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Orchidaceae and its expression
patterns in Cymbidium goeringii
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1Key Laboratory of National Forestry and Grassland Admini stration for Orchid Conservation and
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With a great diversity of species, Orchidaceae stands out as an essential

component of plant biodiversity, making it a primary resource for studying

angiosperms evolution and genomics. This study focuses on 13 published

orchid genomes to identify and analyze the CYP75 gene family belonging to

the cytochrome P450 superfamily, which is closely related to flavonoid

biosynthetic enzymes and pigment regulation. We found 72 CYP75s in the 13

orchid genomes and further classified them into two classes: CYP75A and

CYP75B subfamily, the former synthesizes blue anthocyanins, while the latter is

involved in the production of red anthocyanins. Furthermore, the amount of

CYP75Bs (53/72) greatly exceeds the amount of CYP75As (19/72) in orchids. Our

findings suggest that CYP75B genes have a more important evolutionary role, as

red plants are more common in nature than blue plants. We also discovered

unique conserved motifs in each subfamily that serve as specific recognition

features (motif 19 belong to CYP75A; motif 17 belong to CYP75B). Two diverse-

colored varieties of C. goeringii were selected for qRT-PCR experiments. The

expression of CgCYP75B1 was significantly higher in the purple-red variant

compared to the yellow-green variant, while CgCYP75A1 showed no

significant difference. Based on transcriptomic expression analysis, CYP75Bs

are more highly expressed than CYP75As in floral organs, especially in colorful

petals and lips. These results provide valuable information for future studies on

CYP75s in orchids and other angiosperms.
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Introduction

CYP450 (cytochrome P450, also called CYP) is named because

it can bind to ferrous carbon monoxide and has a peak light

absorption value of 450 nm (Cederbaum, 2015). In 1962,

“CYP450” was first named as a colored substance in the cell, and

it exists as an enzyme (Omura and Sato, 1962). It is one of the

largest protein superfamilies in nature that almost exists in all

prokaryotes and eukaryotes, especially with a large number in

plants (Kiani and Jabeen, 2019; Li and Wei, 2020). They are a

series of self-oxidating heme enzymes involved in various primary

and secondary metabolic activities in plants and participate in

biosynthetic pathways in flavonoids, aliphatic acids, sterols,

phytohormones, terpenes, lignins and other biomolecules (Schuler

and Werck-Reichhart, 2003; Kumar et al., 2014). In general, CYPs

can be divided into a gene family with amino acid sequence identity

greater than 40% and a subfamily with amino acid sequence identity

greater than 55% (Nelson et al., 1996). CYP71−CYP99 and

CYP701−CYP999 and found in plants (Liu et al., 2020). CYP75 is

a crucial member that regulates flavonoid biosynthesis that

determines pigmentation of plant tissues (Zhang et al., 2019).

CYP75 gene family includes two subfamilies, CYP75A and

CYP75B, regulating two key enzymes in the anthocyanin

synthesis pathways, including Flavonoid 3’,5’-Hydroxylase

(F3’5’H) and Flavonoid 3’-Hydroxylase (F3’H) which are

precursors of blue and red anthocyanins, respectively (Tanaka

and Brugliera, 2013).

Recent studies have discussed the function of CYP75s in several

plants. They were first identified in the Petunia hybrida, wherein the

introduction of clonal F3’H cDNA caused an unusual pink color of

petunia and their pollen produced paeoniflorin (Holton et al., 1993;

Brugliera et al., 1999). In Arabidopsis thaliana, a TT7 gene was

identified, which could encode F3’H and its function was validated

in flavonoid and anthocyanins synthesis (Schoenbohm et al., 2000).

The sF3’H1 of Glycine max is mainly responsible for the alteration

of pubescent color from brown to gray (Toda et al., 2002). In Vitis

vinifera, CYP75 genes encoding F3’H and F3’5’H are highly

expressed in all tissues of the plant, especially in the epidermis of

mature red berries that mainly synthesize anthocyanins (Falginella

et al., 2010). In Solanum lycopersicum, CYP75A31 encodes a F3’5H,

which accepts flavones, flavanones, dihydroflavonols and flavonols

as substrates (Olsen et al., 2010). In Epimedium sagittatum, EsF3’H

and EsF3’5H genes are highly expressed in colored tissues and their

expressions are positively correlated with the pattern of

anthocyanin accumulation in leaves (Huang et al., 2012). The

CsF3’5’H in Camellia sinensis acts as a key agent controlling

trihydroxyflavone-3-alcohol synthesis and effectively converts 4’-

hydroxylated flavonoids into 3’4’5’- and/or 3’4’-hydroxylated

products (Wang et al., 2014). The F3’H-1 and F3’H-2 in Hordeum

vulgare regulates the accumulation of magenta pigments in peels

and stems, respectively, and the F3’5’H-1 is closely related to the

accumulation of blue pigments in the barley grain paste layers

(Vikhorev et al., 2019). With the continuous advancement of

molecular experimental research, it is now possible to change

plants color by controlling regulatory genes, such as CYP75. For

example, the up-regulated of CYP75A and CYP75B genes which
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encode a critical dihydroflavonol 4-reductase (DFR) in Dendrobium

officinale, may lead to anthocyanins accumulation, promoting color

change from green to red (Niu et al., 2021). However, the studies

confirmed that CYP75B can code F3’H instead of CYP75A, and

some species in Asteraceae have F3’5’H with the same amino acid

sequences as F3’H which suggests that the F3’5’H in these plants is

regulated by CYP75B instead of CYP75A (Seitz et al., 2006). Similar

to Callistephus chinensis (F3’5’H: CYP75B5),Osteospermum hybrida

(F3’5’H: CYP75B17)and Pericallis cruenta (F3’5’H: CYP75B18), they

all lost CYP75A genes to code F3’5’H then reacquired by duplication

and neofunctionalization of CYP75B genes (Seitz et al., 2006). This

is further proved by partial amino acid exchanges between F3’5’H

and F3’H (Seitz et al., 2007).

Orchidaceae is one of the largest monocotyledon families,

boasting significant ornamental and economic importance due to

its diverse range of colors and distinctive flower shapes (Li et al.,

2021). There are more than 28,000 species and 850 genera in

Orchidaceae, represents approximately 10% of all flowering plants

worldwide and has the largest number of species (Chase et al.,

2015). Orchids are remarkable for shedding light on plant

evolution, with more complete orchid genomes now available,

researchers have gained significant insight into the genetic

foundations of orchid biology (Zhang et al., 2021a). Extensive

research has been conducted on CYP75s in model plants, but

there is currently limited knowledge about the characteristics of

these genes in the Orchidaceae. In this study, we performed

genome-wide identification, classification, characterization, and

expression pattern analysis of CYP75s in 13 orchids, representing

four subfamilies of Orchidaceae with considerable diversity to

elucidate the evolution of CYP75s in orchids. The findings could

provide new insights into the underlying mechanisms that drive the

evolution and diversification of organ morphology in orchids and

other flowering plants.
Materials and methods

Data sources

To investigate the features of the CYP75 gene family in

Orchidaceae, 13 orchids with completed whole-genome

sequencing were selected. They include C. goeringii (Chung et al.,

2021; Sun et al., 2021), C. sinense (Yang et al., 2021), C. ensifolium

(Ai et al., 2021), Gastrodia elata (Yuan et al., 2018; Xu et al., 2021),

D. catenatum (Zhang et al., 2016; Niu et al., 2021), D. chrysotoxum

(Zhang et al., 2021b), D. huoshanense (Han et al., 2020),

Phalaenopsis aphrodite (Chao et al., 2018), P. equestris (Cai et al.,

2015) of Epidendroideae, Platanthera guangdongensis (Li et al.,

2022), Pl. zijinensis (Li et al., 2022) of Orchidoideae, Vanilla

planifolia (Hasing et al., 2020) of Vanilloideae, Apostasia

shenzhenica (Zhang et al., 2017) of Apostasioideae. The genome

download urls for 13 orchids can be found in Table S1. And four

CYP75A (AUB13331.1 from Horgeum vulgare; ABI95365.1 and

AAZ79451.1 from D. hybrid; AEB96145.1 from D. moniliforme)

and four CYP75B (BAJ93256.1 fromH. vulgare; AT5G07990.1 from

A. thaliana; XP015613041.1 from Oryza sativa; AF155332.1 from
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Petunia hybrida) proteins were downloaded from the NCBI

(https://www.ncbi.nlm.nih.gov/). All the protein sequences can be

found in the Table S2.
Identification and physicochemical
properties of CYP75s

It is complicated to identify CYPs due to their extremely high

sequence conservation (Mizutani and Ohta, 2010; Babu et al., 2013;

Kumar et al., 2014; Reddy et al., 2014). Therefore, eight CYP75

proteins were used as queries to perform a blast search (built-in

TBtools; Chen et al., 2018) against 13 orchid genomes with an E-

value threshold of e-20 and a requirement for amino acid sequence

similarity greater than 50% (Falginella et al., 2010). Pfam

verification was performed on all protein sequences in the blast

results. The CYP domains (PF00067) built on the hidden Markov

model were downloaded from Sanger center (http://

pfam.sanger.ac.uk/). The identification of all alternative orchid

CYPs was conducted using the Hmmsearch program (built-in

Tbtools; Chen et al., 2018). The subsequent screening study

included all protein sequences containing CYP domains. To

faci l i tate identification, 14 A . thaliana CYP proteins

(AtCYP71A12, AtCYP71A13, AtCYP71B15, AtCYP73A5,

AtCYP76C1, AtCYP77B1, AtCYP77A6, AtCYP78A10,

AtCYP82G1, AtCYP84A1, AtCYP89A2, AtCYP98A3,

AtCYP701A3, AtCYP706A1) belonging to subfamilies other than

CYP75 were also downloaded from the TAIR (https://

www.arabidopsis.org/). Then, ML phylogenetic trees were

constructed for further screening of CYP75 genes based on all

CYP genes of each orchid and other species. The phylogenetic

analysis was conducted using the maximum likelihood (ML)

approach, and the ML tree was constructed using the RAxML on

the CIPRES Science Gateway web server (RAxML-HPC2 on

XSEDE; Miller et al., 2015) with 1,000 bootstrap iterations. The

phylogenetic tree of CYPs for each orchid is detailed in the Figure

S1. The target genes were clustered with eight CYP75 query genes.

Ultimately, we aligned all candidate CYP75 protein sequences of 13

orchids and further eliminated the incomplete gene annotation

sequences (Figure 1). The completed protein sequences of orchid

CYP75s can be found in Table S2. The physicochemical properties

of CYP75 proteins were predicted by ExPASy database (https://

www.expasy.org/) (Artimo et al., 2012). Subcellular localization was

predicted by Plant-mPloc (http://www.csbio.sjtu.edu.cn/bioinf/

plant-multi/#) (Chou and Shen, 2010).
Phylogenetic analyses

We performed multiple sequence alignment of CYP75 proteins

from 13 orchids and other species using MEGA 7.0 software

(Kumar et al., 2016). The alignment sequences selected with the

ClustalW program, Gap Opening and Gap Extend, are 15 and 6.66,

respectively; the DNA Weight Matrix selection is the IUB; other

values keep the default. The phylogenetic analysis was conducted
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using the maximum likelihood (ML) approach, and the ML tree was

constructed using the RAxML on the CIPRES Science Gateway web

server (RAxML-HPC2 on XSEDE; Miller et al., 2015) with 1,000

bootstrap iterations.The best model (JTT+I+G4) was determined by

using the Akaike Information Criterion (AIC) and the Bayesian

Information Criterion (BIC) based on modeltest-ng-0.1.3 (Darriba

et al., 2019). Keep other settings as default. The output phylogenetic

tree file was polished using Evolview (http://www.evolgenius.info/

evolview/) (He et al., 2016).
Motif and gene structure analysis

To illustrate the variations of motifs among orchid CYP75

proteins, the MEME motif search tool was employed to detect the

conserved motifs in all CYP75 proteins (Bailey et al., 2009). The

MEME parameters were optimized as follows: the maximum

number of motifs found was set to 20, and the optimal motif

width ranged from six to 50 bases. GSDS6 (http://gsds.gao-lab.org/)

(Hu et al., 2015) was used for analyzing structure. The protein

motifs and gene structures of CYP75s were visualized with TBtools

(Chen et al., 2018).
Collinearity and location analysis
on chromosome

Utilizing chromosome-level genome assemblies of C. goeringii, C.

ensifolium, and D. chrysotoxum, genomic FASTA files were merged

pairwise to generate a database for BLASTp queries. The merged

BLAST files and modified GFF3 files for each species were analyzed

using MCscanX (Wang et al., 2012) to identify collinear blocks of

CYP75 genes between C. goeringii and C. ensifolium, C. goeringii and
FIGURE 1

The typical motifs in the CYP protein amino acid sequences.
Multiple sequence alignments were constructed by MAFFT, and
Jalview software was used to visualize the sequences (Troshin et al.,
2011; Rozewicki et al., 2019).
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D. chrysotoxum. The dual synteny plotter tool of MCscanX (JCVI kit)

was utilized for visualization of the results pertaining to collinearity.

We selected six orchids with chromosome-level genomes to

analyze the distribution of CYP75 genes on their chromosomes.

According to the genome data and annotation data of C. goeringii,

C. ensifolium, D. huoshanense, D. chrysotoxum, Pl. guangdongensis

and Pl. zijinensis, the chromosomal localization of five orchid

CYP75 genes were visualized through TBtools (Chen et al., 2018).
Prediction of Cis-acting elements

A total of 2,000bp upstream and downstream of CgCYP75s was

extracted via TBtools, respectively (Chen et al., 2018). The online

software PlantCARE (http://bioinformatics.psb.ugent.be/webtools/

plantcare/html/; Lescot, 2002) was used to identify and annotate the

cis-acting elements found in the upstream and downstream regions.

Cis-acting element number and response function were visualized

using TBtools (Chen et al., 2018).
Transcriptome data and expression analysis

For transcriptome analysis, RSEM (Li and Dewey, 2011) was

utilized to quantify transcripts and compute the fragment per

kilobase of transcript per million mapped reads (FPKM) score for

every gene. Expression heatmaps were produced using TBtools with

the FPKM matrix (Chen et al., 2018). To confirm the expression

patterns of the CYP75s, sepals, petals, labellums (lips), and

gynostemiums were sampled from yellow-green C. goeringii

(‘YG’) and purple-red C. goeringii (‘PR’), respectively, these were

grown at Fujian Agriculture and Forestry University for

quantitative real-time PCR (qRT-PCR) experiment. Each tissue

type was sampled in three replicates. Total RNA of these tissues

was extracted using the FastPure Plant Total RNA Isolation Kit

(Vazyme Biotech Co., Ltd., Nanjing, China). First-strand DNA was

synthesized with TransScript® All-in-One First-Strand cDNA

Synthesis SuperMix for quantitative PCR (TransGen Biotech,

Beijing, China). Premier 5 software was used to design primers

for candidate genes and internal reference genes for qRT-PCR

(Zhao et al., 2022). Gene-specific primers for two chosen genes

and their corresponding internal control genes are presented in

Table S3. The qRT-PCR was performed to verify the specific

expression of CgCYP75A1 and CgCYP75B1 in the floral organs of

‘YG’ and ‘PR’ C. goeringii. All experiments were conducted in

triplicate, with each run consisting of three technical replicates.

The relative expression of genes was determined using the 2-DDCT

method (Wang et al., 2021; Zhao et al., 2023).
Gene ontology analysis

EggNOG-mapper v2 (http://eggnog-mapper.embl.de/) was

used to perform a search against the eggNOG5.0 database for

gene ontology (GO) functional annotation (Huerta-Cepas et al.,
Frontiers in Plant Science 04
2019). The prediction of orthology was conducted through

sequence alignment, while applying bit-score or E-value filtering

to improve the quality of orthology assignments. Functional

classification was attained by associating the GO annotation

terms with the proteins involved in established biological

processes. The results of the GO analysis are available in the

Table S7 and visualized using Tbtools (Chen et al., 2018).
Results

Identification and protein features of
orchid CYP75s

A total of 72 CYP75s were identified from 13 orchids, with the

number of CYP75s in each orchid ranging from two to ten

(Table 1). Our study reveals that CYP75B subfamily has a

significantly higher number (53/72) compared to CYP75A

subfamily (19/72). Each of the 13 orchids contains one−four

CYP75A genes and between two−six CYP75B genes. Among

them, V. planifolia has the largest number of CYP75 genes, with a

total of ten (four CYP75A and six CYP75B), while Pl.

guangdongensis has the smallest number with only two CYP75B

genes and lacks CYP75A gene.

The 72 CYP75 protein sequences range from 235−668 amino

acids, with a mean of 493. The molecular weight ranges from 26.10

−76.21 kDa, with a mean of 54.80 kDa. Around 88.89% (64/72) of

the CYP75 proteins have high isoelectric points (pI>7), with an

average of 7.57. The average instability index (II) is 41.39, and 39

CYP75 proteins are below this index, indicating good protein

stability. The average aliphatic index (AI) for the 72 CYP75

proteins is 99.40, indicating high thermal stability. Moreover, the

calculated mean hydrophilic index (GRAVY) of CYP75 proteins in

all orchids is negative, indicating a high degree of hydrophilicity. All

CYP75 proteins are localized within the endoplasmic reticulum

(ER), as evidenced by subcellular localization results. This

localization pattern is consistent with the majority of CYP

proteins, which are known to primarily function in the ER (Neve

and Ingelman-Sundberg, 2010).

Gene ontology analysis was performed to delineate gene

functional classifications of orchid CYP75s and investigate the

important biological processes they might be involved in. As a

result, GO terms “response to stimulus,” “response to auxin”,

“response to organic substance”, “response to endogenous

stimulus”, “response to chemical”, “response to hormone”,

“secondary metabolic process” , “secondary metabolite

biosynthetic process”, “obsolete oxidation-reduction process”,

“membrane” and “oxidoreductase activity” constituted the

greatest number of genes for GO ontologies “Biological Process”,

“Cellular Component,” and “Molecular Function”, respectively

(Figure S2; Table S7). The data suggests that the gene ontology of

orchid CYP75s is significantly enriched in the “Biological Process”,

which is strongly linked to the production of plant metabolites.

Additionally, it is heavily concentrated within response elements

that relate to the plant’s reaction to external environmental factors.
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TABLE 1 A list of CYP75 genes in 13 Orchids, their characteristics, and subcellular localization of proteins.

Species Gene ID Name AAa(aa) pIb Mwc(kDa) IId AIe GRAVYf Localizationg

P. aphrodite

PAXXG087010 PapCYP75A1 506 9.14 56.74 49.87 99.05 -0.069 Endoplasmic reticulum

PAXXG006510 PapCYP75B1 551 6.69 61.37 39.40 97.64 -0.056 Endoplasmic reticulum

PAXXG079820 PapCYP75B2 513 6.54 57.33 44.20 101.15 -0.123 Endoplasmic reticulum

PAXXG116530 PapCYP75B3 506 7.73 56.38 37.35 103.70 0.021 Endoplasmic reticulum

PAXXG116560 PapCYP75B4 503 6.68 55.90 38.79 102.45 -0.004 Endoplasmic reticulum

PAXXG116590 PapCYP75B5 269 6.14 30.49 45.01 93.57 -0.138 Endoplasmic reticulum

PAXXG172030 PapCYP75B6 522 6.62 57.28 32.68 101.65 0.042 Endoplasmic reticulum

P. equestris

Peq013982 PeqCYP75A1 491 7.65 54.77 43.57 94.75 -0.099 Endoplasmic reticulum

Peq002928 PeqCYP75B1 489 6.69 53.89 34.32 99.12 -0.038 Endoplasmic reticulum

Peq006329 PeqCYP75B2 531 6.62 59.14 39.48 98.93 -0.053 Endoplasmic reticulum

Peq008143 PeqCYP75B3 271 5.59 30.79 36.80 98.97 -0.084 Endoplasmic reticulum

Peq008146 PeqCYP75B4 511 8.39 57.02 39.79 100.80 0.015 Endoplasmic reticulum

Peq013868 PeqCYP75B5 516 6.54 57.48 45.36 102.07 -0.111 Endoplasmic reticulum

C. goeringii

GL07540 CgCYP75A1 503 8.75 55.82 48.29 98.53 -0.030 Endoplasmic reticulum

GL10771 CgCYP75A2 235 4.83 26.10 41.03 93.83 -0.076 Endoplasmic reticulum

GL07339 CgCYP75B1 533 9.24 58.66 36.56 98.26 -0.042 Endoplasmic reticulum

GL13941 CgCYP75B2 292 5.70 32.28 35.72 102.91 -0.092 Endoplasmic reticulum

GL26796 CgCYP75B3 507 8.19 55.97 39.78 101.60 0.017 Endoplasmic reticulum

GL26797 CgCYP75B4 272 5.99 30.47 39.98 96.18 -0.153 Endoplasmic reticulum

GL27961 CgCYP75B5 517 6.91 57.31 46.28 103.23 -0.048 Endoplasmic reticulum

GL27962 CgCYP75B6 290 5.63 32.20 41.23 96.59 -0.192 Endoplasmic reticulum

C. ensifolium

JL017476 CeCYP75A1 503 8.75 55.83 49.33 98.73 -0.026 Endoplasmic reticulum

JL011638 CeCYP75B1 519 7.13 57.69 38.75 103.03 0.022 Endoplasmic reticulum

JL016547 CeCYP75B2 517 6.94 57.38 45.00 104.16 -0.036 Endoplasmic reticulum

JL021317 CeCYP75B3 523 8.41 57.82 39.78 100.36 -0.021 Endoplasmic reticulum

C. sinense

Mol022332 CsCYP75A1 503 8.64 55.95 48.61 98.33 -0.040 Endoplasmic reticulum

Mol004997 CsCYP75B1 530 9.24 58.30 35.56 96.23 -0.070 Endoplasmic reticulum

Mol005994 CsCYP75B2 531 8.47 58.95 38.51 102.17 -0.014 Endoplasmic reticulum

Mol021869 CsCYP75B3 515 6.75 57.14 43.98 104.19 -0.036 Endoplasmic reticulum

V. planifolia

Vpla_KAG0447236.1 VplCYP75A1 507 8.45 56.24 43.53 100.89 0.053 Endoplasmic reticulum

Vpla_KAG0447237.1 VplCYP75A2 270 5.13 29.74 32.81 91.85 -0.002 Endoplasmic reticulum

Vpla_KAG0495957.1 VplCYP75A3 435 6.11 48.33 43.07 88.85 -0.116 Endoplasmic reticulum

Vpla_KAG0496007.1 VplCYP75A4 503 8.10 55.92 47.05 93.70 -0.031 Endoplasmic reticulum

Vpla_KAG0451884.1 VplCYP75B1 523 6.48 58.05 35.05 101.99 -0.030 Endoplasmic reticulum

Vpla_KAG0455627.1 VplCYP75B2 506 7.00 56.21 36.62 98.08 -0.043 Endoplasmic reticulum

Vpla_KAG0455628.1 VplCYP75B3 501 8.51 55.63 38.04 102.38 0.025 Endoplasmic reticulum

Vpla_KAG0466647.1 VplCYP75B4 533 8.70 59.75 41.10 91.82 -0.238 Endoplasmic reticulum

Vpla_KAG0466648.1 VplCYP75B5 481 8.58 53.86 38.34 93.06 -0.289 Endoplasmic reticulum

Vpla_KAG0497903.1 VplCYP75B6 542 6.63 60.13 38.66 99.48 -0.052 Endoplasmic reticulum

(Continued)
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Phylogenetic analysis of orchid CYP75s

A phylogenetic tree was constructed to analyze the evolutionary

patterns of orchid CYP75s (Figure 2). 72 CYP75 proteins were used,

and eight query protein sequences were used. The maximum

likelihood (ML) method was used for the phylogenetic tree, which
Frontiers in Plant Science 06
was constructed with RAxML on the CIPRES Science Gateway web

server (RAxML-HPC2 on XSEDE; Miller et al., 2015). Bootstrap

values were 1,000 replicates with the JTT+I+G4 model. The

phylogenetic tree indicated that CYP75s belonged to two

categories: CYP75A and CYP75B, which is consistent with the

previous studies (Tanaka and Brugliera, 2013). The results clearly
TABLE 1 Continued

Species Gene ID Name AAa(aa) pIb Mwc(kDa) IId AIe GRAVYf Localizationg

D. chrysotoxum Maker09736 DchCYP75A1 504 8.59 55.84 47.46 99.09 -0.037 Endoplasmic reticulum

Maker93966 DchCYP75A2 504 8.39 55.86 47.46 99.27 -0.023 Endoplasmic reticulum

Maker59722 DchCYP75B1 531 8.12 59.23 41.61 105.63 -0.019 Endoplasmic reticulum

Maker83891 DchCYP75B2 519 6.75 57.49 43.90 100.39 -0.054 Endoplasmic reticulum

Maker109076 DchCYP75B3 668 8.79 76.21 31.78 100.70 -0.086 Endoplasmic reticulum

Maker118630 DchCYP75B4 552 7.28 61.45 37.57 94.71 -0.121 Endoplasmic reticulum

Maker118636 DchCYP75B5 518 7.28 57.17 39.23 98.82 -0.027 Endoplasmic reticulum

D. catenatum Dca000941 DcaCYP75A1 504 8.08 55.84 43.51 100.26 0.008 Endoplasmic reticulum

Dca000430 DcaCYP75B1 523 7.80 57.90 40.36 101.68 -0.029 Endoplasmic reticulum

Dca008242 DcaCYP75B2 512 6.86 56.69 31.44 98.11 -0.036 Endoplasmic reticulum

Dca013687 DcaCYP75B3 525 7.75 59.56 39.05 103.07 -0.067 Endoplasmic reticulum

Dca013688 DcaCYP75B4 512 8.04 57.41 39.50 103.03 0.006 Endoplasmic reticulum

Dca020470 DcaCYP75B5 539 8.12 60.32 38.82 105.14 -0.027 Endoplasmic reticulum

D. huoshanense Dhu000016471 DhuCYP75A1 504 7.63 55.75 43.84 99.48 -0.002 Endoplasmic reticulum

Dhu000016482 DhuCYP75A2 504 8.66 55.83 45.45 99.70 -0.012 Endoplasmic reticulum

Dhu000012876 DhuCYP75B1 521 7.29 57.71 40.21 101.69 -0.030 Endoplasmic reticulum

Dhu000016330 DhuCYP75B2 517 6.31 57.35 33.97 96.79 -0.052 Endoplasmic reticulum

Dhu000019542 DhuCYP75B3 539 8.39 60.33 38.66 104.42 -0.040 Endoplasmic reticulum

Dhu000020018 DhuCYP75B4 531 8.12 59.23 41.61 105.63 -0.019 Endoplasmic reticulum

Pl. guangdongensis
PGU007087 PguCYP75B1 520 8.62 57.76 40.37 98.65 -0.086 Endoplasmic reticulum

PGU010950 PguCYP75B2 522 8.96 58.06 52.92 101.69 -0.071 Endoplasmic reticulum

Pl. zijinensis

PZI001224 PziCYP75A1 504 9.41 55.86 47.87 101.61 0.031 Endoplasmic reticulum

PZI012105 PziCYP75B1 520 8.32 57.64 40.20 99.04 -0.077 Endoplasmic reticulum

PZI015225 PziCYP75B2 514 8.80 56.46 43.19 94.36 -0.047 Endoplasmic reticulum

A. shenzhenica

Ash019093 AshCYP75A1 508 6.63 56.67 47.90 98.17 -0.026 Endoplasmic reticulum

Ash001251 AshCYP75B1 521 7.71 57.18 34.43 100.56 -0.016 Endoplasmic reticulum

Ash004102 AshCYP75B2 520 7.26 57.78 42.60 95.44 -0.061 Endoplasmic reticulum

Ash007554 AshCYP75B3 520 7.31 56.94 46.91 98.71 -0.036 Endoplasmic reticulum

Ash015225 AshCYP75B4 508 6.22 56.16 45.84 95.61 -0.011 Endoplasmic reticulum

G. elata

Gel004675 GelCYP75A1 514 7.14 57.25 43.06 101.01 -0.064 Endoplasmic reticulum

Gel010620 GelCYP75B1 512 8.79 56.24 49.58 96.45 -0.081 Endoplasmic reticulum

Gel016567 GelCYP75B2 517 9.26 57.50 47.94 100.97 -0.064 Endoplasmic reticulum

Gel005429 GelCYP75B3 504 8.37 56.27 42.41 102.64 0.013 Endoplasmic reticulum
AAa, Amino acid number; pIb, Theoretical isoelectric point; Mwc (kDa), Molecular weight; IId, Instability index; AIe, Aliphatic index; GRAVYf, Grand average of hydrophobicity; Localizationg,
Subcellular localization predicted by Plant-mPloc (Chou and Shen, 2010).
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show that the number of members in the CYP75B subfamily has far

exceeded than that of the CYP75A subfamily in the course of

evolution. The branch relationships of the eight known CYP75

protein sequences are found to be correct.
Motif variation and gene structure of
orchid CYP75s

Motifs of CYP75 proteins in 13 orchids were examined using

the online analysis tool MEME, and 20 motifs were set as upper

bound (Figure 3A). There are four conserved motifs commonly

found in cytochrome P450 enzymes: PERF motif, K-helix region, I-

helix region and the consensus sequences of the heme-binding

region (Figures 1, 3B), also referred to as the “P450 signature”

(Crooks et al., 2004; Qi et al., 2017). As depicted in Figure 1, all

CYP75 proteins found in orchids possess the four common CYP

motifs referred to earlier. A total of 20 motifs were detected in the

CYP75 proteins using the MEME software (Bailey et al., 2009). The

number of CYP75 motifs ranges from nine to 18. The results show

that most CYP75 proteins have identical sequence beginning with

motif 18 and followed by motif 5, 13, 2, 14, 10, 6, 8, 16, 12, 3, 1, 17,

11, 4, 7, 15, ending with motif 9. Furthermore, all protein sequences

of CYP75 exhibit the highly conserved motif 12, 3, 1, 17, 11, 4, 7, 15,

and 9. (Figure 3A). Among the 20 motifs, motif 1 corresponds to K-
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helix region, motif 4 to heme-binding region, motif 11 to PERF

motif, and motif 12 to I-helix region (Figure 3B). Furthermore, the

unique conserved motifs in each subfamily are also found: motifs 19

are specific to the CYP75A subfamily, while motifs 17 are

exclusively present in the CYP75B subfamily. This finding will

greatly facilitate the identification of subfamilies within the CYP75

gene family. These 72 CYP75s share many common motifs,

indicating high conservation. Most of the CYP75 protein

sequences are conserved with differences mainly in the N

terminus and intermediate regions. However, there are some

CYP75 protein sequences containing a small number of motifs

but also contain the typical motifs of CYP protein.

To further explore the characteristics of CYP75 genes in

orchids, intron-exon structure is analyzed as shown by Figure S3.

The results show that the orchid CYP75 family is composed of one

−eight exons and one−seven introns, and in DchCYP75B3 and

DhuCYP75B4, the exons are split into many small fragments by

introns. Most CYP75 protein sequences have relatively long intron

regions, while all CYP75A genes contain only one intron, which is a

unique feature of the CYP75A subfamily.
Chromosomal localization of
orchid CYP75s

As shown in Figure 4A, both CYP75A genes of C. goeringii are

located on chromosome 02, while the remaining CgCYP75B genes

are scattered on chromosomes 01, 08, 11, and 14. Among them,

chromosomes 02, 08 and 11 all have two CgCYP75s located at the

same site. The four CYP75s of C. ensifolium are scattered on

chromosomes 01, 02, 09 and 11, respectively (Figure 4B). The

CYP75 genes of D. huoshanense are evenly distributed across five

chromosomes, specifically chromosomes 01, 06, 10, 16, and 18. The

two DhuCYP75A genes are located together on chromosome 06

(Figure 4C). In D. chrysotoxum, only DchCYP75B4 and

DchCYP75B5 are co-located on chromosome 07, while the

remaining DchCYP75 are separately distributed on various

chromosomes. Among them, DchCYP75A1 has not been

assembled onto the chromosome, but is located on scaffold 787

(Figure 4D). For both Platanthera species, two PguCYP75Bs are co-

located on chromosome 02 and 08 of Pl. guangdongensis, while

three PziCYP75s are individually located on chromosome 01, 10

and 13 of Pl. zijinensis (Figures 4E, F).
Collinearity analysis of CYP75 gene family
in three orchids

To investigate the evolution of CYP75 genes in orchids, the

collinear relationship among CYP75s in C. goeringii, C. ensifolium,

and D. chrysotoxum was analyzed. Our collinear analysis revealed a

one-to-one correspondence among all CYP75 genes in the three

orchids, indicating limited reshuffling of CYP75 orthologs and

significant genomic rearrangements following the divergence of

Dendrobium and Cymbidium lineages (Figure 5). Furthermore, we

also examined that CYP75 gene tandem duplication occurred on the
FIGURE 2

Phylogenetic tree of CYP75 genes based on the CYP75 protein
sequences of 13 orchids. The CYP75 gene family was classified into
two classes: CYP75A and CYP75B. CYP75 protein sequences of all
species and query sequences are available in Table S2.
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chromosomes of both C. goeringii and D. chrysotoxum, which was

consistent with the results of chromosome localization (Figure 4).

Our results suggest that a small-scale tandem duplication may have

led to the expansion of CYP75 gene family in orchids.
Cis-acting regulatory elements
of CgCYP75s

To explore the regulatory roles of CYP75s, we retrieved the

2,000 bp upstream and downstream regions of CYP75 genes in C.

goeringii to identify potential cis-elements. We identified a total of

1,257 cis-acting elements, including 38 types and ten responsive

functions (Figure 6; Table S4). Among these elements, TATA-box

made up the most common elements (46.38%), followed by CAAT-
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box (22.83%) (Table S5). Cis-element functions included

phytohormone responsiveness for gibberellin, auxin, methyl

jasmonate (MeJA), salicylic acid, and abscisic acid (ABA); stress

responses, such as anoxic, anaerobic, low-temperature, and defense;

and growth and development elements, such as light response and

MYB binding site (Figure 6). Each CgCYP75 gene contained

multiple types of elements with light responsiveness as the most

occurring element function (Figure 6), supporting that light is one

of the most important environmental factors affecting flavonoid

biosynthesis in plants (Zoratti et al., 2014). The second and third

most abundant types of elements identified were MeJA-responsive

and ABA-responsive elements (Table S4). The results suggest that

these elements may play a role in modulating these two

phytohormones. Of particular note are the MYB binding site

elements, which are key transcription factors involved in pigment
B

A

FIGURE 3

Conserved motifs of CYP75 proteins. (A) Predicted motifs with the phylogenetic tree of orchid CYP75s. (B) Sequence logo of motif 1, 4, 11, 12, 17, 19 which
encoded the K-helix region, Heme-binding region, PERF motif, I-helix region, the CYP75B unique motif and the CYP75A unique motif, respectively.
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synthesis. The significant proportion of these elements further

emphasizes the critical role of the CYP75 genes in the synthesis of

plant pigments.
Expression patterns of orchid CYP75s and
qRT-PCR verification of CgCYP75s

The orchid transcriptomic data from nine orchids out of 13

were visualized as heatmaps via TBtools software as shown in
B

C

D

E F

A

FIGURE 4

Chromosome distribution in orchids CYP75s. (A) C. goeringii. (B) C. ensifolium. (C) D. huoshanense. (D) D. chrysotoxum. (E) Pl. guangdongensis.
(F) Pl. zijinensis.
FIGURE 5

The collinearity of CYP75 genes between C. goeringii and C. ensifolium,
C. goeringii and D. chrysotoxum.
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Figure 7. Expression analysis was conducted using transcriptome

data from nine orchids, including various plant organs, such as

sepals, petals, labellums (also known as lips), the gynostemium,

inflorescence, stems, tubers, pollinia, and complete flowers. The

expression profile showed that CYP75B genes were expressed

broadly in flower organs, while the expression of CYP75A genes

was more confined to C. ensifolium, D. catenatum and G. elata,

particularly in the gynostemiums (Figure 7). In C. goeringii,

CYP75A genes showed little expression in all tissues of two

varieties, while CgCYP75B1 exhibited an exclusive expression in

four organs of ‘PR’ C. goeringii and gynostemium of ‘GY’ C.

goeringii (Figure 7A). Furthermore, CeCYP75B1 and CeCYP75B2

exhibited elevated expression levels across all four floral organs

(Figure 7B). In D. chrysotoxum, the expression of the DchCYP75B4

gene was significantly higher on the lip than other parts, due to the

predominant distribution of its anthocyanin in the red macula of

the lip (Figure 7C). A similar situation existed in D. catenatum,

DcaCYP75B1 and DcaCYP75B3 were highly expressed in the lip

with purple-red spots (Figure 7D). PeqCYP75B1 was expressed

prominently in various tissues of P. equestris, with higher

expression in the darker colored lip region. On the other hand,

PeqCYP75B5 showed significant expression levels in the sepals.

(Figure 7E). AshCYP75B3 of A. shenzhenica was expressed in all

parts except for the pollinium, with the highest expression in the

inflorescence (Figure 7F). In both of the Platanthera species,

PziCYP75B1 and PguCYP75B4 exhibited the highest expression

levels in fleshy underground tubers (Figure 7G), possibly

indicating their involvement in non-biological stress response

(Iwashina, 2003; Pourcel et al., 2007; Zhang et al., 2020).

Similarly, G. elata was a mycoheterotrophy orchid without

anthocyanins in its tissues, and the expression of GelCYP75A and

GelCYP75B were comparable in various tissues (Figure 7H). Their

functions are not related to anthocyanin synthesis but are possibly

associated with physiological activities required for adaptation to its

unique habitat (Iwashina, 2003; Pourcel et al., 2007; Zhang

et al., 2020).
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To further investigate the specific roles of CYP75 gene

expression in two C. goeringii varieties, their sepals, petals, lips

and gynostemiums were analyzed by qRT-PCR (Figure 8). In two C.

goeringii varieties (Figure 8A), the CgCYP75B1 showed extremely

high expression in ‘PR’ C. goeringii, especially in petal which

matched the transcriptome data, but were barely detected in ‘GY’

C. goeringii, further verifying that CYP75B genes have an

anthocyanin-specific expression in the flower organs. As for

CgCYP75A1, its expression level was relatively low in four types

of tissues of the two C. goeringii plants (Figure 8B). Interestingly,

CgCYP75A1 and CgCYP75B1 showed a certain degree of stable

expression in the gynostemiums of both C. goeringii plants

(Figure 8B). The function of these CYP75 genes may not be

related to anthocyanin synthesis, but rather to attracting

pollinators to promote reproduction (Samanta et al., 2011).
Discussion

Flower color is one of the key criteria for evaluating the quality

of ornamental plants, as well as their horticultural and economic

values. Plant flower color is also a major factor in attracting

pollinators, which helps to increase the success rate of pollination

and plays an important role in the evolution of plants (Whibley

et al., 2006; Hopkins and Rausher, 2012; Mu et al., 2017).

Orchidaceae contains the most colorful plants in the world with a

rich variety of colors and characteristics (Roberts and Dixon, 2008).

As one of the earliest identified gene families in the CYP450

superfamily, CYP75 plays an important role in regulating plants’

flavonoids biosynthesis and the synthesis offlower pigments (Ayabe

and Akashi, 2006; Tanaka and Brugliera, 2013). How the CYP75

gene family affects the flower color formation process and a series of

physiological processes in orchids by regulating flavonoid

biosynthesis is an interesting topic. In this research, a total of 72

CYP75 genes were identified from 13 orchids, according to their

respective quantities, suggesting that the CYP75 gene family
B

A

FIGURE 6

Cis-acting elements in the 2k bp of upstream and downstream regions of CgCYP75 genes. (A) Elements with similar regulatory functions are
displayed in the same color. (1) The 2k bp of upstream of CgCYP75 genes. (2) The 2k bp of downstream of CgCYP75 genes. (B) Numbers of each
type of element.
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consists of a small number of copies (Table 1). In this study, the

amount of CYP75 varied significantly among each orchid, ranging

from two to ten. All extant orchids share a common whole-genome

duplication (WGD) event in their ancestry, which was followed by

varying degrees of gene loss, resulting in the formation of five

subfamilies (Zhang et al., 2017). The number of coding genes in

each orchid varies substantially, with examples being 21,938 for P.

equestris (Cai et al., 2015), 21,743 for A. shenzhenica (Zhang et al.,

2017), 30,897 for (Chung et al., 2021; Sun et al., 2021) C. goeringii,

and 29,044 for V. planifolia (Hasing et al., 2020). In addition, some

orchids such as C. goeringii, D. huoshanense, and D. chrysotoxum

have CYP75 genes that repeat in tandem (Figure 4). Collinearity

analyses of CYP75 genes in C. goeringii and C. ensifolium, C.

goeringii and D. chrysotoxum have also approved this (Figure 5).

Furthermore, there were differences in genome assembly quality
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among the 13 orchids evaluated. Analyses of Benchmarking

Universal Single Copy Orthologs (BUSCO) (Simo et al., 2015)

revealed a generally low level of genome assembly completeness

for orchids (Table S1). Consequently, the number of CYP75 genes

in orchids varies widely.

Phylogenetic relationships and protein structure analyses

support the division of the CYP75 gene family into two branches,

CYP75A and CYP75B (Figure 2) which is in agreement with

previous studies (Tanaka and Brugliera, 2013). Notably, no

CYP75A gene was found in Pl. guangdongensis, which is similar

to A. thaliana lacking CYP75A (Schoenbohm et al., 2000). The main

function of the CYP75A genes is to regulate the precursor of blue

anthocyanins (Rausher, 2006). Many blue anthocyanins pigments

are formed by the presence of the trioxide B-ring of delphinium

derivatives (Ayabe and Akashi, 2006). Rausher (2008) documented
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FIGURE 7

The expression patterns of CYP75 genes among different tissues in nine orchids. Se, sepal; pe, petal; lip, labellum; gy, gynostemium; in, inflorescence; st,
stem; tu, tuber; po, pollinium; fl, whole flower. (A) C. goeringii. GY, green-yellow flower; PR, purple-red flower. (B) C. ensifolium. (C) D. chrysotoxum.
(D) D. catenatum. (E) P. equestris. (F) A. shenzhenica. (G) Pl. guangdongensis and Pl. zijinensis. (H) G. elata. The FPKM values of orchid CYP75s in
different flower organs are listed in Table S6.
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the macroscopic trend of flower color evolution in angiosperms,

finding that flowers evolving from blue to red were more common

than in the opposite situation. An illustration of this phenomenon is

observed in the grape genus, whereby the peels, which is blue-violet

in color, contains a significant concentration of delphinidins. This

leads to an increased quantity of the CYP75A genes (Falginella et al.,

2010). However, as for Orchidaceae, the red cyanidin color trait is

more common than blue delphinidin color trait, this also explains

why the CYP75A gene regulating F3’5’H is significantly less than the

CYP75B gene regulating F3’H. This may be attributed to the fact

that blue flower species are less abundant than red flower species in

Orchidaceae. It may suggest that red hue is a favored trait in the
Frontiers in Plant Science 12
evolution of angiosperms and the CYP75B subfamily, which

governs the synthesis of anthocyanin red precursors, holds an

evolutionary edge over the CYP75A subfamily. Researchers have

found that some CYP75B genes can function as CYP75A genes, such

as O. sativa and some Asteraceae plants (Lam et al., 2015).

Phylogenetic analysis of existing sequences of CYP75s revealed

that CYP75A was derived from CYP75B prior to the divergence of

angiosperms and gymnosperms (Seitz et al., 2006). It is

demonstrated that the CYP75B subfamily has perhaps a more

superior evolutionary position in the CYP75 gene family,

performing not only in its own function, but sometimes work as

compensation for the CYP75A subfamily (Xiao et al., 2021). In this
B

A

FIGURE 8

Expression profiles of different tissues of CgCYP75 genes by real-time reverse transcription quantitative PCR (RT-qPCR). (A) Two flower colour types.
GY, green-yellow flower; PR, purple-red flower; se, sepal; pe, petal; lip, labellum; gy, gynostemium. (B) RT-qPCR validation of transcriptomic data of
the CgCYP75A1 and CgCYP75B1 at four flower organs. The error bars indicate three RT-qPCR biological replicates. The asterisk indicates the P value
in the significance test (** p < 0.01, *** p < 0.001).
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study, all orchid CYP75s were found to be located on the

endoplasmic reticulum, as previous research has shown that

CYP450 is a membrane protein primarily found on the ER

membrane in eukaryotes (Brignac-Huber et al., 2016). It can be

deduced that orchid CYP75 genes are likely involved in plant

metabolism and response to biotic stress via the membrane system.

All members of the CYP gene family have four identifiable

motifs: the PERF motif, K-helix region, I-helix region, and heme-

binding region, as shown in Figure 1 (Crooks et al., 2004; Qi et al.,

2017). In addition, this study finds specific motifs within two

respective subfamilies: motif 19 is exclusive to CYP75A subfamily,

while motif 17 exists only in CYP75B subfamily (Figure 3). These

results provide more possibilities for accurate recognition of the two

subfamilies in CYP75.

Whole-genome sequencing has enabled researchers to uncover

variations in the gene structure of gene families across different

species. While gene structure tends to be conserved within the same

clade, peculiarities have been observed in the CYP75 gene family of

orchids, particularly in subfamilies CYP75A and CYP75B. In

contrast to the longer introns typically found in orchids,

CYP75As has a single intron (Figure S3), which is a unique

characteristic. Longer introns are believed to be favored during

gene evolution as they increase recombination between adjacent

exons, thus promoting natural selection efficiency (Jo and Choi,

2015). This unique feature of Orchidaceae may explain the

extraordinary diversity of orchids.

Gene expression is primarily regulated by cis-acting elements of

the transcription start site (Hernandez-Garcia and Finer, 2014).

This study identified various types of regulatory elements within the

upstream and downstream region of CYP75 genes in C. goeringii,

which were further classified into plant hormone response

elements, stress response elements, and growth and development

elements (Figure 6). Among these elements, the number of light

response elements was the largest, indicating that light is one of the

most important environmental factors influencing flavonoid

biosynthesis (Zoratti et al., 2014), which is closely related to

anthocyanin synthesis. Additionally, there were also a

considerable number of MYB binding sites within the cis-acting

elements of orchid CYP75s. MYB is one of the most important

transcription factors regulating plant pigments, and it can enhance

B-ring hydroxylation by upregulating F3’5’H1 (Ma et al., 2021).

Further research is needed to understand the interaction patterns

between the two.

Studies have shown that the expression level of the CYP75 genes

is positively related to the accumulation of anthocyanins. Based on

the RT-qPCR and transcriptome expression analysis in this study,

this point of view can be supported. In two C. goeringii varieties

with significantly different colors, the expression of the CYP75B

genes which regulate the purple-red anthocyanins is generally much

higher in ‘PR’ C. goeringii compared to ‘YG’ C. goeringii. Moreover,

the expression level of CgCYP75B is higher than that of CgCYP75A

in any of the two varieties. Furthermore, in the lip of ‘YG’ C.

goeringii without anthocyanin, the CYP75 gene shows relatively

stable expression. This suggests that the function of the CYP75

genes is not mainly to regulate anthocyanin synthesis. The two F3’H

and F3’5’H enzymes regulated by the CYP75 genes are both
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flavonoids, and flavonoids are involved in almost all metabolic

processes in plants, including attracting pollinators (Wen et al.,

2020). Orchidaceae-specific CYP75s probably reflect the adaptive

value of efficient attraction of pollinators. These results further

refine the theoretical framework of the CYP75 gene family’s

relevance to flower color in orchids and provide new insights into

the mechanism of color formation. Furthermore, it is now possible

to alter plant color through gene silencing or introducing exogenous

genes, which may solve the problem of scarce blue flowers and lay

the foundation for the breeding and improvement of novel flower

colors in orchids.
Conclusion

In this study, we identified 72 members of the CYP75 gene

family from the 13 orchid genomes. We analyzed their protein

physicochemical properties, subcellular localization, motifs, intron-

exon structures, chromosome distribution, promoter elements,

expression patterns and gene ontology classification. We found

that the CYP75 gene family in Orchidaceae is a low-copy gene

family with high conservation. V. planifolia has the highest count of

CYP75 genes, with ten, while Pl. guangdongensis has only two genes,

the CYP75A gene is missing and only two CYP75B genes are

present. We observed a notable discrepancy between the number

of genes in the CYP75A and CYP75B subfamilies, which could

potentially be attributed to differences in their evolutionary statuses.

The characteristic motifs of CYP450 are present in all CYP75

proteins, with a specific motif found in two subfamilies,

respectively. We demonstrate that the distinct roles of cis-

elements in light response and MYB binding sites are working

together with the crucial function of CYP75s in the biosynthesis of

anthocyanins. In addition, the expression patterns generated by

transcriptomic and RT-qPCR data supported a color-specific

expression of CYP75Bs in the flower organs. Our study presents a

comprehensive analysis of the functions and expression patterns of

CYP75 genes in Orchidaceae. These results build a foundation for

deeper understanding regarding the role of CYP75 genes in plant

anthocyanin biosynthesis of plants, offering insights into the

flexibility of plant pigmentation. A crucial subsequent task will

entail conducting functional analysis of CYP75 in non-model

plants, in order to discern the further functions of CYP75 in the

context of angiosperms evolution.
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