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González-Moro MB (2023) Will crops with
biological nitrification inhibition capacity be
favored under future atmospheric CO2?
Front. Plant Sci. 14:1245427.
doi: 10.3389/fpls.2023.1245427

COPYRIGHT

© 2023 Vega-Mas, Ascencio-Medina, Bozal-
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1 Introduction

The forthcoming climatic scenario, where elevated atmospheric carbon dioxide (CO2)

concentrations are expected, will challenge crop performance with a higher demand for

nitrogen (N), which will further aggravate N losses from agrosystems that are already

polluting air and water systems (Anas et al., 2020; IPCC, 2022), making it imperative to

anticipate and develop novel and climate-smart agriculture. Research related to plants

showing the ability to produce biological nitrification inhibitors (BNI) as a mitigation

strategy is currently in vogue (Saud et al., 2022). Indeed, great progress has been made

recently in the characterization of species with this ability, in the production of BNI

molecules, and even in the development of new crop lines aimed at incorporating this trait.

However, the implications of future environmental conditions on the BNI strategy remain

overlooked and need to be addressed. In this study, we aimed to establish the connections

between the predicted elevated eCO2 conditions and the production and activity of BNI

compounds in plants and soil. We hypothesize that enhanced carbon assimilation by plants

could improve their BNI capacity, promoting ammonium occurrence in the soil, which

would particularly benefit ammonium-adapted crop varieties.
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2 Nitrogen as centrepiece of plant
adaptation to elevated CO2

Nitrogen (N) fertilization is required to improve crop yield.

However, the inefficiency of agricultural systems, where only 30%–

50% of applied N is used by crops, provokes significant losses to the

environment in the form of N gas emissions or nitrate (NO3
−)

leachates, particularly because of soil microbial nitrification and

denitrification (Lassaletta et al., 2014). Nitrification is an aerobic

process driven by ammonium-oxidizing bacteria or archaea, where

ammonium (NH4
+) is oxidized to NO3

−, which can be further

reduced by denitrifying bacteria under anaerobic soil conditions.

Both microbial pathways can yield nitrous oxide (N2O) as an end-

product, which is a powerful GHG (Coskun et al., 2017a). Because N-

fertilization is the main source of global anthropogenic N2O emissions

(IPCC, 2022), great effort has been put into controlling N-cycling

processes in agrosystems in recent decades, with the dual aim of

maintaining N available for crops for longer periods while reducing its

loss to the environment. Therefore, high-production agriculture needs

to reconcile the double challenge of mitigating N losses and adapting

to progressively changing environmental conditions, such as an

elevated atmospheric CO2 (eCO2) atmosphere, rising temperatures,

and water scarcity (FAO, 2018). To this end, climate-resilient crops

are required, in a context where more food production will be

necessary to maintain the future world population.

The predicted state atmospheric concentration of CO2 will reach

600 ppm–1,300 ppm by the end of the century (IPCC, 2022). Elevated

atmospheric CO2 (eCO2) remodels plant physiology, with enhanced

photosynthesis and reduced stomatal conductance as the primary

effects, leading to improved water use efficiency and potentially

boosting plant productivity (Gamage et al., 2018). However, long-

term exposure to eCO2 often entails photosynthetic acclimation in C3

crops, limiting their growth. Although the physiological basis for

acclimation to eCO2 is still unclear, one of the most accepted

explanations is that increased carbohydrate biosynthesis causes C:N

imbalance, leading to N depletion in tissues (Ainsworth and Rogers,

2007). Therefore, acclimation can be overcome by sufficient N supply

to ensure proper sink development for excessively formed

photoassimilates, thus avoiding RuBisCO inhibition (Ainsworth

and Rogers, 2007). In general, using cultivars with enhanced

nitrogen use efficiency (NUE) and implementing agricultural

practices that ensure soil N availability are advisable to avoid N

dilution in plants and maximize crop yields under eCO2. Another

open debate about the plant response to eCO2 is related to the

available N source. Several studies have shown similar yield

stimulation in response to eCO2 regardless of the N form (NH4
+ or

NO3
−) assimilated (Vega-Mas et al., 2015; Dier et al., 2018; Andrews

et al., 2019). However, some studies have proposed that eCO2 inhibits

NO3
− assimilation in shoots by diminishing the reducing power of

photorespiration (Bloom et al., 2020), while others argue that N

limitation at eCO2 is a consequence of accelerated growth rather than

impaired NO3
− reduction (Andrews et al., 2020; Igarashi et al., 2021).

Nonetheless, in view the possible advantage of NH4
+-N sources over

NO3
−-N, environmental conditions favoring soil NH4

+ availability to

plants would certainly be desirable.
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3 Biological nitrification inhibition: a
promising N-management strategy in
a climate change scenario

Increasing N fertilization to address crop N demand in a climate

change scenario seems undesirable, as excess soil N could further

aggravate the aforementioned water and air pollution (Lassaletta

et al., 2014). Therefore, strategies should be developed to promote

better utilization of already available N. At present, one of the

extensively proven technologies to prolong N retention in soils,

while reducing N losses, is the application of synthetic nitrification

inhibitors (SNIs) in combination with NH4
+-based fertilizers. The

most widely used SNIs are nitrapyrin, dicyandiamide (DCD), and

dimethylpyrazol (DMP)-based NIs (Norton and Ouyang, 2019;

Huérfano et al., 2022). However, SNIs are not exempt from some

disadvantages, including production or management costs that

restrict their use, notably in low-income countries, their limited

action over time, variable effects on yield, or potential

environmental toxicity (Coskun et al., 2017b; Sadhukhan et al.,

2022). As a recent alternative, exploitation of the natural capacity of

different plants to exudate compounds that suppress microbial

nitrification, the so-called biological nitrification inhibitors or

BNIs, is a promising strategy (Subbarao and Searchinger, 2021;

Lata et al., 2022; Saud et al., 2022). Since the discovery of BNIs in the

tropical grass Brachiaria humidicola and Sorghum bicolor

(Subbarao et al., 2007a), the search for plant species displaying

this trait has led to the identification of species, including cereals of

high agronomical interest such as rice and maize (Tanaka et al.,

2010; Sun et al., 2016; Otaka et al., 2022). Wheat cultivars show

weak BNI activity but, importantly, the recent development of elite

wheat cultivars that harbor a chromosomal region introgressed

from Leymus racemosus, a wild wheat relative with high BNI

activity (Subbarao et al., 2021; Bozal-Leorri et al., 2022), has

raised further expectations regarding the potential of crops to

directly control nitrification in soils.

How N cycling, and nitrification in particular, will be affected in

agrosystems by future climatic conditions, as eCO2 is still far from

being understood, with variable results shown in the literature

(Coskun et al., 2016). In a meta-analysis that included N-

fertilized fields, Dijkstra et al. (2012) showed that eCO2 led to

increased N2O emissions due to enhanced nitrification and/or

denitrification. High rates of soil nitrification are predicted in the

future because nitrifiers use CO2 as carbon source for growth and

NH4
+ as energy source (Wendeborn, 2020). Indeed, a more

abundant nitrifying population was found in response to eCO2,

alone or in combination with increased temperature (Diao et al.,

2020; Waqas et al., 2021). Although the utility of SNIs is

unquestionable, their efficiency depends on soil conditions such

as water content and temperature (Menéndez et al., 2012; Nair et al.,

2021). Bozal-Leorri et al. (2021) recently showed DMP-based SNIs

efficiently decreased N2O losses regardless CO2 level, although

further studies are needed to confirm their inhibition efficiency

under eCO2 in the field and considering different soil types and

environmental conditions. Additionally, anticipating how eCO2 will

affect the plant’s capacity to synthesize and release BNIs, as well as
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their efficiency in suppressing nitrification, is of great relevance to

propose effective strategies to increase NUE by crop plants under

future conditions.
4 How will eCO2 influence
plants biological nitrification
inhibitory capacity?

From an evolutionary point of view, the BNI capacity is

considered a plant response to adapt to N-scarce environments

(Subbarao et al., 2006; Lata et al., 2022). Conversely, the BNI

strategy has also proven to be effective in controlling soil N losses

in well N-fertilized systems such as sorghum, rice, and wheat cereal

cultures (Subbarao et al., 2021; Wang et al., 2021). Slowing

NH4
+oxidation by inhibiting soil nitrification reduces N leakage

while promoting NH4
+ stability, thus presumably favoring a more

NH4
+-based nutrition. This will surely promote greater yield

potential through a more efficient assimilation of co-existent N

forms (Subbarao and Searchinger, 2021), which is also crucial to

match the enhanced N demands by eCO2. Nonetheless, high NH4
+

content in soil may entail a stressful situation for crop performance

(Britto and Kronzucker, 2002; González-Moro et al., 2021); hence,

crops better adapted to NH4
+ as N source are required. Because

plant NH4
+ assimilation is dependent on proper C-skeleton supply,
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conditions favoring photoassimilate production, such as eCO2 or

direct carbon provision, have been shown to alleviate the symptoms

associated with ammonium stress (Roosta and Schjoerring, 2008;

Setién et al., 2013; Vega-Mas et al., 2015). Therefore, the predicted

eCO2 may be advantageous for improving the performance of BNI-

producing plants grown in the presence of enhanced

NH4
+ (Figure 1).

Plant BNI capacity is dependent on soil conditions, of which

rhizospheric pH, aeration, quantity, and form of available N are the

main drivers of BNI synthesis and exudation (Wang et al., 2021;

Zhang et al., 2022). The present working model indicates that

rhizosphere acidification, associated with NH4
+ assimilation and

plasma membrane H+-ATPase activity, stimulates BNI release (Zhu

et al., 2012; Coskun et al., 2017a; Afzal et al., 2020). Hence, more

NH4
+-based nutrition would act as a positive feedback regulatory

strategy for BNI production and/or release (Subbarao et al., 2007b).

Whether plants with higher BNI potential display specific NH4
+-

tolerance mechanisms needs to be explored, and results of great

interest for the future. Remarkably, the presence of nitrifying

bacteria, but not denitrifiers, promotes the secretion of BNI

compounds in wheat (O’Sullivan et al., 2016) and rice (Zhang

et al., 2019). Thus, although the specific mechanisms responsible for

such BNI induction are still unknown, the existence of signaling

between BNI-producing roots and nitrifying bacteria has been

suggested (Wang et al., 2021). In turn, the predicted promotion
FIGURE 1

Main view of the predicted effects of elevated CO2 levels on soil nitrification and BNI-producing plants. Changes caused by elevated CO2 are
highlighted in blue, changes due to plant BNI activity are highlighted in green and newly proposed hypotheses are highlighted in yellow.
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of soil nitrification under eCO2 conditions (Diao et al., 2020; Waqas

et al., 2021) could potentially benefit BNI production.

Elevated CO2 promotes not only whole plant and root biomass

(Roy and Mathur, 2021), but also root exudate production, which

accounts for up to 21% of photosynthetically fixed C (Kollah et al.,

2019; Xiong et al., 2019). The BNI compounds identified to date are

C-enriched secondary metabolites that belong to a wide range of

different metabolic groups, such as quinones, terpenes, and

phenolic compounds (Nardi et al., 2020; Chai and Schachtman,

2022). This is the case for BNIs identified as sorgoleone and methyl

3-(4-hydroxyphenyl) propionate (MHPP) from Sorghum, or

brachialactone from Brachiaria (Zakir et al., 2008; Subbarao et al.,

2009; Subbarao et al., 2013). Therefore, it would be expected that

enhanced root exudation under eCO2 to include compounds with

BNI activity (Figure 1). Overall, secondary metabolites are involved

in plant–environment interactions and are produced by plants to

ease their adaptation to a changing environment (Zandalinas et al.,

2022). Moreover, enhanced net photosynthesis rates under eCO2

lead to the rescheduling of secondary metabolism, with enhanced

C-enriched metabolite production (Matros et al., 2006; Xu et al.,

2019; Roy and Mathur, 2021). Therefore, this reinforces the

hypothesis of a possible positive effect of eCO2 on the production

of BNI-active metabolites. However, root exudation in plants is

affected by many factors; water availability is a determinant of

exudation response to eCO2 (Calvo et al., 2017; Xiong et al., 2019;

Chai and Schachtman, 2022). In agreement with the promotion of

secondary metabolism under stress conditions, Ghatak et al. (2022)

observed that drought stress in pearl millet enhanced the release of

root exudates and increased total BNI activity. Deciphering how

BNI production is affected by the interaction of factors such as

eCO2, water availability, or temperature is the next step to further

promote this trait for sustainable agriculture.
5 Concluding remarks

Many uncertainties still exist in optimizing N management

under future climatic conditions. However, to make agriculture

more sustainable, it is mandatory to meet crop N demand, while

reducing N losses derived from N fertilization. Improving soil N

availability through the exploitation of plant BNIs is an outstanding

opportunity. In this study, we hypothesize that BNI production

would be promoted in a climate change scenario, since eCO2 would

boost both N assimilation and production of C-rich secondary

metabolites. Although there are still many unresolved issues
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regarding factors that affect plant BNI capacity, BNI crops are

promising candidates for future sustainable agrosystem production.

In this context, selection of climate-resilient crop varieties adapted

to the use of NH4
+ as an N source is essential.
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Bozal-Leorri, A., González-Muru, C., Marino, D., Aparicio-Tejo, P. M., and
Corrochano-Monsalve, M. (2021). Assessing the efficiency of dimethylpyrazole-based
nitrification inhibitors under elevated CO2 conditions. Geoderma 400, 115160. doi:
10.1016/j.geoderma.2021.115160

Bozal-Leorri, A., Subbarao, G. V., Kishii, M., Urmeneta, L., Kommerell, V., Karwat,
H., et al. (2022). Biological nitrification inhibitor-trait enhances nitrogen uptake by
suppressing nitrifier activity and improves ammonium assimilation in two elite wheat
varieties. Front. Plant Sci. 13, 1034219. doi: 10.3389/fpls.2022.1034219

Britto, D. T., and Kronzucker, H. J. (2002). Review NH4+ toxicity in higher plants: a
critical review I. J. Plant Physiol. 159, 567–584. doi: 10.1078/0176-1617-0774

Calvo, O. C., Franzaring, J., Schmid, I., Müller, M., Brohon, N., and Fangmeier, A.
(2017). Atmospheric CO2 enrichment and drought stress modify root exudation of
barley. Glob. Change Biol. 23, 1292–1304. doi: 10.1111/gcb.13503

Chai, Y. N., and Schachtman, D. P. (2022). Root exudates impact plant performance
under abiotic stress. Trends Plant Sci. 27, 80–91. doi: 10.1016/j.tplants.2021.08.003

Coskun, D., Britto, D. T., and Kronzucker, H. J. (2016). Nutrient constraints on
terrestrial carbon fixation: The role of nitrogen. J. Plant Physiol. 203, 95–109. doi:
10.1016/j.jplph.2016.05.016

Coskun, D., Britto, D. T., Shi, W., and Kronzucker, H. J. (2017a). Nitrogen
transformations in modern agriculture and the role of biological nitrification
inhibition. Nat. Plants 3, 17074. doi: 10.1038/nplants.2017.74

Coskun, D., Britto, D. T., Shi, W., and Kronzucker, H. J. (2017b). How Plant Root
Exudates Shape the Nitrogen Cycle. Trends Plant Sci. 22, 661–673. doi: 10.1016/
j.tplants.2017.05.004

Diao, T., Peng, Z., Niu, X., Yang, R., Ma, F., and Guo, L. (2020). Changes of soil
microbes related with carbon and nitrogen cycling after long-term CO2 enrichment in a
typical Chinese maize field. Sustainability 12, 1250. doi: 10.3390/su12031250

Dier, M., Meinen, R., Erbs, M., Kollhorst, L., Baillie, C. K., Kaufholdt, D., et al.
(2018). Effects of free air carbon dioxide enrichment (FACE) on nitrogen assimilation
and growth of winter wheat under nitrate and ammonium fertilization. Global Change
Biol. 24, 40–54. doi: 10.1111/gcb.13819

Dijkstra, F. A., Prior, S. A., Runion, G. B., Torbert, H. A., Tian, H., Lu, C., et al.
(2012). Effects of elevated carbon dioxide and increased temperature on methane and
nitrous oxide fluxes: Evidence from field experiments. Front. Ecol. Environ. 10, 520–
527. doi: 10.1890/120059

FAO (2018). Climate smart agriculture: building resilience to climate change. Eds.
Lipper, L., McCarthy, N., Zilberman, D., Asfaw, S., and Branca, G. Springer Cham
(Switzerland), 477–495. doi: 10.1007/978-3-319-61194-5

Gamage, D., Thompson, M., Sutherland, M., Hirotsu, N., Makino, A., and
Seneweera, S. (2018). New insights into the cellular mechanisms of plant growth at
elevated atmospheric carbon dioxide concentrations. Plant Cell. Environ. 41, 1233–
1246. doi: 10.1111/pce.13206

Ghatak, A., Schindler, F., Bachmann, G., Engelmeier, D., Bajaj, P., Brenner, M., et al.
(2022). Root exudation of contrasting drought-stressed pearl millet genotypes conveys
varying biological nitrification inhibition (BNI) activity. Biol. Fert. Soils 58, 91–306.
doi: 10.1007/s00374-021-01578-w
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