central line or skeleton of an object in a binary image (Fu et al.,

2023). By progressively shrinking connected regions within the object

contour, the algorithm produces a concise contour that provides

valuable information for image processing tasks like recognition and

matching. Various algorithms, such as Zhang-Suen, Morphological

Thinning, and Medial Axis Transform, can be employed for this

purpose. The Medial Axis Transform (MAT) algorithm, specifically,

extracts the object’s central line by iteratively dilating boundary pixels

and identifying the nearest internal pixels as skeleton pixels. This

process continues until the skeleton pixels stabilize, resulting in a

stable and versatile representation suitable for subsequent image

processing tasks. The MAT algorithm handles different object

shapes and can process grayscale information within binary images.

Seed germination images exhibit a wide range of shape features, such

as bud length, curvature, and angle. However, traditional methods for

measuring bud length rely onmanual measurements, which are time-
TABLE 2 Majority principle labeling aggregation method.

Input: Segmented maize seed blocks
Output: Predicted potential for germination of
maize seeds

Step 1: Initialize:
a. Assign Label 1 to represent potential for germination.
b. Assign Label 2 to indicate maize grain block affiliation.

Step 2: For each segmented maize seed block:
a. Feed the block into the model for prediction of its potential for
germination.

b. Store the prediction result.

Step 3: For each maize seed:
a. Retrieve predictions of multiple small blocks belonging to the same maize
seed.

b. Count the number of correct predictions.
c. If more than half of the predictions are correct:
- The predicted result of the maize seed is deemed correct.
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consuming and prone to significant subjective biases. The MAT

(Medial Axis Transform) skeleton extraction algorithm was chosen to

obtain the central line of buds. However, the resulting skeleton may

contain branches that need to be eliminated to derive the center

skeleton. The process of centerline skeleton extraction is illustrated in

the following Figure 3B.

In this study, a transparent box with a side length of 250 mm

was used as a reference to convert pixels to actual lengths in

millimeters. The calculation formula is:

Ratio  =  Lbox=1164 (6)

Here, Lbox represents the side length of the transparent box, and

1164 is the number of pixels corresponding to the transparent box

in the image. According to the calculation formula, it can be derived

that one pixel corresponds to 0.215 mm.

2.2.5 Establishment of YOLOv7 model for seed
germination detection

The seed quality detection methods such as germination and

staining techniques are time-consuming and rely heavily on human

intervention, which may lead to inaccurate results due to human

error. In order to develop an automated and standardized method

for detecting seed germination that is efficient, accurate, and

reliable, the YOLOv7 (Wang et al., 2022b) object detection

algorithm was selected in this study, which is one of the most

widely used algorithms for object detection since its release in 2015

(Dewi et al., 2023). YOLOv7 is a real-time object detection

algorithm (Soeb et al., 2023), which has evolved from YOLOv5

and has faster inference speed, improved detection accuracy, and

reduced computational complexity. The algorithm consists of three

main parts: the input layer, backbone layer, and output layer (Tang

et al., 2023), and uses either a loss function with or without an

auxiliary training head (Zhou et al., 2023).
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The loss function is used to update the gradient loss during the

training process (Cai et al., 2023). The YOLOv7 algorithm is evaluated

using various metrics such as precision, mAP, recall, and F1 score

(Zhao et al., 2023), and curves such as the F1-Confidence curve,

precision-confidence curve, recall-confidence curve, and precision-

recall curve are used to optimize the algorithm’s performance and

achieve the best balance between precision and recall.

This study utilized a self-built dataset of maize seeds, comprising

images of seeds from various angles and sizes, each with corresponding

labels in YOLO format. The data collection and preprocessing process

was conducted using the same method as Mask R-CNN. The dataset

used in this study consisted of a total of 7000 maize seeds. Among

these, 4200 seeds were designated as training samples, 1400 seeds were

allocated for the test sets, and the remaining seeds were assigned to the

validation sets. To enhance the accuracy and robustness of the model,

the YOLOv7.pt (https://github.com/WongKinYiu/yolov7) pretrained

weights provided by the official website were employed for training.

These weights were trained on a large-scale dataset, which can

significantly reduce the training time while improving the training

effect. The Adam optimizer, a widely used optimizer that can optimize

at different learning rates, was used to update the model parameters

during training. The parameters of the Adam optimizer were adjusted

based on the size of the learning rate in the training process to achieve

better training results. A batch size of 2 and a training iteration of 300

were used in this study.
3 Results and discussion

3.1 Seed germination result

The experimental results showed that the degree of seed aging

was significantly correlated with the germination rate. As shown in
BA

FIGURE 3

Diagram of the maize bud length detection process (A) Process of bud segmentation, (B) Process of bud length detection.
frontiersin.org

https://github.com/WongKinYiu/yolov7
https://doi.org/10.3389/fpls.2023.1248598
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Fan et al. 10.3389/fpls.2023.1248598
the Figure 4, on the seventh day of observation, all seeds that were

not aged can germinate, and only a few seeds that aged for 2 days

failed to do so. Most seeds that aged for 4 days still retained their

viability, with only a few seeds that aged for 6 days able to

germinate. Seeds that aged for 8 days experience almost complete

mortality. Thus, it can be inferred that seed aging leads to a decline

in the germination rate, and the more prolonged the aging process,

the more apparent the decline in the germination rate.
3.2 Average spectrum

By analyzing the spectral curve features (Figures 5A, B), it is easy to

observe that the spectral reflectance of both wavelength regions

increased with the decreasing of maize seed viability, indicating that

the light absorption capacity of maize tissue increases with the aging

degree. The spectral curves are monotonic in the Vis-SWNIR region,

with the average spectral curve gradually increasing in the 400-800 nm

region and then slowly decreasing. However, in the LWNIR region, the

spectral curve is more complex, capturing two distinct reflection peaks

located around 1100 nm and 1300 nm, respectively. The former could

potentially be associated with the presence of C-H bonds in lipids,

while the latter could be described as a combination of the first

overtone of N-H stretching along with the fundamental N-H in-

plane bending and C-N stretching with N-H in-plane bending

vibrations (Wang et al., 2022d).The spectral curve characteristics can

be used to discriminate maize seeds with different germination

potentials. As shown in Figure 6, the spectral data of maize seeds

with different viability have similar trends in the Vis-SWNIR and

LWNIR regions. However, in the Vis-SWNIR region, these curves are

basically mixed together, making it difficult to distinguish clearly. In

contrast, there are significant differences in the LWNIR region, which

may be related to the breakdown of chemicals during the aging process

of organisms. Nevertheless, some mixed situations still exist, indicating

that it is difficult to distinguish the seeds with or without viability

according to the average spectra of hyperspectral image.
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3.3 Key wavelength selection of maize
seed viability

During the aging process of maize seeds, a series of changes

occurs in the internal chemical substances (Xin et al., 2011), with

the extent of these changes depending on the degree of seed vitality.

These chemical substances include stored energy and nutrients,

such as starch, proteins, and lipids (Xu et al., 2022). Proteins may

undergo degradation, leading to the release of amino acids and

structural damage to proteins. At the same time, the lipid content in

the seed gradually oxidizes, resulting in lipid decomposition and the

generation of free radicals, thereby affecting the seed’s metabolism

and viability. Additionally, starch gradually degrades into soluble

sugars. This difference is the main reason for spectral changes

during the aging process. After SG and SNV preprocessing, 18 and

11 characteristic bands were extracted from the Vis-SWNIR region

and LWNIR region (Figures 5C, D). These characteristic bands

were located at the peaks and valleys of the spectrum, reflecting the

changes in water content and protein levels of the seeds.
3.4 Maize seed viability detection
based on full-wavelength spectra
and machine learning

By analyzing the classification accuracy obtained from SVM

and Ensemble analysis, there was no significant difference between

Vis-SWNIR and LWNIR regions in predicting seed viability

(Table 3). However, KNN exhibited slightly higher accuracy with

LWNIR, indicating its greater universality and better performance

in detecting seed viability. However, due to the minimal differences

between seeds with adjacent aging gradients (Feng et al., 2018),

particularly those seeds that aged for 4 days and 6 days, these

distinctions may not be immediately discernible, presenting a

challenge in accurately determining the germination potential of

seeds with similar levels of aging. The germination experiment also

showed that the seeds with relatively mild aging did not have

inherent germination trends and were easily misclassified by the

prediction model. This discrepancy may arise from the fact that

maize seeds may not exhibit overt phenotypic changes across

different stages of aging (Wang et al., 2022e). However, in

actuality, mRNA molecules associated with protein synthesis

undergo oxidation through physiological mechanisms. More

specifically, research unveiled significantly elevated expression

levels of mature enzyme genes and ribosomal protein genes in

embryonic roots and shoots as compared to other parts(Wang et al.,

2022a). This obstruction hampers protein synthesis, consequently

impeding the normal physiological functions of the seeds.
3.5 Maize seed viability detection based on
key wavelength and 3DCNN model

After 70 training epochs on the Vis-SWNIR hyperspectral

images, the accuracy of the training set has stabilized at a high

level of 100% (Figure 6B), and the accuracy of the test set has also
FIGURE 4

Germination levels of seeds at different aging times.
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FIGURE 6

Classification accuracy curves of maize seed viability based on conventional 3DCNN models using Vis-SWNIR hyperspectral image (A) Classification
accuracy curves in test set (400 iterations), (B) Classification accuracy curves in test set (70 iterations), (C) Classification accuracy curves in train set
(400 iterations), (D) Classification accuracy curves in train set (70 iterations).
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FIGURE 5

Average spectra and the distribution of optimal bands (A) Near-infrared average spectra, (B) Visible and near-infrared average spectra. (C) Selection
of characteristic bands in near-infrared spectra, (D) Selection of characteristic bands in visible and near-infrared spectra.
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reached its peak. In order to further validate the stability and

robustness of the model, the number of training epochs was

increased to 400. After 400 iterations, the accuracy of the training

set remained at around 100%, while the accuracy of the test set

remained at around 90% (Figures 6A, C).

By using 3DCNN to process the data, not only the spectral

information was considered (Wu et al., 2021), but also the image

information was integrated, making the evaluation of maize seed

quality more comprehensive and accurate (Collins et al., 2021).

Compared with machine learning methods that using all spectral

bands as input data, the 3DCNN method only used few

representative bands. Traditional machine learning methods tend

to lose a lot of information, while the 3DCNN method used in this

study can learn more complex features and achieved higher

accuracy with fewer bands, with an average accuracy increase of 7

percentage points (Table 4). It was worth noting that 3DCNN

performs better on the test set and converges faster, which indicated

that 3DCNN was an effective method for seed viability detection

and had advantages over machine learning classification method in

dealing with such problems.

Conventional 3DCNN and multi-scale 3DCNN exhibit

different characteristics. Traditional 3DCNN can achieve high

accuracy, but they often exhibit slower convergence compared

with multi-scale 3DCNN (Figure 6D). Multi-scale 3DCNN

incorporated convolutional layers with different-sized kernels and

pooling layers, allowing the network to process features of varying

scales simultaneously (Lin et al., 2020). This enhanced the network’s

robustness and improved its tolerance to noise, distortion, and

artifacts in the data, and ultimately led to a faster convergence. In

addition, the stability of conventional 3DCNN may not be

satisfactory and may exhibit some fluctuations and instability. In

contrast, multi-scale 3DCNN perform better, possibly due to their

utilization of multi-scale convolutional kernels, enabling them to

extract more abundant feature information (Shi et al., 2021)
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(Figure 6A). Furthermore, the block-based method effectively

increased the amount of data and helped to alleviate overfitting.

In the final discrimination, this study adopted a majority principle

labeling aggregation method to improve the discrimination

accuracy (Table 4). To explore the optimal block size, several

experiments were conducted, the input images were segmented

into different block sizes, including 5 pixels ×5 pixels, 10 pixels ×10

pixels, and 20 pixels × 20 pixels. As shown in Table 4, the model

achieved a relatively high overall accuracy when 5 pixels ×5 pixels

was used. This suggested that the small blocks with 5 pixels ×5

pixels size can effectively capture more local features of the seedy

and provides more discriminative information. Conversely, larger

blocks may result in information blurring and confusion, thereby

impacting the classification accuracy. Consequently, the block-

based method with 5 pixels ×5 pixels was finally selected to

enhances the detection accuracy of seed viability.
3.6 Maize seed germination detection
based on YOLOv7 model

Figure 7 shows the detection results of germinated maize seeds

using the YOLOv7 model, demonstrating its remarkable precision

and recall rates of 99.7% and 99.0%, respectively. Additionally, the

model achieves a mAP of 99% when applying an Intersection over

Union (IoU) threshold of 0.5. Furthermore, the mAP, calculated

across a range of IoU thresholds from 0.5 to 0.95, reaches a value

of 71%.

In Table 5, the YOLOv7 model exhibits an impressive F1 score

(The F1 score balances precision and recall, providing a

comprehensive evaluation of model accuracy) of 0.99 on all target

categories with a confidence threshold set at 0.663, highlighting its

exceptional detection performance. Consequently, the YOLOv7

model can achieve both high precisions, accurately identifying
TABLE 3 The classification result of maize seed viability based on full-wavelength spectra and machine learning.

Models Vis-SWNIR LWNIR

Train set Prediction set Train set Prediction set

SVM 89.3% 83.9% 84.0% 83.3%

KNN 72.0% 69% 85.3% 77.8%

Ensemble 92% 82.4% 85.3% 82.5%
TABLE 4 The classification performance of the maize seed viability based on 3DCNN.

Block

Models

Multi-3DCNN Conventional-3DCNN

Vis-SWNIR SWNIR Vis-SWNIR SWNIR

5 pixels×5 pixels 90.67% 90.67% 92.00% 88%

Split 10 pixels×10 pixels 92.00% 87.33% 92.00% 85.33%

20 pixels×20 pixels 85.33% 79.00% 86.67% 78.67%

No-split 80.80% 78.50% 79.60% 77.50%
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true positive predictions, and high recall, effectively capturing all

relevant targets during detection. With a confidence threshold set to

0.896, the YOLOv7 model achieves a perfect precision accuracy of

100% for the target categories. This noteworthy precision metric

showcases the model’s ability to correctly identify true positive

predictions among all the positive predictions made, indicating its

reliability and precision in detecting target objects. The model

impressively achieves a recall rate (The recall rate quantifies the

model’s ability to correctly identify positive targets) of 1.00 with a

confidence threshold set to 0.000, indicating that it accurately

detects all targets of all categories without any missed detections.

This ideal performance underscores the model’s high accuracy and

proficiency in target detection tasks Additionally, the model

exhibits an mAP (The mAP commonly used to evaluate object

detection algorithms’ accuracy and robustness) of 0.991 for all

target categories when applying an Intersection over Union (IoU)

threshold of 0.5. This further demonstrates the model’s superior
Frontiers in Plant Science 11
detection capabilities across various categories, affirming its

exemplary performance.

R  =
TP

TP + FN
(7)

AP  =
Z 1

0
P(R)dR (8)

F1  =  
2*P*R
P + R

(9)

P  =  
TP

TP + FP
(10)

mAP  =  
1
no

n
i=1AP (11)
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FIGURE 7

Detection performance of YOLOv7 model for maize seed germination (A) The precision of YOLOv7, (B) The recall of YOLOv7, (C) The mAP@0.5 of
YOLOv7, (D) The mAP@0.5:0.95 of YOLOv7.
TABLE 5 The detection result of YOLOv7 model for maize seed germination.

YOLOv7 Training Indicators

All classes F1-confidence F1 0.99 Confidence 0.663

Precision-confidence Precision 1.00 0.896

Recall-confidence Recall 1.00 0.000

Precision-recall 0.991 mAP@0.5
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In these formulas, True Positives (TP) represent the number of

samples where the predicted label is positive and the actual label is

also positive. T represents the total number of samples, and False

Negatives (FN) indicate the number of samples where the predicted

label is negative, but the actual label is positive. Similarly, False

Positives (FP) represent the number of samples where the predicted

label is positive, but the actual label is negative. Moreover, the area

under the precision-recall (P-R) curve, denoted as AP, provides a

measure of the model’s performance.

Figure 8A is the confusion matrix of germinated maize seed

based on YOLOv7 model, which provides a visual representation of

the classification performance, showing the counts of true positive,

true negative, false positive, and false negative predictions. The

detection accuracy was 95% for germinated seeds and 99% for

ungerminated seeds, respectively. Background FP refers to the

number when the background is erroneously predicted as a

target, fortunately there was no background area was incorrectly

classified as a target in this study. Figure 8B shows the actual

detection results of YOLOv7 for discriminating seed germination.

All indicators mean that the model can essentially replace

manual observation for determining seed germination status.

Therefore, although this method required some time and

manpower for data annotation and training, the overall cost was

much lower than manual operation, and can provide a reference for

rapid detection of seed germination in crops. On the other hand, the

algorithm suffered from the problem of duplicate detection in

practical applications (Chen et al., 2023a), resulting in some seeds

may be simultaneously labeled as germinated and non-germinated.

This phenomenon may lead to a misclassification and reduce the

practicality and reliability of the algorithm. Hence, future work will

focus on improving the algorithm to solve the duplicate

detection problem.
3.7 Maize seed bud length detection based
on Mask R-CNN

The Mask R-CNN model achieved an impressive mAP score of

0.9571, indicating its effectiveness and accuracy in detecting and
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localizing objects. The mAP is a widely used evaluation metric for

object detection models, and a high mAP score indicates that the

model performs well in both precision and recall, making it a

reliable choice for seed germination analysis. Additionally, the loss

value during training decreased significantly, stabilizing around

0.21 from an initial value of 2.61, which is a clear indication of

the model’s ability to learn and adapt effectively.

Figure 9A showcases a successful instance of skeleton extraction

for maize seed germination, resulting in a clear main skeleton after

removing branches, which allows for accurate calculation of the bud

length. The detection results of bud length for germinated maize

seeds, depicted in Figure 9B, demonstrate Mask R-CNN’s

impressive capability to accurately segment the seedlings, even

when instances overlap or are occluded. This highlights the

superiority of the Mask R-CNN model in instance segmentation

tasks, making it a valuable tool for precise analysis of seed

germination and growth.

Figures 9C, D shows the detection result of bud length with R-

squared value of 0.98 and an RMSE of 1.64, demonstrating that the

integration of Mask R-CNN model and skeleton extraction method

could detect the bud length during seed germination accurately and

rapidly. The R-squared value, also known as the coefficient of

determination, is a statistical measure that indicates the

proportion of the variance in the dependent variable (Bud length

in this case) that can be explained by the independent variable (The

predicted bud length). Meanwhile, RMSE quantifies the average

magnitude of the differences between the predicted bud lengths and

the actual observed bud lengths. It is worth mentioning that the bud

length of germinated seeds is closely related to their viability

(Adebisi et al., 2014). Therefore, the bud length of seeds can be

obtained using this algorithm, and the relationship between bud

length and viability can be further explored. This not only has

important significance for agricultural production but also provides

valuable insights for research in other biological fields.

SSR  =  on
i=1(Yi − bYi)

2   (12)

SST  =  on
i=1(Yi − �Y)2   (13)
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FIGURE 8

Confusion matrix and detection results of germination maize seed based on YOLOv7 model (A) Confusion matrix, (B) Image of detection results.
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RMSE  =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(Yi − bYi)

2                                                          

r
(14)

R2 = 1 −
SSR
SST

(15)

In these formulas, SSR (Sum of Squares of Residuals) refers to

the regression sum of squares, which represents the sum of squared

differences between the predicted values and the true values. On the

other hand, SST (Total Sum of Squares) stands for the total sum of

squares, representing the sum of squared differences between the

true values and their mean.Yi refers to the actual value of the i-th

observation, while Ŷi represents the predicted value of the i-th

observation from the regression model. And n denotes the

sample size.
4 Conclusions

The rapid and successful detection of maize seed viability was

achieved by leveraging HSI technology in combination with the

multi-scale 3DCNN method. In seed viability detection, the

3DCNN method, which utilizes a limited number of representative

spectral bands, was found to learn more complex features and achieve
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higher accuracy compared to using full-wavelength spectra and

machine learning methods. By introducing the multi-scale 3DCNN

model, the comprehensive consideration of both spectral and image

information enabled a more comprehensive and accurate assessment

of maize seed quality. Experimental results demonstrated that the

adoption of small block sizes (5 pixels × 5 pixels) significantly

improved the accuracy of seed viability detection. Furthermore, the

YOLOv7 model and Mask R-CNN model were introduced for

germination judgment and bud length detection of maize seeds.

Both models exhibited outstanding performance in germination

judgment and bud length detection, demonstrating excellent

detection capabilities. Based on these exceptional detection results,

a novel solution for the rapid detection of maize seed germination

and bud length was provided. In brief, this study proposed a reliable

and effective method for the evaluation of maize seed viability,

providing valuable references for agricultural production and

germplasm resource preservation.
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FIGURE 9

The bud length detection of germinated maize seeds (A) The process of skeleton extraction, (B) Probability map of predicting maize sprouts,
(C) Prediction of maize seedling length, (D) Regression analysis of actual and predicted corn sprout length values.
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