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Ozone (O3) levels on Earth are increasing because of anthropogenic activities and

natural processes. Ozone enters plants through the leaves, leading to the

overgeneration of reactive oxygen species (ROS) in the mesophyll and guard cell

walls. ROS can damage chloroplast ultrastructure and block photosynthetic electron

transport. Ozone can lead to stomatal closure and alter stomatal conductance,

thereby hindering carbon dioxide (CO2) fixation. Ozone-induced leaf chlorosis is

common. All of these factors lead to a reduction in photosynthesis under O3 stress.

Long-term exposure to high concentrations of O3 disrupts plant physiological

processes, including water and nutrient uptake, respiration, and translocation of

assimilates and metabolites. As a result, plant growth and reproductive performance

are negatively affected. Thus, reduction in crop yield and deterioration of crop quality

are the greatest effects of O3 stress on plants. Increased rates of hydrogen peroxide

accumulation, lipid peroxidation, and ion leakage are the common indicators of

oxidative damage in plants exposed to O3 stress. Ozone disrupts the antioxidant

defense system of plants by disturbing enzymatic activity and non-enzymatic

antioxidant content. Improving photosynthetic pathways, various physiological

processes, antioxidant defense, and phytohormone regulation, which can be

achieved through various approaches, have been reported as vital strategies for

improving O3 stress tolerance in plants. In plants, O3 stress can be mitigated in

several ways. However, improvements in crop management practices, CO2

fertilization, using chemical elicitors, nutrient management, and the selection of

tolerant crop varieties have been documented to mitigate O3 stress in different plant

species. In this review, the responses of O3-exposed plants are summarized, and

different mitigation strategies to decrease O3 stress-induced damage and crop

losses are discussed. Further research should be conducted to determine

methods to mitigate crop loss, enhance plant antioxidant defenses, modify

physiological characteristics, and apply protectants.
KEYWORDS

abiotic stress, antioxidants, atmospheric pollutants, oxidative stress, photosynthesis,
prooxidant, reactive oxygen species
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1 Introduction

Ozone (O3) is a major environmental stressor that affects crop

production negatively. The concentration of O3 is predicted to

increase by 25% by 2050 and 60% by 2100 (Meehl et al., 2007;

Jimenez-Montenegro et al., 2021). Ozone is present both in the

stratosphere and the troposphere, where the stratospheric O3 is

known as the “good O3” or “O3 layer” because it absorbs the

harmful ultraviolet (UV-B) rays of sunlight and acts as a UV-ray

filter, preventing its harmful effects on living organisms on Earth

including plants. Tropospheric or ground-level O3 is responsible for

promoting damaging effects on living cells, organs, and species;

therefore, it is known as “bad O3” (Xu, 2021). Tropospheric O3,

namely ground-level O3, is an air pollutant and secondary air

pollutant recommended by air quality guidelines in all countries.

Although they are generated in the troposphere by sunlight-driven

chemical processes that combine nitrogen oxides (NOx) and

volatile organic carbons (VOCs), the use of fossil fuels by the

industrial and transport sectors has significantly increased the

level of O3 in the troposphere, mainly due to the release upon

combustion of several O3 precursors (Zhang et al., 2019; Hasan

et al., 2021). Consequently, the phytotoxic effects of increased

tropospheric O3 on many plant species, losses in global crop

production, especially in industrial and urban areas, and damage

to ecological health and environmental sustainability in the long

term are well known (Monks et al., 2015; Ramya et al., 2023).

However, the generation of O3 occurs in the troposphere through

photochemical reactions between precursors emitted by

anthropogenic, natural, and agronomic sources, such as NOx,

carbon monoxide, methane, VOCs, and peroxyacetyl nitrate

(Vainonen and Kangasjärvi, 2015).

Plants take up O3 through the stomata, and it is later converted

into reactive oxygen species (ROS) in the apoplast. The

accumulation of ROS damages the photosynthetic machinery,

causes stomatal closure, and degrades ribulose-1,5-bis-phosphate

carboxylase/oxygenase (RuBisCO) (Ren, 2021). However, the

damage caused by O3 to plants depends on the dose and

exposure time. Ozone exposure can be categorized as acute or

chronic. High doses of O3 over short periods (acute damage) may

lead to programmed cell death and leaf damage, particularly in

sensitive plant species. However, a lower dose of O3 for a longer

duration (chronic damage) affects the photosynthetic rate, causing

growth reduction and rapid leaf senescence, with or without visible

damage to the leaves (Chen et al., 2018; Emberson et al., 2018).

Increased O3 exposure results in higher yield loss through foliar

damage, suppression of photosynthesis with altered carbon

translocation, and consequently earlier plant senescence occurs.

Numerous distinct alterations in gene expression, metabolic

profiles, and enzyme activity occur in plants exposed to O3. Acute

O3 exposure in sensitive accessions led to increased cell death, lesion

formation, and reduced photosynthesis (Morales et al., 2021).

Owing to its high reactivity and instability, O3 can cause

oxidative stress in apoplast plant cells by chemically altering

different components such as proteins to form short-lived ROS.

Plants activate antioxidant defense mechanisms to scavenge ROS

and prevent their negative effects. Ozone-tolerant plants have
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different characteristics that suppress cellular toxic elements, such

as peroxidation, and maintain cell membrane stability, which is

made possible by the activation of both enzymatic and non-

enzymatic antioxidant components (Dhevagi et al., 2021; Ramya

et al., 2021a). Thus, plants can become tolerant to O3, which

ultimately safeguards their yield under adverse circumstances.

The generation of O3 has a strong relationship with different

meteorological factors, being positively correlated with sunshine

hours and negatively correlated with wind speed and relative

humidity (Markovic and Markovic, 2005). Consequently, the

level of O3 changes over the season and even during the day,

with high values in the day and dry months and low values in the

night and wet months (Jain et al., 2005). It has been reported that

the diurnal variation in O3 coincides with the intensity of solar

radiation and higher air temperatures. Nevertheless, ground-level

O3 concentrations remain low under nighttime conditions

because there is no photolysis of nitrogen dioxide (NO2) or

photooxidation of O3 precursors (Ma et al., 2021). Upon

exposure to ultraviolet (UV) radiation, NO2 dissociated into

nitric oxide (NO) and oxygen (O). The short lifetime of O3 is

related to its ability to react with NO to produce NO2 and O2 again

(Simon et al., 2014).

In this review, we explored the processes involved in O3 uptake

by plants and their perception of this pollutant. In this study, we

investigated the multivariate effects of O3 on plant growth,

nutrition, physiology, yield, and oxidative stress. In addition, we

discuss strategies for mitigating the phytotoxic effects of O3 and

enhancing the performance of O3-affected plants. These strategies

include crop management practices, carbon dioxide (CO2)

fertil ization, using chemical elicitors, proper nutrient

management, and the selection of tolerant crop varieties.

Therefore, this review aims to provide a comprehensive

understanding of O3-induced damage in plants and techniques

for improving O3 tolerance, thereby shedding light on O3-

related research.
2 Ozone uptake by plants

Ozone pollution has been perceived mostly as a daytime

problem because gas generation occurs through complex

photolytic reactions, and the leaf stomata are open during this

period, allowing O3 uptake into plants. Nevertheless, O3 uptake may

also occur at night because the stomata are not completely closed

(Dawson et al., 2007; Rannik et al., 2009). Furthermore, O3 can

enter the leaves by direct absorption through the leaf exterior

surfaces, albeit less than the amount of O3 entering the stomata

(Pleijel et al., 2004). Besides the uptake of O3 via the stomata, O3 can

also be deposited onto agricultural systems via non-stomatal

pathways (e.g., soil and cuticular deposition) (Morales et al.,

2021). Stomata are the first barrier to overcome the damage in

plants caused by O3 because stomatal aperture control is responsible

for O3 flux into the leaves (Fiscus et al., 2005). The size of the

stomatal aperture is controlled by the activity of the guard cell ion

channels and transporters responsible for the movement of

osmolytes across the tonoplast and plasma membrane (Kollist
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et al., 2011; Hedrich, 2012). Ion channel regulation is controlled by

reversible protein phosphorylation by protein kinases and

phosphatases (Evans et al., 2005).

Three levels of O3 concentration have been established: low

(20–70 nL O3 L
-1), moderate (70–150 nL O3 L

-1), and high (>150 nL

O3 L-1) (Grulke and Heath, 2020). According to European

Environmental Legislation, the threshold O3 concentration should

not exceed 40 ppb to protect crops during the growing season

(Proietti et al., 2021). The chronological and spatial sequences of

these actions define how O3 exposure affects plant physiology. First,

O3 enters the leaf apoplast via the stomata, where it is degraded into

secondary ROS at two different locations (mesophyll and guard cell

walls) by triggering specific calcium (Ca) signatures in the cytosol.

High concentrations of Ca and ROS in the cytosol of guard cells

result in stomatal closure and, consequently restriction of O3. There

is a high influx of O3 in the apoplast of mesophyll cells, inducing

excessive ROS accumulation that is not scavenged by apoplastic

antioxidants, such as ascorbate (AsA) (Grulke and Heath, 2020).

Higher accumulation of ROS in the apoplast triggers several

downstream signaling pathways that work in parallel, in series, or

both (Roychowdhury et al., 2019; Li et al., 2023). Reactive oxygen

species signaling and apoplast propagation in the apoplast are

related to the induction of respiratory burst oxidase homolog

(RBOH) activity and type III peroxidases. The signaling process

in the apoplast is then quickly relayed to the chloroplast, where the

ROS signal is amplified by chloroplastic ROS formation. This

process is regulated by heterotrimeric G proteins (Joo et al., 2005;

Booker et al., 2012). The intracellular pathways promoted by ROS

involve the activation of mitogen-activated protein kinase (MAPK)

cascades, modification of intracellular redox homeostasis, and

generation of NO (Morales et al., 2021).

The absence of a- or b-subunits of the G-protein in gpa1 or

agb1 mutants resulted in the first early peak of ROS not being

generated, while only the G a-subunit was required for the second

peak of ROS accumulation (Joo et al., 2005; Vainonen and

Kangasjärvi, 2015). These results indicate that ROS synthesis in

the chloroplasts may be involved in apoplast signaling process

(Shapiguzov et al., 2012; Sierla et al., 2013). Retrograde signaling

from the chloroplasts to the nucleus may cause modifications in

nuclear gene expression (Leister, 2012; Estavillo et al., 2013). This

signaling process may be achieved via ABI4 (Koussevitzky et al.,

2007), WHIRLY 1 (Isemer et al., 2012), and PTM (PHD-type

transcription factor with transmembrane domains) transcription

factors (Sun et al., 2011) as well as metabolites such as Mg-

protoporphyrin IX (Strand et al., 2003), heme (Woodson et al.,

2011), 3′-phosphoadenosine-5′-phosphate (PAP) (Xiao et al., 2012)
and b-cyclocitral (Ramel et al., 2012).
3 Plant sensing and indication
of O3 stress

Plants respond differentially to ozone exposure. The response

pattern of ozone-tolerant and sensitive plants has been reported in

several studies. Ozone-responsive proteins and signaling molecules

are primarily involved in ozone sensing. The mechanisms involved
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in O3 sensing are as follows: a) recognition by an apoplastic receptor

protein, which can be changed by the ROS synthesis related to O3

breakdown, b) oxidation of plasma membrane lipids resulting in the

generation of lipid-based signaling molecules that are further

sensed, and c) modification in the redox homeostasis due to the

participation of ascorbic acid (AsA), glutathione (GSH) or the ratio

NAD(P)H/NAD(P) (nicotinamide adenine dinucleotide

phosphate-with and without hydrolase) (Kangasjärvi et al., 2005).

Excess ROS production due to O3 exposure causes cellular

damage; however, ROS initially act as signaling molecules (Jaspers

and Kangasjärvi, 2010). ROS can alter signal transduction proteins

within membranes in response to O3 stress (Rossard et al., 2006).

Consequently, several cellular changes occur, such as a)

depolarization and dysfunction of the membrane, b) modification

of cell wall compounds, c) promotion of MAP kinase protein

cascades to generate new proteins through transcription factor

activation, d) ozonolysis of double bonds in the unsaturated fatty

acids of cell membranes, and e) lipid peroxidation in the membrane

(Evans et al., 2005; Iriti and Faoro, 2008; Sharma et al., 2012;

Emberson et al., 2018).

Baier et al. (2005) noted that the signaling process of O3 from

the chemical reaction sites in the apoplast or plasma membrane to

the cytosol can be associated with O3 induced ROS production,

particularly H2O2, which functions as a diffusible messenger (Laloi

et al., 2004) and modulates cytosolic AsA and GSH (Gomez et al.,

2004). Extracellular peroxidases (PRX) and plasma membrane-

bound NADPH oxidases (RBOH) enhance ROS generation under

O3 stress (Kangasjärvi et al., 2005). In addition to H2O2, ethylene

and salicylic acid (SA) have been reported as secondary or tertiary

messenger molecules involved in O3 sensing, because O3 or O3-

derived ROS can activate them. Both ethylene and SA can increase

oxidative signaling (Sandermann, 2000; Kangasjärvi et al., 2005).

Exposure of plants to O3 also triggers SA-induced cell death

because SA can inhibit the main H2O2-scavenging enzymes such as

catalase (CAT) and ascorbate peroxidase (APX) (Faoro and Iriti,

2009). Under severe exposure to O3, NO synthesis increased. This

molecule plays a crucial role in the signaling of plants subjected to

stress conditions. Moreover, NO can react with H2O2 and NO

donors such as sodium nitroprusside (SNP), leading to the

accumulation of H2O2 in plants (Astier et al., 2018). Another

consequence of long-term exposure to O3 is increased cell wall

lignification in many plants, which helps decrease O3 penetration

(Cabané et al., 2012).

The physiological damage caused by O3 exposure is related to

photosynthetic reduction, ROS generation, increased dark

respiration, and reduced crop yield (Cailleret et al., 2018). More

accurately, the main effects of chronic exposure to O3 are a

reduction in the photosynthetic rate, growth reduction, and

premature senescence without visible symptoms (Krupa, 2003). In

contrast, acute exposure to O3 results in cell death and other adverse

effects (Kangasjärvi et al., 2005). Symptoms of O3 exposure can be

observed between the veins on the adaxial leaf surfaces of older and

middle-aged leaves; however, symptoms can appear on both leaf

surfaces (adaxial and abaxial) in some species if the damage is severe

(Cho et al., 2011; Vaultier and Jolivet, 2015). Induced chlorosis and

bronzing (several spots on the leaves) are the most frequent
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symptoms of chronic O3 exposure, and acute exposure may result in

a higher number of visible lesions (Kangasjärvi et al., 2005).
4 Ozone as a Prooxidant and O3-
induced oxidative stress

Ozone can directly generate ROS in the leaf mesophyll and

guard cell walls after entering the stomata (Grulke and Heath,

2020). Higher exposure activates the pro-oxidant activity of O3 by

increasing ROS accumulation and decreasing the antioxidant

machinery in plant cells (Dhevagi et al., 2021; Ramya et al.,

2021a). Moreover, the overgeneration of ROS and the reaction

between O3 and plasma membrane lipids results in peak levels of

superoxide and thiobarbituric acid (Marchica et al., 2019). This

phenomenon confirmed the oxidative stress in plant cells upon O3

exposure. Under O3 exposure, plants suffer several physiological

damages, resulting in a lower photosynthetic rate, which in turn

results in growth reduction, premature senescence, and cell death,

mainly due to the generation of ROS. To counteract these harmful

effects, plants activate different antioxidant systems to scavenge the

reactive molecules (Figure 1).

Several studies have investigated the pro-oxidant effects of O3

and the respective changes in redox homeostasis. Rice (Oryza sativa

L.) seedlings of three different cultivars, Nipponbare and BRRI

dhan28 (sensitive to O3), and L81 (O3-tolerant introgression line),

were grown from April to October 2016 in a controlled climate

greenhouse. Plants were sprayed with 80 ppb O3 for 7 hours daily,

five weeks after transplantation to induce acute stress. Owing to

tolerance differences between cultivars, malondialdehyde (MDA)

content increased in sensitive cultivars but not in the tolerant line.

However, the total leaf AsA did not show any significant differences

among the cultivars (Ashrafuzzaman et al., 2017). Tobacco

(Nicotiana tabacum L.) plants exposed to 300 nmol mol-1 for 4 h

at midday showed clear symptoms of leaf necrosis and a reduced net

photosynthetic rate. Oxidative stress caused by exposure to O3
Frontiers in Plant Science 04
results in an increase in H2O2 and MDA contents, and ion leakage

(Guo et al., 2009). In another experiment, two cultivars of bean

(Phaseolus vulgaris L.) with different O3 tolerance levels (O3-

sensitive “Cannellino” and O3-tolerant “Top Crop”) were

subjected to a severe O3 stress (165 nL L-1). Biochemical

characterization of different cultivars showed that exposure to this

phytotoxic air pollutant increased superoxide dismutase (SOD) and

CAT activities in both cultivars, which was more pronounced in the

tolerant genotype (Guidi et al., 2010). Similarly, two cultivars of

soybean (Glycine max L.) with opposed degrees of O3 tolerance (O3-

sensitive “Mandarin (Ottawa)” and O3-tolerant “Fiskeby III”) were

treated with 70 ppb for 4 days (7 h day-1). Histochemical assays

performed on these cultivars showed an accumulation of H2O2 via

3,3′-diaminobenzidine (DAB) in the sensitive cultivar, whereas no

spots were detected in the tolerant cultivar. Nevertheless,

superoxide anion (O2
•-) generation showed different trends in the

two cultivars when tested by nitro blue tetrazolium chloride (NBT)

reduction. There were no significant differences in SOD and

glutathione reductase (GR) activities between the genotypes or O3

treatments (Chutteang et al., 2016). Similarly, Szpunar-Krok et al.

(2020) tested the effects of two doses of O3 (5 and 10 ppm), different

exposure times (2, 4, 8, 12, and 16 min), and two application periods

(21 and 28 d after sowing) on potatoes (Solanum tuberosum L.).

This experiment revealed a significant decrease in the total

antioxidant activity based on ABTS•+ and DPPH• radical assays.

Table 1 includes additional information on studies that investigated

the pro-oxidant effects of O3 on different crops.
5 Plant responses to O3

The response of plants to O3 stress depends on the

concentration and duration of exposure. Ozone may also be

deposited in plant cells by non-stomatal channels, such as soil

and cuticular deposits, in addition to being taken up by the stomata

(Morales et al., 2021). Because stomatal opening and closing
FIGURE 1

The major physiological processes and mechanisms involved in leaf injury under chronic and acute ozone exposure. The upward arrow inside boxes
indicates increase and downward arrow indicates decrease.
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regulate the flow of O3 into the leaves, stomata act as an initial

defense against O3 damage in plants. However, the activities of

transporters and ion channels in guard cells that move osmolytes

through the tonoplast and plasma membrane regulate the size of the

stomatal aperture. After accumulation in plant cells, O3 induces

short-term responses in plants depending on the frequency of stress

exposure, such as the production of noticeable fine bronze or pale-

yellow spots on the upper surface of the leaves. However, O3-

induced phytotoxicity begins when O3 diffuses into the vacuolar

space of the leaves through stomatal openings, promoting oxidative

stress by encouraging the rapid production of ROS in the apoplast

(Figure 2). Additionally, O3 can directly diffuse into the cytosol

through the cell membrane, generating ROS that alters stomatal

conductance (gs) (Ainsworth, 2017. ) Numerous studies have used

external O3 to investigate the responses of plants to stress in terms

of growth, biomass, reproduction, and yield (Figure 2).
5.1 Crop growth

The response of plants to O3 varies depending on species,

cultivar, and developmental stage (Table 2). A few varieties of

wheat (Triticum aestivum L.) and rice show visible signs of foliage

injury during their early growth stages (Ramya et al., 2021b). Ozone

causes early leaf senescence and abscission, which can affect

biomass and growth by allocating carbon to edible plant portions.

Additionally, the O3-induced reduction in root growth is greater

than the reduction in shoot growth because of impaired

carbohydrate partitioning in the roots (Witting et al., 2009).

However, it adversely affects shoot growth. Yadav et al. (2021)

observed significant effects on plant growth when experimenting

with four Indian wheat cultivars (early-sown cultivars HUW468

and HD3086; late-sown cultivars HUW234 and HD3118). They

reported a greater reduction (26%) in the aboveground biomass of

early-sown cultivars than that of late-sown cultivars (21%) under

ambient and elevated O3 (ambient+20 ppb).
5.2 Plant physiology and metabolism

Ozone-induced phytotoxicity negatively affects plant

physiology and metabolism, including photosynthesis, respiration,

transpiration, relative water content, and secondary metabolite

accumulation in various crop plants (Cho et al., 2011; Ainsworth

et al., 2012; Hassan et al., 2017). In particular, evaluating

physiological processes is a more accurate method for assessing

intrinsic O3-induced injuries in plants because physiological

damage can start at lower O3 concentrations and before the onset

of visible impairment (Pandey et al., 2019). Several studies have

evaluated the detrimental effects of ambient and elevated O3 on the

physiological processes in plants (Table 3). O3-induced injuries are

also related to reduced dry mass accumulation in leaves, lower leaf

area-based antioxidant levels, and altered gs. However, the O3

uptake is linked to gs, which varies according to the absorption

capacity of the cuticle and stem in different plant species, such as the

cuticle and stem. For example, increasing the amount of O3 leads to
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a reduction in gs and stomatal pore area in tomatoes (Solanum

lycopersicum L.) (Thwe et al., 2014). Moreover, Yendrek et al. (2015)

reported that legume crops, such as peas (Pisum sativum L.),

soybeans, and beans, display reduced net photosynthetic rates and

leaf longevity. Cabbage (Brassica oleracea var. capitata) (cv. Tekila

and Primero) plants showed decreased photosynthetic rates

(71.2%), stomatal conductance (81.03%), and chlorophyll content

(32.98%) (Ramakrishnan et al., 2023) when exposed to O3 (200

ppb). Ozone-induced stomatal closure occurs because of the

inhibition of carbon assimilation in chloroplasts, which leads to

an accelerated internal carbon dioxide (CO2) concentration

(Ainsworth et al., 2012). Moreover, O3 exposure directly impacted

the net CO2 assimilation rate and CO2 fixation ability negatively.

Total carbon sequestration and transpiration rates were also related

to reduced gsand photosynthetic rates. It has also been observed that

O3-induced alterations in the CO2 assimilation rate further

influence plant respiration, leading to reduced crop growth and

productivity (Ainsworth, 2017). In addition to ROS production, the

concentration of secondary metabolites in plant cells is altered by

O3-induced stress. Higher concentrations of O3 activate the first

enzyme of the phenylpropanoid pathway, leading to a higher

accumulation of flavonoids, phenolic acids, monolignols, GSH,

gamma-aminobutyric acid (GABA), terpenoids, and volatile

organic compounds such as isopropanoids (Mikkelsen et al., 2015).

Ozone exposure also causes a nutrient imbalance in plant cells

by altering the allocation of nutritional elements and their ratios in

the belowground (root) and aboveground parts (stem and leaves)

and disrupting other physiological activities. For example, the

potassium (K), calcium (Ca), sodium (Na), iron (Fe), and zinc

(Zn) contents in potato tubers are lower under elevated O3 than

under ambient conditions, which lowers tuber quality (Kumari and

Agrawal, 2014). Similarly, Ghosh et al. (2020a) revealed that the

concentrations of nitrogen (N), phosphorus (P), K, magnesium

(Mg), and Ca were reduced in the leaves and shoots of wheat under

ambient and elevated (ambient+20 ppb) O3 stress from 2 weeks

after germination to maturity for 4 h. However, carbon was

enhanced under the same stressful conditions, which led to an

increase in the C:N and C:K ratios in the leaves. Similarly, as O3

alters the absorption and distribution of macronutrients owing to

changes in organic matter mineralization, the uptake of other

nutrients is also influenced. Under O3 stress, copper (Cu)

concentration was significantly reduced in the leaves, shoots, and

roots, although the reduction was higher in the shoots than in the

roots. Ozone-induced reduction in leaf N has also been observed in

previous studies (Chen et al., 2015; Pandey et al., 2018).
5.3 Reproductive development

Reproductive development is the key determinant of plant

productivity and species distribution. Increased O3 has a

detrimental effect on the reproductive system, primarily because it

alters the allocation of carbon among tissues and directly affects

plant reproductive processes (Gillespie et al., 2015). Several studies

have demonstrated the effects of O3 on flower initiation, floral

development, pod formation, seed quality, seedling germination,
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FIGURE 2

A schematic illustration of the response of sensitive and tolerant plants to ozone. The upward arrow inside boxes indicates increase and downward
arrow indicates decrease.
TABLE 1 Effects of ozone stress in crops and the different defense responses triggered in each species.

Plant species O3 levels Stress
period

Physiological and defense response References

Brassica
oleracea (L.)

70 ppb 3 days CAT, APX, and POD activities Enhanced Rozpad̨ek et al. (2013)

Capsicum
baccatum (L.)

Average of 0.172 ppb 62 days
(6 h day-1)

Lipid peroxidation and protein carboxylation in leaf Increased Bortolin et al. (2014)

SOD, CAT and APX activities Decreased

Glycine max (L.) 200 ppb 4 h Leaf AsA content Increased Gillespie et al. (2011)

DHAR activity Increased

GR activity Reduced

MDHAR, APX, SOD and CAT activities No
change

Oryza sativa (L.) 150 ppb 6 h Production of O2
.- and lipid peroxidation in leaf Increased Ueda et al. (2013)

O. sativa (L.) 51 ppb 30 days (7 h
day-1)

MDA and proline contents Increased Ramya et al. (2021b)

Solanum
tuberosum (L.)

Average of 50 ppb 60 days (6 h
day-1)

MDA and H2O2 content; SOD, GR and
APX activities

Increased Kumari et al. (2015)

Triticum
aestivum (L.)

80 ppb 30 days (8 h
day-1)

Electrolyte leakage, lipid peroxidation, POD, and
CAT activities

Increased Zheng et al. (2011)

T. aestivum (L.) Average of 66 ppb 5 months (8 h
day-1)

Lipid peroxidation, MDA, H2O2, O2 and OH.-

content in leaves
Enhanced Ghosh et al. (2020b)

Vigna
unguiculata (L.)

40, 50, 60, 70 and
80 ppb

15 min, twice
a day

AsA activity, proline content Increased Malaiyandi and
Natarajan (2014)
F
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(AsA, Ascorbate; DHAR, Dehydroascorbate reductase; GR, Glutathione reductase; MDHAR, Monodehydroascorbate reductase; APX, Ascorbate peroxidase; SOD, Superoxide dismutase; CAT,
Catalase; O2

.-, Superoxide anion; H2O2, Hydrogen peroxide; GR, Glutathione reductase; O2, Oxygen; OH
.-, Hydroxyl radical).
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and seedling vigor have been demonstrated in several studies. For

example, Gillespie et al. (2015) demonstrated that O3 adversely

affected pollen viability, pollen germination, germ tube growth,

pollen-stigma interactions, and fertilization in tomatoes, leading to

decreased seed size, weight, and quality. Consequently, O3-induced

lower pollen viability or ovule development leads to reduced

fertilization. Moreover, elevated O3 levels promoted flower and

pod abscission. For example, decreased pod production without an

effect on flower production was observed in soybeans when plants

were exposed to 150 ppb of O3 inside O3 chambers. Fruit number,

fruit size, seed number, and seed size also decrease at this level of O3

stress in soybeans (Leisner et al., 2014). Additionally, research

suggests that the effects of O3 exposure vary depending on the

stage of plant growth, affecting flowering patterns in various ways

and affecting the pollination and reproduction of annual crops and

wild species. According to a recent investigation by Duque et al.

(2021a), wild mustard (Sinapis arvensis L.) plants exposed to 120
Frontiers in Plant Science 07
ppb O3 for 6 h day
-1 at earlier stages had more open flowers than the

corresponding controls, whereas plants exposed to the same

concentrations of O3 at later stages tended to have fewer open

flowers. Similarly, when S. arvensis plants were exposed to 120 ppb

O3 for 6 h day−1 during the flower initiation stage, flowering

accelerated, increasing the proportion of open flowers in O3-

exposed plants at the start of the flowering phase (Duque et al.,

2021b). Furthermore, the O3-induced reduction in the

photosynthesis rate inhibits the accumulation of carbohydrates in

pollen in some plant species, conferring adverse effects on pollen

germination (Zhang et al., 2017). O3-induced reductions in the

number, size, weight, and quality of grains in cereal crops such as

rice and wheat have also been observed in some studies (Banerjee

and Roychoudhury, 2019; Schauberger et al., 2019). Although O3

has been found to have detectable effects on reproductive growth,

the precise sites of action and mechanisms underlying these effects

remain unknown.
TABLE 2 Overview of research on O3 responses in crop growth of different plant species.

Plant species O3 levels Observed parameters and effects References

Brassica chinensis (L.) 150 ppb O3 for 4 h day-1 Crop
dry matter

Reduced by 7% Han
et al. (2020)

Oryza sativa (L.) 50 ppb Chlorophyll
content

Reduced by 17-35% Ramya
et al. (2021b)

Pisum sativum (L.) 151.2 ppb Reduced vegetative growth and increased visible
foliar injury

Yendrek
et al. (2015)

Triticum aestivum (L.) Average charcoal filtered O3 (13.3 ppb)
and average non-filtered O3 (34.6 ppb)

Total above-
ground
biomass

Reduced by 5% Pleijel
et al. (2018)

T. aestivum (L.) cvs. Akbar, Sufi,
Bijoy, Shatabdi, BARI gom -26, Gourab, BARI
gom-25, Prodip, Sourav and Kanchan

50, 60, 80, 100, 120, 135, 150, and 200
ppb for 14, 11, 8, 6, 5, 4, 3, and 1 days,
respectively, for 8 h day-1

Visible
leaf injury

Increased in all cultivars Saitanis
et al. (2014)

Total shoot
biomass

Decreased by 25% (Akbar) and
20% (Sufi)

Total
dry weight

Reduced

T. aestivum (L.) cvs. HUW-37 and K-9107 Elevated O3 at 40, 60 and 80 days after
germination (DAG)

Plant height at
60 DAG

Decreased by 29% (HUW-37) and
21% (K-9107)

Mishra
et al. (2013)

Leaf number
at 80 DAG

Reduced by 28.2% (HUW-37)

Total biomass
at 80 DAG

Decreased by 49.2% (HUW-37) and
43.8% (K-9107)

T. aestivum (L.) cvs. HUW 510 and Sonalika Ambient + 10 ppb, Ambient + 20 ppb Vegetative
parts

Reduced plant height, root length,
leaf number, and leaf area in
both cultivars

Sarkar and
Agrawal (2010)

Vigna radiata (L.) cvs. HUM-1, HUM-2,
HUM-6, HUM-23, HUM-24 and HUM-26

Ambient and elevated O3 (ambient + 10
ppb O3)

Plant height at
40 DAG

Decreased by 26% (HUM-1) and
10% (HUM-23)

Chaudhary
et al. (2013)

Number of
leaves plant-1

at 40 DAG

Reduced by 24% (HUM-1), 17%
(HUM-2),12% (HUM-6), 9%
(HUM-26) and 8% (HUM-24)

V. unguiculata (L.) cvs. Blackeye and Asontem 39 ppb, 24 h mean Leaf area per plant-1, specific leaf area, whole-plant dry
masses, and root–shoot ratio were decreased

Tetteh
et al. (2015)
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5.4 Crop yield and quality

A significant proportion of crop yield losses is caused by

tropospheric O3, which is a transient, volatile, secondary air

pollutant and a powerful phytotoxic compound (Ainsworth,

2017). According to the results of several controlled

environmental and field studies, current O3 concentrations in the

environment have been found to negatively influence the yield and

quality of several crop species worldwide, according to the results of

several controlled environment and field studies (Table 4). For

example, according to McGrath et al. (2015), yield losses of 10% and

20% were observed in soybean and maize (Zea mays L.),

respectively, in combination with dry conditions and high

seasonal temperatures, and 5% and 10%, respectively, under

rainfed conditions at field levels from 1980 to 2011 due to O3

exposure. Additionally, when two cultivars of tropical maize were

exposed to two different doses of O3 (ambient+15 ppb and ambient

+30 ppb), a reduction in the test weight of kernel plant-1 of 6% and
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10%, respectively, in DHM117, and 4% and 6%, respectively, in

HQPM1 was observed (Singh et al., 2014a). Another long-term

investigation conducted by Sinha et al. (2015) revealed that yield

losses in rice, wheat, and maize were 21–26%, 27–41%, and 3–5%,

respectively, under elevated O3. Additionally, according to the

Intergovernmental Panel on Climate Change’s Special Report on

Emission Scenarios (IPCC SRES) A2 Scenario, O3-induced

worldwide yield losses in 2030 will range from 5 to 26% for wheat

and 4 to 9% for maize (Avnery et al., 2011). Moreover, a recent

study by Ghosh et al. (2020a) revealed that the grain yield was

reduced by 45% in wheat cv. HD 2967 under ambient and elevated

(ambient+20 ppb) O3 stress for 4 hours day−1 from 2 weeks after

germination to maturity. Baqasi et al. (2018) reported a 49% decline

in grain dry mass in wheat after 50 ppb O3 exposure. Ozone also

influences the quality of crops in terms of starch, protein, nutrients,

and oil content. For example, it affects grain quality by decreasing

starch content and increasing the protein and nutritional contents

of crops such as wheat and rice (Broberg et al., 2015; Frei, 2015).
TABLE 3 Ozone-induced responses in crop physiology and metabolism of different plant species.

Plant
species

O3 levels Observed parameters and effects References

Capsicum
baccatum (L.)

Mean O3 concentration of 171.6 ppb for 62 days Secondary metabolite profile, e.g., total
phenolic compounds

Increased by
17%
in pericarp

Bortolin
et al. (2016)

Total antioxidant potential Decreased by
87% in seeds

Glycine max (L.) Elevated O3 (ambient + 40 ppb O3) Photosynthetic pigment contents at both flowering and
seed filling stages

Reduced Zhang
et al. (2014)

Net photosynthetic rate at both flowering and seed
filling stages

Diminished

Chlorophyll a fluorescence rate at both flowering and
seed-filling stages

Reduced

Hordeum
vulgare (L.)

0 ppb and 100 ppb O3 Accumulation of twenty-five secondary metabolites,
including phenylpropanoids, phenolamides and
hydroxynitrile glucosides

Altered Mikkelsen
et al. (2015)

Nicotiana
tabacum (L.)

Ambient O3 Epicuticular wax on leaves and stomatal
aperture movement

Damaged
and reduced

Alves
et al. (2016)

Solanum
lycopersicum (L.)

0.5 ppb of O3 PS II activities Hampered Thwe
et al. (2014)

Triticum
aestivum (L.)

50, 60, 80, 100, 120, 135, 150, and 200 ppb for 14,
11, 8, 6, 5, 4, 3, and 1 days, respectively, for
8 h day−1

Total chlorophyll Reduced Saitanis
et al. (2014)

Leaf greenness Decreased

Carotenoid content Reduced

T. aestivum (L.) 30 and 80 ppb; 4 weeks Stomatal conductance (gs) Reduced Harmens
et al. (2019)

Light-saturated photosynthesis Reduced

Chlorophyll content index Decreased

Vigna
unguiculata (L.)

39 ppb, 24 h mean gs Reduced Tetteh
et al. (2015)
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6 Developing plant tolerance to O3

Higher O3 exposure causes greater yield losses through foliar

damage, inhibition of photosynthesis with altered carbon

translocation, and faster plant senescence (Osborne et al., 2019).

There are opportunities to develop plant tolerance to O3 which

ultimately protects the yield under stressful conditions. Breeding for

stress tolerance and variety development can be time consuming

and costly. Using physiological gateways such as the photosynthetic

pathway, antioxidant defense mechanisms, and hormonal

regulation to enhance plant tolerance to O3 could be a short-term

option (Parankusam et al., 2019; Emberson, 2020). It is mandatory

to identify the available options, followed by the most suitable

option, to increase plant productivity where mitigation actions can

be implemented. In this section, we present an overall discussion

focusing on various approaches for developing plant tolerance to O3

and how O3 sensitivity can be lowered.
6.1 Improving photosynthetic pathways

Leaf health, gs, photosynthesis, and photosynthetic machinery

are hampered by elevated O3 levels. Improving photosynthesis may

be an important approach for attaining higher plant tolerance to O3

exposure. Ozone-mediated chlorophyll decline causes early

senescence, but ethylene diurea (EDU) supplementation delays
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senescence in maize by increasing the chlorophyll content (Gupta

et al., 2020; Poornima et al., 2022; Dhevagi et al., 2023). Increased

expression of carbon metabolism-related proteins, which are part of

the Calvin cycle and glycolysis, contributed to higher O3 tolerance

by accumulating more starch, which was reflected in better biomass

production in EDU-treated maize. In addition, EDU-induced

elevation of RuBisCO activity also supports higher photosynthesis

in combating O3 stress. Exogenous EDU increases the C3 and C4

photosynthesis rates by increasing the decarboxylation rate and

expression of pyruvate phosphate dikinase protein, respectively,

leading to higher O3 tolerance (Alfonso and Brüggemann, 2012).

Sensitive wheat cultivars showed higher photosynthetic rates with

exogenous EDU application under elevated O3 stress, which was

correlated with EDU-induced higher chlorophyll content (Fatima

et al., 2019). Therefore, improved photosynthesis and chlorophyll

content may explain the higher biomass and yield, which later

resulted in increased O3 tolerance due to EDU supplementation.

Exogenous catechin (5 mM) supplementation in rice under

elevated O3 conditions reversed O3-induced damage by enhancing

chlorophyll content and its precursor (Mg2+ content), gs, which

resulted in higher grain production (Kittipornkul et al., 2020).

Catechins can improve photosynthetic processes, thereby

improving O3 tolerance. Recently, calcium acetate application was

shown to increase photosystem (PS)-II efficiency and improve the

yield performance of rice under O3 stress (Lakaew et al., 2022). There

is a lack of knowledge regarding the mechanisms involved in

improving the photosynthetic pathways to regulate plant growth
TABLE 4 Overview of recent studies on O3 responses in crop yield and quality of different plant species.

Plant species O3 levels Observed parameters and effects References

Brassica napus (L.) Ambient + 10 ppb of O3 Grain yield Reduced by 13% (Sanjukta) and 47% (Vardan) Tripathi and
Agrawal (2012)

Glycine max (L.) Elevated O3 (ambient + 40
ppb O3)

Yield Decreased by 40% Zhang
et al. (2014)

G. max (L.) 5.78 ppb and 137.7 ppb;
1 week

Seed production, seed
protein content

Reduced by 10% and 12%, respectively Biancari
et al. (2021)

Solanum
tuberosum (L.)

Ambient + 20 ppb of O3 Total fresh weight of tuber Reduced by 48% Kumari and
Agrawal (2014)

Triticum
aestivum (L.)

55.2 ppb Number of ears plant−1 Reduced by 27% (HUW-37) and 20% (K-9107) Mishra
et al. (2013)

Weight of ears plant−1 Decreased by 31% (K-9107)

Number of grains plant−1 Reduced by 21% (HUW-37) and 18% (K-9107)

Weight of grains plant−1 Reduced by 12% (K-9107) and 39% (HUW-37)

T. aestivum (L.) AOT40-21, 121 ppb of O3 Total grain weight Reduced by 11% Monga
et al. (2015)

T. aestivum (L.) 80 ppb; 4 weeks Grain yield Decreased by 24% Harmens
et al. (2019)

1000-grain weight Reduced by 20%

Vigna radiata (L.) Ambient and elevated O3

(ambient + 10 ppb O3)
Yield Reduced by 15% (HUM-1), 14% (HUM-2), 13% (HUM-6),

12% (HUM-24), 10% (HUM-26) and 9% (HUM-1)
Chaudhary
et al. (2013)

V. unguiculata (L.) 50 ppb for 5 hr for 88
days after emergence

Number of seeds pod-1, 100-
seed weight and yield plant-1

Reduced Tetteh
et al. (2015)

Zea mays (L.) Ambient+15 ppb and
ambient+30 ppb of O3

Kernel weight Reduced by 10% (HQPM1) and 13% (DHM117) Singh
et al. (2014a)
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and yield under O3 stress conditions. Further in-depth research is

required to elucidate these mechanisms and the associated pathways.
6.2 Enhancing antioxidant defense

Plant antioxidant defenses must be upregulated to scavenge O3-

induced excess ROS, thereby protecting cellular functions (Gupta

et al., 2020). The inhibition of cellular component peroxidation and

the maintenance of the subsequent stability of the cell membrane

under O3-induced ROS overgeneration of ROS are distinct features

of O3-tolerant plants, which are made possible by the activation of

defense mechanisms, including both enzymatic and non-enzymatic

antioxidant components (Gill and Tuteja, 2010; Noctor et al., 2014;

Pellegrini et al., 2019; Hasanuzzaman et al., 2020). Similarly,

Czarnocka and Karpińsky (2018) stated that insufficient responses

to plant antioxidants cause oxidative damage and strengthen the

defense responses of plants, which are required to develop tolerance

to O3.

Both AsA and GSH are major antioxidants in the AsA-GSH

cycle and are involved in regulating oxidative damage by scavenging

ROS and maintaining cellular redox balance (Hasanuzzaman et al.,

2020). Biogenic AgNPs and EDU-mediated higher antioxidant

content (AsA and GSH) and enzymatic activities (SOD, CAT,

APX, and GR) in wheat resulted in improved O3 tolerance, which

was correlated with lower H2O2 and MDA accumulation (Pellegrini

et al., 2019).

Fatima et al. (2018) evaluated the ROS-scavenging capability of

O3-sensitive and tolerant wheat genotypes through their

antioxidant responses. Kharchiya 65 (tolerant) displayed a

maximum level of AsA, GSH, and flavonoids along with high free

radical scavenging activities as well as lower ROS content than

genotypes such as HD 2987 (sensitive) and PBW 502

(intermediately sensitive). At high O3 (ambient+30 ppb), both

enzymatic and non-enzymatic antioxidant responses varied

among the three cultivars. The highest SOD, peroxidase (POD),

GR, and GPX activities were observed in HD 2987, whereas

Kharchiya 65 and PBW 502 showed the lowest increases. The

maximum APX and the lowest CAT activity was observed in HD

2987 and Kharchiya 65. Sensitive cultivars showed higher

enzymatic antioxidant responses when they suffered from O3-

induced elevated ROS levels. However, lowered SOD and POD

activities were required in the tolerant cultivars, where ROS levels

were lower than those in the sensitive ones. Higher free radical

scavenging activities were observed in the tolerant (Kharchiya 65)

cultivar than in the sensitive cultivar. Non-enzymatic antioxidant

levels, such as those of AsA, GSH, and flavonoids, were also higher

in the tolerant cultivar than in the sensitive cultivar, which is

probably the most efficient mechanism for combating the elevated

O3. This may be because higher O3 tolerance is highly associated

with the genetic competence to preserve high AsA/DHA (Burkey

et al., 2003). In cabbage (cv. Tekila and Primero), proline content

was increased by 32.24%, ascorbic acid by 64.75%, CAT activity by

3.58%, and POD activity by 56%, which helped to reduce oxidative

stress under O3 stress (200 ppb) (Ramakrishnan et al., 2023).

Therefore, variations in antioxidant responses to counteract O3-
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induced oxidative stress are highly dependent on the crop species

and the cultivars of the same crop species (Singh et al., 2014b).

Plant researchers are becoming increasingly interested in

selecting appropriate techniques to increase plant tolerance by

stimulating antioxidant activity. The supplementation of

exogenous chemical substances to O3-exposed plants is one of the

most efficient approaches for reducing oxidative stress and cellular

damage through the enrichment of antioxidant defense systems

(Qiu et al., 2019).

Ethylene diurea is widely used as an anti-ozonant to increase

plant tolerance to O3 phytotoxicity and protect plants from damage

(Manning et al., 2011). EDU-induced plant protection under O3

stress depends on the activation of antioxidant activity (Gupta et al.,

2021). Therefore, EDU supplementation in wheat revealed an EDU-

mediated active role of apoplastic SOD, CAT, and amino

methyltransferase, which facilitated the maintenance of ROS at

optimum levels and decreased O3-induced damage (Gupta

et al., 2021).

Foliar spraying of catechin and SA can significantly affect the

overexpression of APX and CAT genes, followed by their higher

enzymatic activities, leading to lower lipid peroxidation (MDA),

and thus increased tolerance of rice to O3 (Kittipornkul et al., 2020).
6.3 Phytohormone regulation

Similar to ROS and Ca, phytohormones, such as abscisic acid

(ABA), SA, jasmonic acid (JA), and ethylene (ET), are involved in the

regulation of stomatal aperture movement upon O3 exposure, leading

to increased plant tolerance, which is mainly related to the cell

signaling cascade (Pellegrini et al., 2016). Moreover, O3-induced

stomatal movement is controlled by anion channels, such as slow

anion channel 1 and open stomata 1 (Vahisalu et al., 2010). These

channels are regulated by ABA (Negi et al., 2008). However,

variations in O3 tolerance have been attributed to gs and other

protective mechanisms involved (Castagna and Ranieri, 2009).

How phytohormones are associated with plant tolerance to O3

exposure needs to be explored to better understand plant responses

to stressful conditions. It was reported that the O3-mediated increases

in JA, asmonoyl-l-isoleucine, and ABA reduce leaf damage in

Habataki rice (Tsukahara et al., 2015). Stress-induced apoplastic

ROS exacerbates SA synthesis, which contributes to OsORAP1

expression and causes O3 sensitivity and tolerance (Ueda et al., 2015).

Salicylic acid is essential for maintaining antioxidant defense

mechanisms and cellular redox responses in plants upon O3

exposure (Hasan et al., 2021). Ozone-induced leaf damage

accompanying ET biosynthesis has been confirmed by the

inhibition of ET biosynthesis in tobacco following O3 treatment

(Bandurska et al., 2009). This suggests that the suppression of ET

biosynthesis can increase O3 tolerance in plants. Abscisic acid

controls ET and ABA biosynthesis by limiting ABI1 phosphatase

activity and ROS homeostasis to induce O3 tolerance (Pellegrini

et al., 2016). Jasmonic acid is responsible for suppressing ROS-

dependent leaf damage under O3 stress (Hasan et al., 2021). Ozone

exposure induces ET-dependent damage, which can be inhibited by

JA when AT2G24850 and AT5G24770 are induced by JA (Wang
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et al., 2017). The significant role of SA in increasing the tolerance of

rice to O3 was studied by Kittipornkul et al. (2020), where

exogenous 100 µM SA supplementation decreased MDA due to

higher activity of CAT, APX upon 100–150 ppb (8 h day−1) O3.

Additionally, plants inhibit O3 uptake by increasing SA under O3

exposure as a mechanism of O3 tolerance (Pheomphun et al., 2019).

Therefore, a comprehensive research on exogenous phytohormones

is required to understand the mechanisms underlying their

protective roles in the development of O3 tolerance in

cultivated crops.
7 Mitigation of O3 stress in crops

7.1 Improving crop management practices

Because abiotic stress is inevitable, it is crucial to develop

strategies to combat stress-induced losses in crop production.

Agronomic practices, such as changing the cropping season, air

quality management, proper irrigation, and adequate plant

protection measures, can be used to manage O3-induced damage in

crops. As O3 is strongly linked to seasonal and regional changes,

shifting the crop growing season by manipulating the sowing time

has been suggested by Teixeira et al. (2011). Seasonal variation in

crops can influence the physiological responses of plants by altering

their gas exchange capacity, PS I function, and stomatal density upon

exposure to O3 stress. The generation of adaptive measures has been

recorded through decreased gs, increased stomatal density, and

increased PS I activity when plants are exposed to stress at a later

stage in their life cycle (Fusaro et al., 2016). Moreover, early sown

crops exhibit higher sensitivity to O3 owing to their longer life cycles,

lengthy post-anthesis stages, higher gs, and lower threshold levels. In

contrast, the comparatively higher enzymatic antioxidant activity of

late-grown crops, with increased energy allocation toward growth,

facilitates reduced O3-induced damage in crops (Yadav et al., 2019;

Yadav et al., 2021). Air quality management to check for O3

precursors is beneficial during O3 exposure. For instance,

decreasing methane, an important precursor of O3 and greenhouse

gases, has proven to be beneficial in combating O3 (Shindell et al.,

2012). Furthermore, controlling nitrogen oxide emissions in air is

beneficial for reducing O3 stress in northern China (Lu et al., 2021).

By calculating the O3 depletion potential of the substances

(responsible for O3 depletion), Ravishankara et al. (2009) reported

that nitrous oxide (N2O) is one of the most important greenhouse

gases responsible for O3 layer depletion. Nitrous oxide production

can be mitigated using mulches (e.g., rice straw) and by minimizing

fertilizer requirements in the soil. It is evident that soil water-filled

pore spaces play an important role in N2O emissions in the field;

therefore, altering nitrogenous fertilizer with mulch can contribute to

N2O mitigation (Wu et al., 2018). Intercultural operations, such as

mulching, can also reduce O3-induced losses.

Although irrigation is desirable for improving crop production,

it can enhance the susceptibility of crops to O3 toxicity. In irrigated
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crops, the widely open leaf pores are subjected to stimulated gs with

elevated uptake of O3 (Mills et al., 2018). This phenomenon is in

agreement with another study (Harmens et al., 2019) that

concluded that reduced irrigation could be an effective strategy to

mitigate O3-induced negative impacts partially or completely by

delaying adversities on flag leaves at the time of flower initiation or

during the gain-filling period of wheat. Therefore, it is imperative to

manage irrigation properly to protect crops from the adverse effects

of O3 without causing water stress. For example, alternate wetting

and drying irrigation was found to be beneficial for increasing rice

productivity with decreasing gs (Carrijo et al., 2017) and was

effective in mitigating the adverse impacts of O3. In addition,

protective measures should be implemented to control plant

competition and prevent plant injury in response to O3 stress. It

has been reported that when weed infestation is coupled with O3, it

enhances the susceptibility of crops to increased losses compared

with O3 exposure alone (Li et al., 2016). Ghosh et al. (2020b)

reported a higher yield loss in wheat under O3 stress owing to weed

competition and concluded that strong weed management should

be introduced to combat O3 stress-affected production loss.
7.2 Nutrient management

Although nutrient supplementation is important for enriching

soil fertility, improper nutrient maintenance can increase crop

vulnerability to various stressors, including O3 (Tiwari and

Agrawal, 2018). Zhang et al. (2018) conducted an experiment to

assess the O3 risk management capacity of plant nutrients, where N

fertilizer was recorded to elevate the sensitivity of plants to stress;

conversely, P improved tolerance by increasing the critical level of

O3 exposure in crops. Biomass loss caused by O3 also differed

between the two nutrients. Nitrogen fertilization caused the

maximum gs, which increased the sensitivity to O3 and, in turn,

resulted in a loss of biomass production, whereas P fertilization

decreased gs. In another study (Tatsumi et al., 2019), it was claimed

that a lack of N supplementation in rice caused N deficiency while

giving rise to photosynthetic assimilate translocation to the roots in

an attempt to increase nutrient uptake, thereby protecting against

O3-induced damage to plant growth. Nutrient supplementation

contributes to detoxification of ROS-induced O3. Both N and P

were recorded to encourage the mobilization of integrated

participation of antioxidant compounds (carotenoid and AsA)

and osmoprotectant (proline) and consequently reduce oxidative

stress by keeping minimum O2
•− and H2O2 while maintaining

membrane integrity (Podda et al., 2019). Moreover, N addition

can participate in diversifying stored carbohydrates and

photosynthates to synthesize amino acids that help repair damage

caused by O3 (Podda et al., 2019). Although some studies have

shown the negative impacts of O3 and nutrient interactions,

improved plant nutrient management can help mitigate O3 stress

to some extent (Gautam and Tiwari, 2020).
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7.3 Carbon dioxide (CO2) fertilization

Plant growth can be stimulated by the subsidiary carbon supply

provided by CO2, which is known as CO2 fertilization. This

phenomenon can help relieve stress by reducing ROS production

during the oxidative damage caused by various stressors, including

O3 (AbdElgawad et al., 2016). When CO2 is used under O3

concentrations in chickpeas (Cicer arietinum L.), a source-sink

imbalance changes with the accumulation of photosynthates in

leaves and, subsequently, an alteration of phenological

characteristics that ultimately accelerate the crop life cycle to early

maturity to escape the damage caused by O3 exposure (Singh et al.,

2021). Elevated CO2 can counteract the damaging effects of O3 by

increasing shoot biomass and pod weight compared to O3-exposed

plants alone. Moreover, CO2 fertilization can increase protein,

starch, and certain mineral nutrients, even under O3 exposure,

thus combatting the negative impacts of imposed stress (Bhatia

et al., 2021). A similar compensation tendency was observed in

maize (Yadav et al., 2020). Interactive treatment with CO2 and O3

resulted in a positive result, as this combination resulted in a higher

photosynthesis rate with improved growth attributes and,

consequently, an increased yield component compared to the O3

treatment alone. Carbon dioxide fertilization also results in

improved gs and carbon assimilation (Yadav et al., 2020). When

elevated CO2 levels were coupled with elevated O3, reduced lipid

peroxidation and solute leakage decreased, indicating improved cell

membrane integrity. Enhanced antioxidant enzyme activity, which

indicates reduced oxidative stress, has also been observed (Kumari

et al., 2015). Therefore, CO2 fertilization can help mitigate O3-

induced damage to some extent by reducing O3 uptake, increasing

carbon assimilation, and reducing oxidative damage, which helps to

overcome the detrimental effects on plant growth, physiology

(especially photosynthesis), and yield.
7.4 Selecting tolerant crop varieties

The use of tolerant cultivars can be an effective strategy that needs

to be expanded by including agricultural practices, particularly in O3

risk areas (Tiwari and Agrawal, 2018). A noticeable variation in rice

genotypes in response to stress was observed by Arshad (2021), in

which plant height, dry mass, leaf area, plant damage, and leaf

damage were visible between susceptible and tolerant genotypes.

Biochemical attributes such as total amino acids, sugar, protein

profile, and phenolic content were not affected in varieties tolerant

to O3 stress, indicating tolerance capacity, whereas a trend of

reduction was observed in susceptible genotypes. The susceptible

varieties showed early visual symptoms through yellow to brown

spots, which later turned into necrosis and early leaf senescence;

however, this phenomenon was slower in the tolerant varieties

(Arshad, 2021). In wheat, the tolerant variety (HD2967) sensed O3

stressors at an early vegetative stage through increased MDA and

initiated ROS scavenging activity, and consequently uplifted better

antioxidant defense prior to the reproductive stage to protect against

yield losses compared to the sensitive genotype (Sonalika), which was
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later in sensing (Pandey et al., 2018). Moreover, they added that the

tolerant variety has tended to translocate more photosynthetic

assimilates to increase biomass and husk weight with better

resource partitioning, thus ensuring better protection of the

reproductive parts under higher levels of O3 exposure. These

findings agree with those of Dhevagi et al. (2021), who concluded

that the tolerant variety of mung beans (Vigna mungo L.) had higher

AsA under exaggerated O3 concentrations, which resulted in better

morphological, physiological, biochemical performance, and

antioxidant defense than the susceptible variety. Bailey et al. (2019)

demonstrated the distinctiveness of a soybean-tolerant variety in the

exclusion of O3 uptake through stomata by lowering gs and

the transpiration rate, followed by higher water-use efficiency than

the sensitive variety. Furthermore, under O3 exposure, variations in

phosphoenolpyruvate, carboxylase activity, and RuBisCO content

and activity controlled the tolerance mechanism of maize hybrids

more than the antioxidant defense mechanism of gs. Stable leaf N

content and RuBisCO activity under reduced O3 exposure indicated

better tolerance to late senescence and better yield than sensitive

hybrids (Choquette et al., 2020). Therefore, the selection of tolerant

varieties under O3 exposure could be an effective approach for

adaptation to O3.
7.5 Using chemical elicitors

Elicitors with different chemical structures can be used against

different stressors through exogenous application to crops or

incorporation of transcription factors through breeding

(Chakraborty et al., 2019). The use of various chemical elicitors to

protect against O3-induced phytotoxicity has also been

demonstrated. For example, chitosan positively influenced wheat

growth under O3 exposure (Picchi et al., 2021). In addition to

improving crop yield and quality, chitosan serves as a protectant

that enhances the defense metabolism of plants by increasing the

concentration of AsA within a short period by activating the APX

enzyme to control H2O2 and oxidative stress. It also showed limited

symptoms on the leaf surface area of chitosan-treated plants

compared to O3-stressed plants. The same trend of increasing

antioxidant enzyme levels under stress conditions was reported by

Kittipornkul et al. (2020), using catechins in rice. Application of

catechin to rice under O3 exposure activated antioxidant enzymes

and helped to maintain chlorophyll, gs, and Mg contents at the

vegetative stage, which consecutively resulted in increased panicle

number, filled grain weight, and starch, conferring protection

against stress. These chemical elicitors protect plants by forming

chemical barriers that detoxify O3 (Li et al., 2018). It has been

shown that trichomes have the capacity to deplete O3 near the leaf

surface, resulting in reduced O3 uptake through stomata (Li et al.,

2018). In addition, stress-induced lipoxygenase (LOX) activity (a

consequence of O3 uptake) were maintained through trichome

density, providing plant tolerance to O3 exposure. Ethylene diurea

is widely used to enhance tolerance to O3 exposure, and its

effectiveness has been demonstrated in rice (Ashrafuzzaman et al.,

2018), maize (Gupta et al., 2020), groundnuts (Arachis hypogaea L.;

Chaudhary and Rathore, 2020) and castors (Ricinus communis L.;
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Rathore and Chaudhary, 2018). As EDU actively participates in the

upregulation of crop growth, photosynthesis, and maintenance of

improved membrane properties by activating defense metabolism

by increasing AsA and flavonoid content, it can protect against O3

stress (Rathore and Chaudhary, 2018; Chaudhary and Rathore,

2020). Furthermore, in addition to improving plant mechanisms

(increased SOD, CAT, and APX activities) to regulate the defense

system, EDU enhances protein accumulation in plants, which in

turn enhances metabolic functions to mitigate damage under O3

stress (Gupta et al., 2020). Foliar spraying with calcium acetate and

calcium chloride improved tolerance through protectant-induced

mechanisms of the antioxidant defense system in O3-stressed rice

plants (Lakaew et al., 2022). Calcium acetate-treated plants

tolerated longer periods of O3 exposure by augmenting NAD

kinase and NADPH activities. This calcium acetate-mediated

increase in NADPH content was associated with higher AsA and

GSH levels, and higher APX and GR activities, resulting in an

approximately 29% reduction in MDA generation. This calcium

acetate-mediated oxidative stress mitigation contributes to

improved plant growth and yield (Lakaew et al., 2022).
8 Conclusion

Over the past few decades, several studies on the effects of O3 on

plants have demonstrated that elevated levels of O3 hamper overall

plant growth and productivity. Ozone can be degraded into ROS in

the mesophyll and guard cell walls, which damage the chloroplast

ultrastructure and block photosynthetic electron transport after

entering directly through the leaves. Leading to stomatal closure

and modification of stomatal conductance O3 hinder CO2 fixation.

Ozone induces leaf chlorosis, necrosis, and abscission. Reduced

photosynthesis, altered respiration and transpiration, decreased

water uptake, disrupted nutrient homeostasis, and the assimilate

translocation caused by O3 lead to reduced growth. Both chronic

and severe O3 stress can lead to growth reduction, anomalous

reproductive development, yield loss, and crop quality

deterioration. Approaches for protecting plant physiological

pathways such as photosynthesis, antioxidant defense

mechanisms, and hormonal regulation have been reported to

enhance plant tolerance to elevated O3. Agronomic approaches,

such as adjusting planting dates and cropping systems, nutrient

management, CO2 fertilization, and the use of several chemical

stress elicitors have been shown to improve plant performance

under elevated O3. However, it is difficult to conduct research on

ambient O3 because it is difficult to measure the amount of ambient

O3 and the amount of O3 entering plants. An appropriate method

should be developed to understand these issues, and research on

meteorological, biochemical, and physiological aspects should be

considered. Literature on the effects of O3 on various aspects of

plants is readily available, but there is limited availability of

literature on strategies for mitigating O3-induced stress.

Therefore, various agronomic approaches that may mitigate O3

stress in plants should be determined. Understanding the

biochemistry and physiology of O3-stressed plants is vital for
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developing O3-tolerant plants. Therefore, integrated research

themes and their implementation are vital for reducing O3-

induced damage and developing O3-tolerant cultivars.
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