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Apple leaf diseases without timely control will affect fruit quality and yield,

intelligent detection of apple leaf diseases was especially important. So this

paper mainly focuses on apple leaf disease detection problem, proposes a

machine vision algorithm model for fast apple leaf disease detection called

LALNet (High-speed apple leaf network). First, an efficient sacked module for

apple leaf detection, known as EALD (efficient apple leaf detection stacking

module), was designed by utilizing the multi-branch structure and depth-

separable modules. In the backbone network of LALNet, (High-speed apple

leaf network) four layers of EALD modules were superimposed and an SE

(Squeeze-and-Excitation) module was added in the last layer of the model to

improve the attention of the model to important features. A structural

reparameterization technique was used to combine the outputs of two layers

of deeply separable convolutions in branch during the inference phase to

improve the model’s operational speed. The results show that in the test set,

the detection accuracy of themodel was 96.07%. The total precision was 95.79%,

the total recall was 96.05%, the total F1 was 96.06%, the model size was 6.61 MB,

and the detection speed of a single image was 6.68 ms. Therefore, the model

ensures both high detection accuracy and fast execution speed, making it

suitable for deployment on embedded devices. It supports precision spraying

for the prevention and control of apple leaf disease.
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apple leaf disease, deep learning, deep separable convolution, re-parameterization, leaf
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1 Introduction

There are approximately more than 80 countries worldwide

engaged in large-scale apple production, and as the area under apple

production continues to expand (Zhang, 2021), the incidence of

pests and diseases affecting apples has become increasingly severe.

Apple leaf diseases, if left untreated, would pose a serious threat to

the growth, development and quality of apples. Currently,

traditional methods of diagnosing apple leaf diseases rely heavily

on human judgment, requiring experienced and highly skilled field

workers. Errors in worker judgment can lead to delayed prevention

or excessive control measures, both of which can be detrimental.

Therefore, efficient and rapid assessment of apple leaf diseases plays

a critical role in improving apple quality and increasing

grower profitability.

With the development of computer vision and artificial

intelligence, deep learning has received increasing attention in the

field of image processing (Shun et al., 2019; Zhang and Lu, 2021),

while deep learning techniques have a wide range of ap plications in

agriculture (Kamilaris and Prenafeta-Boldú, 2018; Zheng et al.,

2019; Sharma et al., 2020; Arumugam et al., 2022). In the

research of plant leaf disease classification, Aditya Karleka et al.

designed a deep learning convolutional neural network Soybean leaf

diseases classification (SoyNet) by increasing the diversity of

pooling operations, adding Relu functions and dropout operations

rationally for identifying and classifying soybean plant The

proposed model achieved 98.14% recognition accuracy with good

precision, recall and F1 score (Guo et al., 2022). Paul Shekonya

Kanda et al. proposed an intelligent method based on deep learning

to identify nine common tomato diseases. The method employed a

residual neural network algorithm to identify tomato diseases and

used five network depths to measure the accuracy of the network.

According to the experimental result, this method obtained the

highest F1 score of 99.5%, outperforming most previous competing

methods in tomato leaf disease identification (Zhang et al., 2021).

Laixiang Xu et al. proposed a new deep learning model for peanut

leaf disease recognition. This proposed model was a combination of

an improved X-ception, a partially activated feature fusion module

and two attention enhancement branches. The model obtained

99.69% accuracy in the test set, which is 9.67% - 23.34% higher than

Inception-V4, ResNet 34 and MobileNet-V3, demonstrating the

feasibility of the model (Gill and Khehra, 2022). It shows that by

designing specific network parameter settings in convolutional

neural networks for plant disease classification, adding residual

structure, adding attention mechanism, and other operations were

capable of achieving higher accuracy.

In the study of apple leaf disease classification convolutional

neural network model numerous scholars have done a lot of

researches on improving the accuracy of apple tree leaf disease

classification recognition, reducing the parameters and training

time of specific recognition networks. For example, Yong et al.

proposed a DenseNet-121 deep convolutional network based on

three methods of regression, multi-label classification and focal loss

function to identify apple leaf diseases. The proposed method
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achieved 93.51%, 93.31%, and 93.71% accuracy on the test set,

respectively, outperforming the traditional cross-entropy loss

function-based multi-classification method with 92.29% accuracy

(Zhong and Zhao, 2020). Lili et al. proposed a convolutional neural

network based on the AlexNet model for the classification of five

diseases of apple tree leaves, which uses dilated convolution to

extract coarse-grained features of diseases in the model, which helps

to reduce the number of parameters while maintaining a large field

of perception, and adds parallel convolutional modules to extract

leaf disease features at multiple scales. Subsequently, a series of 3 × 3

convolutional shortcut connections allowed the model to handle

additional nonlinearities. The final recognition accuracy of the

model was 97.36% and the model size was 5.87 MB (Li et al.,

2022). Qian et al. proposed an improved model based on VGG16 to

identify apple leaf diseases, in which a global average polarization

layer was used instead of a fully connected layer to reduce

parameters and a batch normalization layer was added to

improve convergence speed. A migration learning strategy is used

to avoid long training time. The experimental results show that the

overall accuracy of apple leaf classification based on the proposed

model could reach 99.01%. Compared with the classical VGG16, the

model parameters are reduced with 89%, the recognition accuracy is

improved with 6.3%, and the training time is reduced to 0.56% of

the original model (Yan et al., 2020).

In apple leaf disease classification and recognition research,

scholars have achieved high recognition accuracy using deep

learning techniques, however, how to ensure apple leaf disease

recognition accuracy while making the model run faster is still the

focus of research. Therefore, this paper proposes the LALNet

model, in the next section in-depth discussion of the research

content of this paper, in the second section, mainly introduces

the data set of this paper, the main components of the LALNet

network using the multi-branching structure and the depth

separable module to design the efficient leaf detection EALD

module, in the LALNet in the use of the EALD module stacking

and add SE attention module, Finally, in the inference stage using

structural re-parameterization technique to improve the running

speed of the model. In Section III, the model was trained, validated

and tested using publicly available apple leaf disease datasets, and a

comparative analysis of this paper’s model with state-of-the-art

apple leaf classification models was performed to provide a

comprehensive evaluation of the model to ensure its reliability. In

Sec. IV, the research work of this paper was fully summarized and

the limitations of this research and future research directions were

discussed. Thus, the proposed LALNet model improves the speed of

image recognition while ensuring recognition accuracy, and finally,

this research can support intelligent apple leaf spray control.

2 Tests and methods

2.1 Apple leaf data set

In this study, apple leaf disease images were collected at the

apple experimental field of Shandong Agricultural University
frontiersin.org
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(117.12°E,36.20°N) and at the Tianping Lake experimental

demonstration base of Shandong Fruit Tree Research Institute,

National Apple Engineering Technology Research Center (117.01°

E,36.21°N), which were collected several times in July 2022 under

favorable weather conditions.

Meanwhile, Baidu public dataset of apple leaf pathology images

(Ai Studio poublic datasets, 2023) was used to expand the dataset of

this paper. This dataset contains five types of common apple leaf

diseases, namely apple mosaic, rust, gray spot, alternaria leaf spot

and brown spot. For the convenience of training management,

apple mosaic, rust, gray spot, alternaria leaf spot, and brown spot

were represented by the numbers 0, 1, 2, 3, and 4, respectively, and

some apple leaf disease images are shown in Figure 1. After flipping,

panning and contrast enhancement to pre-process the data set of

this paper, a total of 25,000 disease images with image size of

224*224 were obtained. In order to use this dataset for training,

validation and testing, the data is divided as shown in Table 1, 80%

of the images were used for model training, 10% of the images were

used for model validation and 10% of the images were used for

model testing.
2.2 LALNet network model

The LALNet lightweight apple leaf disease identification

network model was mainly constructed by referring to the typical

ResNet network model and MobileNet network model structure,

using depth separable modules in the network and lightweight

attention modules to lighten the parameters of the network model,

and using structural reparameterization in inference to improve the

inference speed of the network model. The flowchart of the LALNet

network was shown in Figure 2, which modeled the main

components of the ELAD module and the SE Attention

Mechanism module.

2.2.1 ResNet network
In recent years, Convolutional neural nerve network (CNN) has

been continuously evolving and growing, representing one of the
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prominent architectures in deep learning networks (Kawakura and

Shibasaki, 2020; Deepan and Sudha, 2021). However, as the

network depth increases, it becomes increasingly difficult to train,

leading to the problem of network degradation. To address this

problem, in 2015, a research team from Microsoft Research

proposed ResNet (Residual Network) (He et al., 2016), a deep

learning network that introduced residual connections. These

connections made it easier to train deeper networks.

The network structure of ResNet was shown in Figure 3. The

network mainly consists of an input layer, convolutional layers,

residual modules, pooling layers, and fully connected layers. Input

layer: input image data; Convolutional layer: extracts features of the

image; Residual block: consists of two or more convolutional layers

with residual connections; Pooling layer: reduces the dimensionality

of the image; Fully connected layer: connects the outputs of all

convolutional layers (Shifang et al., 2021). The network structure of

ResNet consists of two main components: the residual blocks and

the backbone network (Chunshan et al., 2020). Each residual block

contains two or more convolutional layers and a residual

connection, whose main function was to pass the residuals of the

input data directly to the next residual block, which increases the

mobility of the data so that the gradient can remain valid in deeper

layers of the network and thus reduce the effect of gradient

disappearance. ResNet constructs a deeper network by stacking

more and more residual blocks to solve more complex problems.
2.2.2 MobileNet network model
Lightweight network design differs from traditional neural

networks by placing greater emphasis on compactness of the

model structure for running networks on embedded devices.

Google proposed MobileNet V1, a classical lightweight network

that can be deployed on mobile (Wenjie et al., 2021), which uses

deep separable convolution instead of traditional convolution to

reduce the network parameters while ensuring network accuracy

(Howard et al., 2019). MobileNet V2 further improves the

performance of the model by adding inverse residual structure

and linear units and using nonlinear activation functions in high-
FIGURE 1

Pictures of some fruit leaf diseases.
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dimensional space based on V1. MobileNet V3 (Hu et al., 2020),

based on V2, introduces lightweight attention (squeeze and

excitation) (Zhou et al., 2022) modules that effectively suppress

unnecessary channels, while the model uses the h-swish activation

function to reduce the computational cost of applying nonlinear

activation functions and achieve better parameter reduction.

Deeply separable convolution (DSC) holds the key to

lightweight network design, as shown in Figure 4. This

convolution is a decomposable convolutional structure that

decomposes standard convolution into deep wise convolution,

which is the process of combining features to create feature

vectors of new dimensions, and Pointwise convolution, which is

the process of filtering the input feature vectors. Compared to
Frontiers in Plant Science 04
traditional convolution, deep separable convolution can reduce

the parameters of the model to improve the detection speed. For

example, the input feature map size for H×W, the number of input

channels for M, the convolution kernel size for K×K, the number of

output channels for N, and the output feature map size for OT×OT.

The normal convolution computes Nc is.

Nc = K � K �M � N � OT � OT (1)

The deeply separable convolution computation Na is.

Na = OT � OT � K � K �M + OT � OT �M � N (2)

The ratio of computational cost between depth wise separable

convolution and regular convolution is.
FIGURE 2

Flowchart of LALNet network structure.
TABLE 1 Classification of apple leaf data set.

Type Disease category Training set/sheet Validation set/sheet Test set/sheet

0 Mosaic of apple 4275 534 534

1 Rust of apple 4525 565 565

2 Gray spot of apple 3849 481 480

3 Alternaria leaf spot of apple 3901 487 487

4 Brown spot of apple 4556 569 569
FIGURE 3

ResNet network structure diagram.
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Na

Nc
=

1
N

+
1
k2

(3)

From the ratio of deeply separable convolutional to normal

convolutional computation, it is shown that the reduction of deeply

separable convolutional computation is related to the number of
Frontiers in Plant Science 05
channels and the size of the convolutional kernel, with the larger the

size of the convolutional kernel, the larger the computational reduction.

2.2.3 Structural reparameterization
The structural re-parameterization is a technique for optimizing

neural network models (Ding et al., 2021). This technique enables

efficient training and deployment of deep learning models in

scenarios with limited computational resources by using constant

parameter transformations to reduce the storage and computational

resources of the model through simplification of the network

structure. As shown in Figure 5, the earlier RepVGG model uses a

simple architecture consisting of stacked 3*3 Conv and ReLU to

achieve structural decoupling during training and inference, and uses

a multi-branch structure during training, and then uses

reparameterization to equivalently transform the multi-branch

architecture to a VGG single-way architecture with stacked 3*3

convolutional layers after training was completed, using this

structured reparameterization method to enable RepVGG to

achieve ImageNet to achieve more than 80% accuracy and run

several times faster (Transactions of the Chinese Society of

Agricultural Engineering et al., 2021; Hu et al., 2022).

2.2.4 LALNet model construction
Inspired by the depth-wise separable convolutions in ResNet and

MobileNet, this paper proposes an efficient EALD module. The EALD

module, as shown in Figure 6, uses a multi-branch structure and depth-

wise separable modules to extract more feature information with fewer

parameters and computational complexity. First, the module uses a

standard 1x1 convolution kernel for dimensionality reduction, followed

by different branches for feature extraction. The first and second

branches use 3x3 depth separable modules to extract complex

features. In the third branch, a 1x1 standard convolution is used to

extract residual information and to enhance the interplay of module

features. Then, the outputs of the three branches are summed and the
A B

FIGURE 5

RepVGG model training and inference structure diagram.
FIGURE 4

Structure of deep separable convolutional network.
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channel number is restored using a 1x1 pointwise convolution. Finally,

channel shuffling was performed to facilitate information fusion

between channels, thereby improving the feature recognition capability.

The LALNet lightweight apple leaf disease classification model was

stacked using the EALD module, and the network structure of the

LALNet model follows in Table 2. First, the initialized feature

extraction of three channels of the image was performed in step one

using a standard convolution with a convolution kernel of 3*3, which

has a step size of two and an output channel number of 16. The EALD

module was used for feature extraction in steps two-five with a step size
Frontiers in Plant Science 06
of 1. The SE attention module was added in steps four and five to

increase the feature extraction capability. In step six, an adaptive

averaging pooling layer was used and then a linear layer with 960

input features and 1280 output features was passed. In step seven, the

output of the linear layer was passed through another batch

normalization layer so that a linear layer with 1280 input features

and number of output classes was applied as the final layer.

While a multi-branch structure reduces the number of

parameters in a model, many researchers argue that having too

many branches can affect the model’s runtime speed during
FIGURE 6

EALD module structure diagram.
TABLE 2 network structure of LALNet model.

Step Input Operator Stride Output Attention mechanism

1 3 Conv2d, 3×3 2 16 –

2 3 EALD,(3,32) 1 80 –

3 80 EALD, (80, 48) 1 88 –

4 88 EALD, (88, 64) 1 96 1

5 96 EALD,(96, 64) 1 96 1

6 960 Pool2d – – –

7 1280 1×1, NBN 1280 –
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inference. Therefore, this paper optimizes the structure of the model

during recognition using a re-parameterization strategy. As shown

in Figure 7, the convolutional layers with 3x3 depth-wise separable

convolutions and their respective batch normalization (BN) layers

in the first and second branches are fused. After fusion, a set of 3x3

depth-wise separable convolutional groups is used to represent the

common parameters of the two branches, thereby improving the

model’s recognition speed during inference.
3 Results and discussion

3.1 Experiment environment

In this study, the hardware experimental environment consisted

of a Lenovo laptop (y9000p) with an Intel Pentium i5-12700H

processor running at a frequency of 3.5GHz, and a GeForce GTX

3060 6G GPU. The software experimental environment involved a

Windows 10 operating system, Python 3.8 as the programming

language, PyTorch 1.10.0 as the machine learning library, and

CUDA 10.2 as the parallel computing framework.
3.2 Evaluative metrics

The following metrics are commonly used when evaluating

the performance of classification models:

Accuracy: This is a measure of the overall accuracy of the

model’s predictions. It indicates the percentage of correct

predictions made by the model across all samples.

A =
TP + TN

TP + TN + FP + FN
� 100% (4)

Precision: This is a measure of the proportion of actual positive

samples for which the model predicts a positive outcome.
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P =
TP

TP + FP
� 100% (5)

Recall: This is a measure of the proportion of actual positive

samples for which the model is predicted to be positive.

R =
TP

TP + FN
� 100% (6)

F1 value: This is a combined precision and recall metric that

measures the overall predictive effectiveness of the model for

positive samples.

F1 = 2� P � R
P + R

� 100% (7)

where: A- Accuracy; P-precision; R-recall rate;

TP-True positive, the number of samples correctly predicted

as positive;

TN-True negative, the number of negative samples predicted

as negative;

FP-False positive, the number of negative samples predicted

as positive;

FN-False negative, the number of positive samples predicted

as negative.
3.3 Model training, testing parameters

In training and testing the LALNet model, the parameters of

the training and testing models were finally selected after several

tests and trials to suit the data set and computer performance of

this paper as shown in Table 3 below, the image size of the

training and testing models was 224*224, the Batch Size was 16

during training, the Batch Size was 16 during testing, the loss

function was Cross entropy loss, the optimization function was

Adam, the learning rate was 0.001, and the number of training

rounds was 100.
FIGURE 7

Schematic diagram of multi-branch fusion using structural re-parameters.
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3.4 Accuracy of the model training

In the training process of the model, it is common to evaluate

the loss and accuracy of the training and validation sets to assess the

performance of the model on the dataset (Pang et al., 2020). In this

paper, both the training and validation of the model were

performed using the same parameters and number of training

epochs. The loss and accuracy of the model on the training and

validation sets were monitored. Figure 8A shows the loss graph of

the training and validation of the model, while Figure 8B shows the

accuracy graph of the training and validation of the model in this

paper. From the figures, it can be seen that the model initially had

lower accuracy and higher loss values with significant fluctuations.

However, as the training progressed, both the accuracy and loss

values of the model stabilized. Therefore, the model did not
Frontiers in Plant Science 08
experience overfitting or underfitting problems, indicating a good

training performance of the model.
3.5 Analysis of structural re-
parameterization results

In this study, structural re-parameterization was applied to the

EALD module during the model inference phase, with the goal of

improving the model’s runtime speed during inference. The

recognition accuracy and single frame recognition speed of the

model with and without structural reparameterization were evaluated

on the test set (Yueming et al., 2023). The experimental results, as

shown in Table 4, indicate that the parameter size of the model

remained almost unchanged after reparameterization. Although there

was a slight decrease of 1% in detection accuracy, the model’s detection

speed improved by 19.03%. Therefore, this re-parameterization

method demonstrates its effectiveness in improving the model

running speed while maintaining the model performance.
3.6 Analysis of model
parameters, efficiency

The confusion matrix is a common tool for evaluating the

performance of classifiers, which assesses the performance of the

model by tracking the relationship between the actual and predicted
TABLE 4 Recognition results before and after using structural heavy parameters.

Model
names

Structure
heavy

parameters

Total
accuracy of
test set/%

Total
precision of
test set/%

Recall rate
of test set/

%

Test set
F1 value/

%

Model
Parameters/

MB

Single picture
detection speed/

ms

LALNet
LALNet

Yes 95.95 95.94 98.52 96.01 6.60 8.25

No 96.07 95.98 96.02 96.06 6.61 6.68
A B

FIGURE 8

Model training monitoring graph. (A) Loss plot of model training. (B) Accuracy plot of model training.
TABLE 3 LALNet model training and testing parameters.

Parameter Training Testing

Image size 224 × 224 224 × 224

Batch Size 16 32

Loss function Cross entropy loss –

Optimization function Adam –

Learning Rate 0.001 –

Training epoch 100 –
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labels of the classifier (Simonyan and Zisserman, 2014; Görtler

et al., 2022). The confusion matrix of the LALNet model with

MobileNet V3-small model and ShuffleNet V2 model on the test set

was shown in Figure 9. From the confusion matrix Figure 9A, it can

be seen that the label 0 correctly predicted images of 503, label 1’s

correctly predicted images of 556, label 2’s correctly predicted

images of 445, label 3’s correctly predicted images of 482, and

label 4’s correctly predicted images of 545. By comparing

Figures 9A, B, it was found that the correctly predicted images of

label 4 in the MobileNet V3-small model exceeded the LALNet

model, and the rest of the labels were slightly lower than the

LALNet model. From the comparison of Figures 9A, C, it was

found that the correct predicted images of label 2 in the ShuffleNet

V2 model exceeded the LALNet model, and the rest of the labels

were slightly lower than the LALNet model. By comparing the three

confusion matrices, it was observed that each model recognized

different types and numbers of confused labels, which indicated that

different models had different recognition of apple leaf diseases. It

was also found that the LALNet model integrated the correct label

matching slightly better than the other two models, thus indicating

the superior design of the LALNet model.

This paper conducts a comparative test on whether the lalnet

model uses the attention mechanism. The results are shown in

Table 5. It can be seen from Table 5 that when the attention module

is not added, the total accuracy of the LALNet model was 95.46%,

the total precision was 95.79%, the total F1 was 95.43%, and the

single picture detection speed is 6.68ms. When the attention

module was added, the total accuracy of lalnet model was 96.07%,

and the total F1 was 96.06%. The accuracy and F1 values were

improved. At the same time, the single image detection speed was

also slightly reduced to 7.58ms. Thus, the attention mechanism can

improve the performance of the model to a certain extent, making it

more accurate and robust, but it will also affect the detection speed

of the model.
3.7 Comparative analysis of different
models in the experimental study

To further validate the performance of the model in classifying

different types of apple leaf categories, the model was evaluated

using six different network models: LALNet, VGG16 (Ma et al.,

2018), ResNet34, MobileNet V2, MobileNet V3-small, and

ShuffleNet V2 (Zhong and Zhao, 2020). The experimental results

on the test set are shown in Table 6, while the performance metrics

for different leaf diseases are shown in Figure 10.

From the data results in Table 6, it could be seen that the

LALNet model had an overall accuracy of 96.07% on the test set,

which was higher than the other six models. In addition, the total

precision, the total recall and total F1 values of the LALNet model

were 95.98%,96.05% and 96.06%, respectively, which were also

better than the other six models. In terms of detection speed, the

single image detection speed of the LALNet model was 6.68ms

faster than that of the other six classical models, and the single

image detection speed was 16.79% higher than that of the
Frontiers in Plant Science 09
lightweight MobileNet V3-small model, which means that the

LALNet model has better real-time detection performance in

practical applications.

In the performance evaluation of the different classical models

compared, VGG 16 has the lowest total test set accuracy of 94.91%,
frontiersin.or
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FIGURE 9

Confusion matrix for the 3 models. (A) LALNet model confusion
matrix. (B) MobileNet V3-small model confusion matrix. (C)
ShuffleNet V2 model confusion matrix.
g

https://doi.org/10.3389/fpls.2023.1246065
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ang et al. 10.3389/fpls.2023.1246065
the lowest total test set F1 value of 94.64%, and the second lowest

total test set recall of 94.61%. MobileNet V3-large has a test set total

accuracy of 95.93% and a test set total recall of 95.87%. Comparison

of the models reveals that the detection accuracy of the lightweight

model MobileNet V3-small exceeds the detection accuracy of

ResNet34 and VGG16 models while ensuring the detection speed,

which indicates that the lightweight structure design is superior in

terms of model architecture, but still lacking compared to LALNet.

In comparison, it was found that the LALNet model is faster in

single image detection while ensuring detection accuracy, so it is

more advantageous in apple leaf disease detection application

scenarios that require fast response.

As shown in Figure 10, the accuracy, recall and F1 values of

different models varied for different leaf disease categories. The

LALNet model performed consistently in terms of accuracy,

fluctuating around 95% for different disease categories, with the

LALNet model achieving the best accuracy for category 1 and

category 4, 98.41% and 98.78%, respectively. All models performed
Frontiers in Plant Science 10
the worst accuracy on category 2, with the VGG 16 model having a

lower accuracy of only 84.92% on category 2. In terms of recall,

LALNet models performed best in category 1 and category 4 on the

four disease categories, while the greatest variability in performance

was found among the six models in category 2, where the VGG 16

model had about 85% recall on category 2 and ShuffleNet V2 about

94% on category 2. In terms of F1 values, LALNet models had the

best F1 values in categories 1 and 4, while all models had F1 values

above 95% in categories 0 and 2. The comparison showed that the

LALNet models performed consistently in terms of accuracy, recall

and F1 values, which achieved better performance for each disease

category. Compared to other models, LALNet shows superior

recognition accuracy in most disease categories, further validating

the reliability and effectiveness of LALNet as an excellent model for

apple leaf disease recognition.

To further analyze the performance of this paper’s model in

apple leaf disease detection, the LALNet model was compared and

analyzed with existing state-of-the-art apple leaf disease detection
frontiers
TABLE 5 Recognition results before and after using attention mechanism.

Name of the
model

Category
Tags

Attention
Module

Test set
accuracy/

%

Test set
precision/

%

Test set
F1/%

Single picture detection
speed/ms

LALNet 0 No 94.19 94.21 93.76 7.58 ms

1 97.52 97.50 98.31

2 89.58 89.58 92.18

3 98.36 98.38 98.97

4 97.01 97.11 93.96

LALNet 0 Yes 94.19 94.22 93.32 6.68 ms

1 98.41 98.38 98.67

2 92.71 92.74 92.71

3 98.97 98.96 99.28

4 98.78 98.76 96.12
TABLE 6 Recognition results before and after using attention mechanism.

Name of the
model

Test set
accuracy/

%

Test set
precision/

%

Test set recall rate/
%

Test set F1/
%

Single picture detection speed/
ms

LALNet 96.07 95.98 96.05 96.06 6.68

VGG 16 94.91 94.94 94.61 94.64 10.20

ResNet34 95.03 95.00 94.42 94.45 8.46

MobileNet V2 94.93 94.91 94.51 94.64 9.68

MobileNet V3-small 95.82 95.83 95.87 95.80 8.05

ShuffleNet V2 95.25 95.28 95.26 95.20 10.23
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methods, as shown in Table 7. It can be seen that the LALNet model

achieves 96.07% accuracy on the self-built dataset and the Baidu AI

dataset, and this paper’s model shows good performance in the

disease detection task compared with other methods. In the

comparison, it can be found that the detection accuracy of this

paper’s model is close to or even exceeds some advanced research

results, and it also can be found that the overall detection accuracy

of seven models exceeds 90%, and Yinping Chen et al. achieved

97.78% on the PlantVillage dataset.However, we should also pay

attention to the limitations of different methods due to the

experimental environments in which the hardware devices

different and the datasets used are also very different, which will

affect the test results, especially the detection speed of the model.
4 Conclusion and limitations
In this paper, it proposed a fast apple leaf disease detection model

LALNet. Firstly, an efficient leaf detection stacking EALDmodule was

designed using multi-branch structure and depth separable modules,

which can obtain more accurate identification information with less

parameters and computation. Further, the EALDmodule was used in

the LALNet model to stack four layers and add the SE module in the

last layer of the model to improve the attention of the network model

to focus on important features. Finally, the structural

reparameterization technique was used to combine the outputs of

two layers of deeply separable convolutions in the branch to improve

the speed of the model during the inference phase. The proposed fast

apple leaf disease detection model has an overall accuracy of 96.07%

in the test set, precision of 95.98%, and F1 score of 96.06%, a model

size of 6.61 MB, and a detection speed of 6.68 ms for a single image,

thus the model meets the detection accuracy while ensuring its

operation speed and is suitable for use on embedded devices.

However, it is important to acknowledge the limitations of this

study in order to provide readers with a comprehensive assessment.

First, the dataset used in this research has limitations in terms of data

collection methods, sample size, and range of disease types covered,

which may affect the generalizability of the model. Second, the

performance of the model in real-world applications may be

affected by factors such as lighting variations, different capture

angles, and variations in leaf quality, which may affect its detection

performance. Finally, while the focus of this study was on common

apple leaf diseases, it does not cover all possible disease types that may

be present in practical cultivation. Future research should consider

collecting more diverse and comprehensive datasets and further

optimizing the model to improve its accuracy and robustness.
A

B

D

C

FIGURE 10

Comparison of different apple leaf disease evaluation indexes of the
6 models. (A) Accuracy, (B) Precision, (C) Recall rate, (D) F1 values.
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In future work, we aim to further improve the performance of the

LALNet model by addressing the aforementioned limitations. In

addition, we plan to use the model in an intelligent tracked apple

spraying robot to achieve precision spraying and reduce pesticide use.
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