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Integrative analysis of
metabolome, proteome, and
transcriptome for identifying
genes influencing total lignin
content in Populus trichocarpa

Jia Zhao1, Kairui Chao2 and Achuan Wang1*

1College of Computer and Control Engineering, Northeast Forestry University, Harbin, China, 2College
of Forestry, Inner Mongolia Agricultural University, Hohhot, China
Lignin, a component of plant cell walls, possesses significant research potential

as a renewable energy source to replace carbon-based products and as a

notable pollutant in papermaking processes. The monolignol biosynthetic

pathway has been elucidated and it is known that not all monolignol genes

influence the total lignin content. However, it remains unclear which monolignol

genes are more closely related to the total lignin content and which potential

genes influence the total lignin content. In this study, we present a combination

of t-test, differential gene expression analysis, correlation analysis, and weighted

gene co-expression network analysis to identify genes that regulate the total

lignin content by utilizing multi-omics data from transgenic knockdowns of the

monolignol genes that includes data related to the transcriptome, proteome, and

total lignin content. Firstly, it was discovered that enzymes from the PtrPAL,

Ptr4CL, PtrC3H, and PtrC4H gene families are more strongly correlated with the

total lignin content. Additionally, the co-downregulation of three genes,

PtrC3H3, PtrC4H1, and PtrC4H2, had the greatest impact on the total lignin

content. Secondly, GO and KEGG analysis of lignin-related modules revealed

that the total lignin content is not only influenced by monolignol genes, but also

closely related to genes involved in the “glutathione metabolic process”, “cellular

modified amino acid metabolic process” and “carbohydrate catabolic process”

pathways. Finally, the cinnamyl alcohol dehydrogenase genes CAD1, CADL3, and

CADL8 emerged as potential contributors to total lignin content. The genesHYR1

(UDP-glycosyltransferase superfamily protein) and UGT71B1 (UDP-

glucosyltransferase), exhibiting a close relationship with coumarin, have the

potential to influence total lignin content by regulating coumarin metabolism.

Additionally, the monolignol genes PtrC3H3, PtrC4H1, and PtrC4H2, which

belong to the cytochrome P450 genes, may have a significant impact on the

total lignin content. Overall, this study establishes connections between gene

expression levels and total lignin content, effectively identifying genes that have a

significant impact on total lignin content and offering novel perspectives for

future lignin research endeavours.

KEYWORDS

total lignin content, multi-omics, WGCNA, differential genes, enrichment analysis, co-
expression network, correlation analysis
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1 Introduction

Lignin is the second most abundant complex aromatic polymer

in Plantae, following cellulose, and is predominantly found in the

woody tissues of plants. As a major component of plant cell walls,

lignin plays a crucial role in preventing the invasion of various plant

pathogens, contributing significantly to plant defence against

external abiotic stresses (Boerjan et al., 2003; Vanholme et al.,

2010). Moreover, wood holds promise as a renewable energy

source due to its ability to release more heat when used as fuel,

offering significant potential for replacing other carbon-based

products (de Vries et al., 2021). The monolignol biosynthetic

pathway begins with phenylalanine, a product of the

phenylalanine pathway. Phenylalanine is catalytically converted

into cinnamic acid by phenylalanine ammonia-lyase (PAL).

Cinnamic acid is then hydroxylated by cinnamate 4-hydroxylase

(C4H) to produce p-coumaric acid. Subsequently, p-coumaric acid

is catalysed by 4-coumarate-CoA ligase (4CL) to form p-

coumaroyl-CoA, which enters the specific monolignol

biosynthesis pathway. Various enzymes, including cinnamate 3-

hydroxylase (C3H), hydroxycinnamoyl transferase (HCT), and

cinnamoyl-CoA reductase (CCR), catalyse the formation of

monolignols. These monolignols are composed of three major

subunits: hydroxyphenyl (H), guaiacyl (G), and syringyl (S)

monolignols. Finally, through the random combination of various

monolignols, polymerization occurs, resulting in lignin with

complex structures (Umezawa, 2010; Vanholme et al., 2019;

Zhang et al., 2020). Research has shown that laccase (LAC) and

peroxidase (POD) play important roles in the polymerization of

monolignols into lignin with complex structures (Long et al., 2021;

Wen et al., 2022).

Poplar is an important tree species in China, that is known for

its fast growth and ease of asexual reproduction, which facilitates

the smooth progress of genetic engineering technology. As a model

species, the complete genome of Populus trichocarpa was the first

woody plant to be sequenced (Tuskan et al., 2006). After four years,

Shi et al. (Shi et al., 2010) comprehensively identified monolignol

genes in P. trichocarpa and identified 23 wood-specific enzymes

involved in ten monolignol gene families, including PAL, 4CL,

C3H, C4H, HCT, CCR, CAD (cinnamyl alcohol dehydrogenase),

CCoAOMT (caffeoyl-CoA O-methyltransferase), COMT

(Catechol-O-methyltransferase) and CAld5H (coniferaldehyde-5-

hydroxylase). The monolignol biosynthetic pathway and the

intermediate metabolites in P. trichocarpa are depicted in Figure 1.

Genetic modifications are valuable methods for regulating

metabolic pathways. These modifications alter the expression

levels of genes, resulting in changes in the enzyme content that

can be used to catalyse key pathway reactions, thereby achieving the

regulation of lignin content. In genetic engineering studies of P.

trichocarpa, it was found that the genes Ptr4CL, PtrHCL, PtrCCR,

and PtrCAD not only reduced the total lignin content but also

influenced the lignin composition. On the other hand, the genes

PtrC3H, PtrC4H, PtrPAL, and PtrCOMT solely led to a reduction in

total lignin content. The gene PtrCAld5H increased the total lignin

content and influenced the composition of lignin. However, the

gene PtrCCoAOMT had no effect on either the total lignin content
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or composition (Peng et al., 2016; Van Acker et al., 2017; Wang

et al., 2018; De Meester et al., 2020; Tsai et al., 2020). In addition,

Kim et al. found that the simultaneous knockdown of the three

genes PtrC4H1, PtrC4H2, and PtrC3H3 significantly reduced the

total lignin content in P. trichocarpa (Kim et al., 2020). However,

there are certain limitations to studying the relationship between

gene editing of monolignol genes and lignin content using genetic

engineering techniques. The focus of such studies is more on

investigating the regulation of the monolignol biosynthetic

pathway rather than uncovering the specific genes that influence

lignin content. Additionally, editing the same monolignol genes in

different species may lead to varying effects on lignin content.

Therefore, it is crucial to employ more appropriate analytical

methods and explore the genes that impact lignin content in a

specific species.

Gene co-expression networks (GCNs) have been widely used

for gene identification and weighted gene co-expression network

analysis (WGCNA) is the most representative GCN (Zhang and

Horvath, 2005). WGCNA entails a clustering analysis of gene

expression levels from microarray or RNA-seq data, representing

relationships between gene nodes through continuous variable edge

weights. Notably, WGCNA addresses the issue of “one-size-fits-all”

in traditional GCN construction by using a unique dynamic cut

method. Furthermore, highly correlated gene sets (gene modules)

obtained through clustering, which have similar functions, can be

associated with sample traits by calculating correlation coefficients.

Importantly, WGCNA allows for the simultaneous analysis of gene

modules and multiple traits related to biological relevance, enabling

the identification of biologically significant genes and establishing

co-expression relationships among genes within modules and their

associations with relevant traits (Wu C. et al., 2021; Kondoh et al.,

2022; Petrosyan et al., 2023). Rao et al. (Rao et al., 2019) and Hong

et al. (Hong et al., 2021) applied gene co-expression network

analysis methods to explore genes and transcription factors

related to the monolignol biosynthetic pathway in P. trichocarpa.

However, their studies focused on establishing network

relationships between genes without specifically analysing the

impact of genes on lignin content. Therefore, it is of great
FIGURE 1

The monolignol biosynthetic pathway in Populus trichocarpa.
PtrPAL1-5: PtrPAL1, PtrPAL2, PtrPAL3, PtrPAL4, PtrPAL5; PtrC4H1.2:
PtrC4H1, PtrC4H2; Ptr4CL3.5: Ptr4CL3, Ptr4CL5; PtrCAD1.2:
PtrCAD1, PtrCAD2; PtrHCT1.6: PtrHCT1, PtrHCT6; PtrCAld5H1.2:
PtrCAld5H1, PtrCAld5H2; PtrCCoAOMT1-3: PtrCCoAOMT1,
PtrCCoAOMT2, PtrCCoAOMT3; LAC, laccase; POD, peroxidase.
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importance to construct a co-expression network of genes closely

associated with total lignin content. This can be achieved by

utilizing data from transcriptome, proteome, and total lignin

content measurements following the knockdown of multiple

monolignol genes. Such an approach can effectively identify genes

that significantly influence the total lignin content.

In this paper, we focus on the genes that influence total lignin

content in P. trichocarpa. To achieve this, we conducted a

comprehensive analysis of multi-omics data, which includes

transcriptome, proteome, and total lignin content, in both

transgenic lines with knockdown genes of ten monolignol gene

families and control lines. We present a combination of t-tests,

differential gene expression analysis, correlation analysis, and

WGCNA to identify genes that influence the total lignin content.

Specifically, we started by using t-tests to identify 15 transgenic lines

with significant differences. Then, we performed differential gene

expression analysis on each of these 15 groups individually and

selected differentially expressed genes with at least one intersecting

gene among the 15 groups, resulting in a total of 5894 genes and 139

samples. To identify important gene modules closely related to

lignin, we constructed tightly interconnected gene modules based

on the theory that genes with similar functions exhibit similar

expression patterns. We also incorporated the absolute protein

abundance of the monolignol biosynthetic enzymes and total

lignin content data in this process. Next, we performed GO and

KEGG enrichment analyses to investigate the functions of genes

within specific modules and identify the biological pathways in

which the genes may be involved, and have an impact on total lignin

content. Furthermore, we conducted correlation analysis between

the expression levels of genes in the modules most closely associated

with total lignin content and the actual lignin content. Using the 15

genes that showed a strong correlation with total lignin content as

the core, we constructed a weighted gene co-expression network to

explore the genes influencing total lignin content. This research

provides a solid foundation for understanding lignin synthesis and

degradation processes, and it offers valuable insights for the

development and utilization of lignin.
2 Materials and methods

2.1 Data availability

Wang et al. performed a series of systematic experimental

knockdowns of monolignol genes, and the absolute abundances of

themonolignol transcripts and proteins were measured using RNA-seq

and protein cleavage isotope dilution mass spectrometry (PC-IDMS),

respectively. The lignin content was determined following the Klason

procedure in P. trichocarpa (Wang et al., 2018). The transcriptomics

data is available under GEO accession number GSE78953 [https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78953], and the

proteomics dataset and total lignin content are accessible on CyVerse

[https://datacommons.cyverse .org/browse/iplant/home/

shared/LigninSystemsDB].
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We analysed the transcriptome, proteome (20 pathway

enzymes), and total lignin content data of both transgenic lines

with multiple gene knockdowns of ten monolignol gene families

(PtrPAL, PtrC3H, PtrC4H, PtrCAD, PtrCCR, PtrHCT, Ptr4CL,

PtrCAld5H, PtrCOMT, and PtrCCoAOMT), and corresponding

control lines. The annotation information of genes was obtained

from two databases, JGI [https://jgi.doe.gov/] and NCBI [https://

www.ncbi.nlm.nih.gov/].
2.2 T-test and differential gene analysis

Firstly, we conducted t-tests using the R package t.test on the

total lignin content of all different knockdown transgenic and

control lines (Table S1). As a result, we identified 15 groups of

transgenic lines that displayed significant differences (P<0.05) in

total lignin content. We visualized these results using boxplots

(Figure 2). These transgenic lines were obtained through various

treatments involving the knockdown of specific genes (PtrPAL2.4.5,

PtrC3H3, PtrC3H3.C4H1.2, PtrC4H1, PtrHCT1, PtrHCT6,

PtrHCT1,6 , PtrCAld5H1,2 , PtrCCR2 , PtrCCoAOMT1.2 ,

PtrCCoAOMT3, PtrCOMT2, Ptr4CL3, Ptr4CL5, and Ptr4CL3.5).

Subsequently, we performed average clustering analysis on the 15

groups of transgenic and control lines, eliminating obvious outliers,

and generated PCA plots (Figure 3) and volcano plots (Figure 4).

Furthermore, we performed differential gene analysis using the

R package DESeq2 on the data of the 15 groups of transgenic and

control lines, with filtering criteria set as log2FC > 1 and Padj< 0.05.

To ensure a more accurate identification of genes regulating total

lignin content, we selected the differential genes that had at least one

intersection among the 15 groups for further analysis. After these

steps, a total of 5894 differentially expressed genes from 139 samples

were used for WGCNA.
2.3 Data preprocessing

Data preprocessing plays a vital role before conducting

WGCNA, as it guarantees data consistency, completeness, and

suitability for analysis, ultimately ensuring data quality and

enhancing the accuracy and reliability of the results. The

transcriptome, proteome, and total lignin data cannot be directly

utilized in WGCNA; instead, they necessitate data preprocessing

steps, including data filtering, normalization, and standardization.

These steps are essential to prepare the data in a suitable format for

meaningful and effective network analysis.

2.3.1 Data filtering
The RNA-seq results indicate that not all genes are expressed, and

the expression levels of each gene can vary greatly under different

biological processes, sampling times, and tissue locations. When

analysing gene expression data, genes with low expression levels have

lower reliability and need to be filtered out to ensure the reliability of

data analysis. To achieve this, we transformed the read counts (reads)

aligned to the reference gene fragments into CPM (counts-per-million
frontiersin.org
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threshold). Subsequently, we excluded genes with CPM values less than

0.5 in all three sample replicates to effectively remove genes with low

expression levels. For this filtering process, we utilized the “cpm”

function available in the R package edgeR (Robinson et al., 2010). The

formula (1) for calculating CPM is as follows:

CPM =
C
N
106 (1)

Where C represents the reads aligned to a specific gene, and N

represents the total number of reads aligned to all genes in

the sample.

2.3.2 Data normalization
Due to limited experimental space, all experimental samples

were obtained in six different batches, and each batch of transgenic

lines had corresponding controls. We normalized the counts of

genes to their corresponding wild-type data using the ratio-based

(arithmetic mean as reference, Ratio-A) approach (Luo et al., 2010;

Li and Zhao, 2019). The formula (2) is as follows:

X
0
ij = Xij-

1
no

n

l=1

Xr
il (2)

where r is the reference batch, X
0
ij   represents the adjusted gene

expression value of the i-th gene in the j-th sample, Xij represents

the original gene expression value of the i-th gene in the j-th sample,

n is the number of control samples in the reference batch, and Xr
il

represents the gene expression value of the i-th gene in the l-th

sample of the reference batch. Additionally, since WGCNA requires

input data to be greater than or equal to 0, we added the absolute
Frontiers in Plant Science 04
value of the smallest negative number to all corrected counts in

all batches.

2.3.3 Data standardization
Gene expression levels are determined by randomly sampling

gene fragments, leading to a higher likelihood of sampling long

sequence genes compared to short ones. Additionally, the

sequencing depth can impact the number of reads aligned to each

gene. Thus, relying solely on raw reads is inadequate to accurately

measure gene expression levels. To address this issue, we adopted

TPM (transcripts per million) normalization to convert the reads

into the number of reads per kilobase per million mapped reads,

offering a more reliable measure of gene expression for analysis. The

formula (3) for calculating TPM is as follows:

TPM =
Ri

(sum Ri
li ) ∗ li

106 (3)

Where Ri represents the number of reads for the i-th gene, li

represents the length of the i-th gene (in kilobases), and sum Ri
li is

the sum of ratios between the reads of the i-th gene and its

corresponding gene length. The multiplication by 106 is to

convert it into the number of reads per million mapped reads.
2.4 Weighted gene co-expression
network analysis

In WGCNA, gene expression data are utilized to calculate the

Pearson correlation coefficient between genes, resulting in a gene
FIGURE 2

Boxplot of 15 groups. The blue box represent traitements, and the orange box represent corresponding controls. Target genes of 15 traitement
groups are listed on the top of the panel. PtrPAL2.4.5: the co-downregulation of PtrPAL2, PtrPAL4, and PtrPAL5; PtrC3H3.C4H1.C4H2: the co-
downregulation of PtrC3H3, PtrC4H1, and PtrC4H2; PtrHCT1.6: the co-downregulation of PtrHCT1 and PtrHCT6; PtrCAld5H1.2: the co-
downregulation of PtrCAld5H1 and PtrCAld5H2; the co-downregulation of Ptr4CL3.5: Ptr4CL3 and Ptr4CL5; PtrCCoAOMT1.2: the
co-downregulation of PtrCCoAOMT1 and PtrCCoAOMT2.
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co-expression similarity matrix through correlation analysis.

Traditionally, a hard threshold is employed to determine whether

genes are correlated or not. This means that values above the

threshold indicate correlation, while values below it indicate no

correlation. However, this approach may lead to some information

loss. To address this, WGCNA adopts a soft thresholding approach,

assuming that there is a correlation between all genes. This

approach transforms the gene expression similarity matrix into an
Frontiers in Plant Science 05
adjacency matrix and subsequently into a topological overlap

matrix, which measures the interconnectedness among genes. By

doing so, the method considers not only the pairwise correlation

between two genes but also their correlation with other genes in the

network. To identify gene modules, the dynamic tree cut algorithm

(Langfelder et al., 2008) are applied. This algorithm mimics the

characteristics of real biological networks, providing biologically

meaningful results. Overall, the soft thresholding approach and
FIGURE 4

Volcano Plot of 15 groups. The red dots represent significantly upregulated genes, the grey dots represent stable genes, and the blue dots represent
significantly downregulated genes. Target genes of 15 traitement groups are listed on the top of the panel. The abbreviations for the genes in the
treatment group are the same as the caption in Figure 2.
FIGURE 3

PCA of 15 groups. The red dots represent traitement samples, and the yellow dots represent corresponding control samples. Target genes of 15
traitement groups are listed on the bottom of the panel. The abbreviations for the genes in the treatment group are the same as the caption in
Figure 2.
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dynamic tree cut algorithm in WGCNA allow for a more

comprehensive analysis, capturing the complexity of gene

interactions and facilitating the identification of functionally

related gene modules.

2.4.1 Construction of gene modules
After preprocessing the gene expression data, the genes were

further subjected to detection and fi ltering using the

goodSamplesGenes functions available in the WGCNA package

within the R programming environment. The selected genes that

met the criteria were used to construct a weighted gene co-

expression network using the WGCNA package in R 4.2.2

software. For the specific methods and principles employed in

this process, please refer to the research conducted by Zhang B

et al. (Zhang and Horvath, 2005).

2.4.2 GO and KEGG enrichment analyses
We conducted functional annotation of genes within specific

modules using two important databases: the Gene Ontology (GO)

and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The

GO (Zhao et al., 2020) database [http://geneontology.org/] offers a

standardized language to define and describe gene and gene product

functions across various biological species. GO terms classify gene

functions into three categories: Molecular Function (MF),

Biological Process (BP), and Cellular Component (CC). These

terms enable researchers to predict the functions of genes or

proteins in the same or different species based on the known

functions of genes or proteins stored in the database. On the

other hand, the KEGG (Chen et al., 2020) database [https://

www.kegg.jp/] serves as a knowledge repository for systematic

analysis of gene functions. It integrates genomic, chemical, and

systemic functional information and contains a vast amount of

genomic sequence data, pathway information related to
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metabolism, regulation, and signal transduction, as well as

information on chemical compounds, enzyme molecules, and

enzyme reactions. Researchers can leverage this wealth of data to

annotate gene functions by linking genomic information with

functional information.

For our functional annotation analysis, we employed the

enrichGO and enrichKEGG functions available in the

clusterProfiler package (Wu T. et al., 2021) within the R

programming environment. These functions allowed us to

perform GO and KEGG enrichment analysis on the genes within

specific modules, aiding us in gaining valuable insights into the

functional characteristics and pathways associated with these genes.
3 Results

3.1 Identification of co-expression
gene modules

In the curve fitting of the non-scale topology model with the soft

threshold b and the fitting degree R2 (Figure 5), we observed that

when R2 = 0.86, the gene connectivity curve tended to saturate. This

observation indicates that the network conforms to the conditions

of a non-scale distribution. The corresponding soft threshold at this

point is determined to be b=7.
Subsequently, with the parameter b in place, hierarchical

clustering was performed on the transcriptomics data obtained

from 15 groups of transgenic and control lines. Gene modules

were then formed through dynamic cutting, followed by the

merging of similar modules. The outcome was the creation of 15

gene modules, excluding the grey module. To visually distinguish

these modules, each module was randomly assigned a unique colour

(Tables S2, S3). The figure depicting gene clustering and module
BA

FIGURE 5

Analysis of network topology for various soft-thresholding powers. (A) The scalefree fit index (y-axis) as a function of the soft- thresholding power
(x-axis). (B) the mean connectivity (degree, y-axis) as a function of the soft-thresholding power (x-axis).
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cutting comprises two parts: the upper part visualizes the

clustering dendrogram, demonstrating how genes are grouped

based on expression pattern similarities, while the lower part

illustrates the results of dynamic cutting for the modules and the

subsequent outcome of module cutting after merging similar

modules (Figure 6).
3.2 Correlation analysis of modules
and traits

We performed correlation analysis between all gene modules

and traits (total lignin content, 20 pathway enzymes, and different

treatments) to calculate the correlation coefficients (r).

Subsequently, we generated a heatmap depicting the relationship
Frontiers in Plant Science 07
between gene modules and traits (Figure 7). Our findings revealed

that most monolignol genes (PtrPAL5, PtrC3H3, PtrC4H1,

PtrC4H2, Ptr4CL3, PtrCAD2, PtrHCT6, PtrCAld5H1, and

PtrCAld5H2) were clustered within the “MElightcyan” module.

However, PtrPAL2 and PtrCAD2 were clustered within the

“MEorange” and “MEroyalblue” modules, respectively.”

From the heatmap of the correlation analysis between modules

and traits, we observed that the “MElightcyan” module, which

contains most of the monolignol genes, exhibited a relatively low

correlation with the total lignin content (|correlation coefficient| =

0.18), while the “MElightyellow” module showed the highest

correlation with the total lignin content (|correlation coefficient| =

0.47), followed by the “MEviolet”module (|correlation coefficient| =

0.28). Furthermore, we found that the “MElightcyan” module,

which includes most of the monolignol genes, exhibited a certain

degree of correlation with the majority of pathway enzymes. The

“MElightyellow” and “MEviolet”modules were primarily associated

with pathway enzymes (PAL1, 4CL3, C3H3, C4H1, etc.) from the

gene families of PtrPAL, Ptr4CL, PtrC3H, and PtrC4H monolignol

genes. Additionally, we noticed that the treatment with triple gene

knockdown of PtrC3H3, PtrC4H1, and PtrC4H2 showed a strong

correlation with these two modules, indicating that this treatment

had the greatest impact on the total lignin content.
3.3 GO and KEGG enrichment analyses

We conducted GO and KEGG enrichment analyses for the

“MElightcyan”, “MElightyellow” and “MEviolet” gene modules.

The top 10 results of the GO (focusing on biological processes)

and KEGG enrichment analysis results for each module, are shown

in Figure 8 (Tables S4, S5).

The “MElightcyan” module, comprising most of the

monolignol genes, reflected significant enrichment (P< 0.05) of

pathways such as “cell cycle”, “lignin metabolic process”,

“phenylpropanoid metabolic process”, and “secondary metabolic
FIGURE 6

The co-expression genes clustering and the module cutting. Each
branch represents a gene and each color below represents a gene
co-expression module. The dynamic tree cut indicates the modules
were divided based on the gene clustering results. The merged
dynamic cut indicates the modules were divided by combining
modules with similar expression patterns.
FIGURE 7

Heatmap of Module-trait relationships. The expression patterns of 15 modules (excluding the grey module) are shown by the heatmap. The module
name is shown to the left side of each cell. Numbers in the table report the correlations of the corresponding module genes and trait, with the p-
values (*) printed below the correlations in parentheses. Each column corresponds to a specific trait (from left To right: total lignin content, 20
pathway enzymes, and different treatments). The scale bar on the right indicates the range of possible correlations from positive (red) to negative
(green).
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process”. Additionally, this module indicated enrichment of

pathways such as “flavonoid biosynthesis” and “phenylpropanoid

biosynthesis”. In contrast, the “MElightyellow” module, displaying

the highest correlation with the total lignin content, indicated

significant enrichment in pathways related to “glutathione

metabolic process” and “cellular modified amino acid metabolic

process,” as well as in the “glutathione metabolism” pathway. The

“MEviolet” module reflected significant enrichment in the

“carbohydrate catabolic process” and “vitamin B6 metabolism”

pathways. The GO and KEGG enrichment results for these three

modules, which awere closely associated with lignin, indicate that

the total lignin content is influenced not only by genes involved in

the “lignin biosynthesis”, “phenylpropanoid biosynthesis” and

“flavonoid biosynthesis” pathways but also by genes involved in

the “glutathione metabolic process”, “cellular modified amino acid

metabolic process” and “carbohydrate catabolic process” pathways.
3.4 Correlation analysis and visualization of
the genes co-expression network

We conducted a detailed analysis of the genes within the

“MElightyellow” module, which demonstrated the highest

correlation with the total lignin content. As a result, we identified

eight types of genes present in this module, including cytochrome

P450 genes, cinnamyl-alcohol dehydrogenase genes, UDP-

glucosyltransferase genes, UDP-glycosyltransferase superfamily

protein genes, glutathione-S-transferase genes, wall-associated

kinase genes, MATE efflux family protein genes, and indole-3-

acetate beta-D-glucosyltransferase genes.

Next, to compare the correlation levels between the genes from

the “MElightyellow” module that most correlated with the total

lignin content, as well as monolignol genes and the total lignin

content, we conducted a correlation analysis using the R package

cor (Figure 9; Table S6). It is worth noting that we found that the

correlation (highest: |r| = 0.59, lowest: |r| = 0.52) between the top 15

genes in the “MElightyellow” module and the lignin content was

much higher than that between monolignol genes and the lignin
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content (highest: |r| = 0.36, lowest: |r| = 0.02). We have

systematically compiled information about the top 15 genes with

the strongest correlation to the total lignin in the “MElightyellow”

module, as outlined in Table 1. The kME (eigengene connectivity)

serves as intermediate data during the analysis of gene co-

expression networks (Table S7), and the methodology for

calculating kME is detailed in Section 2.4. Specifically, the higher

the kME value, the stronger the degree of gene connectivity,

indicating greater significance and centrality within the network.

“|r|” represents the absolute value of the correlation coefficient.

Finally, we utilized Cytoscape 3.9.1 software to visualize the co-

expression network constructed from genes in the “MElightyellow”

module that showed the highest correlation with the total lignin

content (Figure 10; Table S8). The 15 genes with the strongest

correlation to the total lignin content were selected as central

nodes, while the eight types of genes were represented by different

colours, and genes not belonging to these types were represented in

blue. In the network, nodes represent genes, and the edges represent

co-expression relationships between genes, with edge thickness

indicating the strength of the co-expression relationship.

Specifically, the edges in red and yellow represent the relationships

between two UDP-glycosyltransferase superfamily protein genes and

eight types of genes, respectively, as well as the co-expression

relationships between two UDP-glycosyltransferase superfamily

protein genes and other genes beyond these eight types. Notably,

we observed that these 15 genes, which had the highest correlation

with the total lignin content, exhibited co-expression relationships

with nearly all genes within the “MElightyellow” module.
4 Conclusions and discussion

Firstly, we performed weighted gene co-expression network

analysis (WGCNA) on a dataset containing 5894 differentially

expressed genes from 139 samples. Our analysis revealed that

enzymes from the PtrPAL, Ptr4CL, PtrC3H, and PtrC4H gene

families may have a closer relationship with the total lignin

content(Kim et al., 2023; Wu et al., 2023). In addition, the co-
BA

FIGURE 8

GO and KEGG enrichment analysis for the “MElightcyan”, “MElightyellow” and “MEviolet” gene modules. (A) GO and enrichment analysis. The top 10
biological process results of GO enrichment were selected to display. (B) KEGG and enrichment analysis. CountRatio: A score, the numerator is the
number of genes enriched in this GO/KEGG entry and the denominator is the number of genes in specific module. p.adjust: corrected p value, the
range for value of p.adjust from 0 (red) to 0.025 (blue). For the complete GO and KEGG enrichment results, please view Tables S4 and S5.
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downregulation of three genes, PtrC3H3, PtrC4H1, and PtrC4H2,

had the greatest impact on total lignin content, which is consistent

with the finding reported by Kim et al. (Kim et al., 2020).

Secondly, by performing GO and KEGG analyses on the lignin-

related modules, we discovered that the total lignin content is

influenced not only by genes involved in the “lignin biosynthesis”,

“phenylpropanoid biosynthesis” and “flavonoid biosynthesis”

pathways but also by genes involved in the “glutathione metabolic

process”, “cellular modified amino acid metabolic process” and

“carbohydrate catabolic process” pathways. Moreover, glutathione

peroxidase (GSH-PX) is one of the peroxidases, involved in reactive

oxygen species metabolism and lignin metabolism. It can
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significantly influence the content of total phenols, which are

precursors of lignin synthesis, and the phenylalanine ammonia-

lyase involved in monolignol biosynthesis, thereby influencing the

total lignin content (Yu et al., 2011).

Finally, further analysis of the genes within the “MElightyellow”

module, which showed the highest correlation with the total lignin

content, revealed that this module mainly contains eight types of

genes. Among the top 15 genes with the highest correlation to the total

lignin content and expression levels of all genes within the module,

four types of genes were identified: 1. three cinnamyl-alcohol

dehydrogenase genes, namely CAD1, CADL3, and CADL8 (Kim

et al., 2007; Chao et al., 2022; Lee et al., 2022); 2. two UDP-

glycosyltransferase superfamily protein genes, Potri.006G007200 and

HYR1, showed the closest correlation with the total lignin content,

with HYR1 found to be significantly downregulated after exposure to

coumarin (Xu et al., 2019); 3. one UDP-glucosyl transferase gene,

UGT71B1, was reported to play a critical role in coumarin metabolism

and glycosylation in regulating the efficacy of secondary metabolites

(Jiang, 2022); and 4. one cytochrome P450 gene, Pt-ACT11.13 (Park

et al., 2020). Importantly, among these 15 genes, there are several

noteworthy ones. TheGLIP1 gene involved in pathogen defence and is

regulated by the transcription factor WRKY (Han et al., 2019; Miao

et al., 2019), the ERF021 gene directly regulates the expression of

monolignol genes (Zeng et al., 2020), the SAUR1 gene is an auxin-

inducible gene that promotes plant cell division and elongation (Tong

et al., 2022), and the At4g27220 gene functions as a resistance protein

(Cortaga et al., 2022). However, genes LOC7486095, LOC7479833,

LOC7495227, and Potri.008G017700 have not been previously

reported in relation to lignin.

Therefore, we can infer that the monolignol genes PtrC3H3,

PtrC4H1, and PtrC4H2, which belong to the cytochrome P450 gene

type, may have a significant impact on the total lignin content.
TABLE 1 The top 15 genes displaying the strongest correlation with total lignin content.

Locus Symbol kME |r| Reference

Potri.006G007200 Potri.006G007200 0.979 0.591 \

Potri.006G007100 HYR1 0.947 0.567 (Xu et al., 2019)

Potri.008G099100 Pt.ACT11.13 0.869 0.563 (Park et al., 2020)

Potri.007G107600 LOC7486095 0.881 0.559 \

Potri.006G199100 CADL8 0.980 0.553 (Kim et al., 2007; Chao et al., 2022; Lee et al., 2022)

Potri.004G084400 GLIP1 0.856 0.553 (Han et al., 2019; Miao et al., 2019)

Potri.007G147000 LOC7479833 0.792 0.547 \

Potri.016G017200 UGT71B1 0.946 0.546 (Jiang, 2022)

Potri.008G017700 Potri.008G017700 0.875 0.540 \

Potri.014G123500 LOC7495227 0.833 0.533 \

Potri.013G101100 ERF021 0.819 0.528 (Zeng et al., 2020)

Potri.T149600 CAD1 0.922 0.523 (Chao et al., 2022; Lee et al., 2022)

Potri.003G167400 SAUR1 0.900 0.522 (Tong et al., 2022)

Potri.019G069200 At4g27220 0.879 0.516 (Cortaga et al., 2022)

Potri.016G023300 CADL3 0.920 0.515 (Kim et al., 2007; Lee et al., 2022)
FIGURE 9

Correlation analysis of gene expression levels with total lignin
content. The genes, including the top 15 genes displaying the
strongest correlation with total lignin content, as well as monolignol
genes, is shown on the x-axis; The correlation coefficient of genes
and total lignin content is shown on the y-axis.
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Among the top 15 genes with the highest correlation to the total

lignin content, three cinnamyl-alcohol dehydrogenase genes were

present. This gene type is involved in the final step of the

monolignol biosynthetic pathway, suggesting that it may

significantly influence the total lignin content. Furthermore, the

UDP-glycosyltransferase superfamily protein genes and UDP-

glucosyl transferase genes are closely related to coumarin,

indicating that they may influence the total lignin content by

influencing coumarin metabolism.

However, despite identifying genes that may influence the total

lignin content, the correlation between gene modules and total

lignin content did not reach the expected level. This lower

correlation could be attributed to the fact that the knockdown of

monolignol genes did not entirely reduce the total lignin content to

zero. Additionally, the differences between transgenic and control

lines are often smaller compared to lines under different stress

conditions, and these relatively insignificant differences may affect

the degree of correlation between modules and traits.

In conclusion, for a single species (P. trichocarpa), utilizing a

combination of t-test, differential gene expression analysis,

correlation analysis, and WGCNA on multi-omics data, including

data related to the transcriptome, proteome, and total lignin content

of multiple transgenic lines, allows us to establish a connection

between gene expression levels and total lignin content. This

approach effectively revealed information about genes that

influence total l ignin content and facil i tates a better

understanding of the impact of genes on lignin. Therefore, in

future lignin research, we should not only focus on studying

genes related to the monolignol biosynthetic pathway and their

regulatory factors but also investigate which genes or pathways may
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have an impact on lignin content. By considering the overall

metabolic activities of organisms and utilizing advanced analysis

methods, a more comprehensive exploration of lignin biosynthesis

can be achieved, ultimately leading to the strategic development and

utilization of lignin. This study conducted an initial exploration of

gene regulation on total lignin content. In the future, more

advanced techniques, such as machine learning and gene

inference networks, are expected to be applied to more in-depth

research in this field.
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