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Early diagnosis of plant diseases is needed to promote sustainable plant

protection strategies. Applied predictive modeling over hyperspectral

spectroscopy (HS) data can be an effective, fast, cost-effective approach for

improving plant disease diagnosis. This study aimed to investigate the potential of

HS point-of-measurement (POM) data for in-situ, non-destructive diagnosis of

tomato bacterial speck caused by Pseudomonas syringae pv. tomato (Pst), and

bacterial spot, caused by Xanthomonas euvesicatoria (Xeu), on leaves (cv.

cherry). Bacterial artificial infection was performed on tomato plants at the

same phenological stage. A sensing system composed by a hyperspectral

spectrometer, a transmission optical fiber bundle with a slitted probe and a

white light source were used for spectral data acquisition, allowing the

assessment of 3478 spectral points. An applied predictive classification model

was developed, consisting of a normalizing pre-processing strategy allied with a

Linear Discriminant Analysis (LDA) for reducing data dimensionality and a

supervised machine learning algorithm (Support Vector Machine – SVM) for

the classification task. The predicted model achieved classification accuracies of

100% and 74% for Pst and Xeu test set assessments, respectively, before

symptom appearance. Model predictions were coherent with host-pathogen

interactions mentioned in the literature (e.g., changes in photosynthetic pigment

levels, production of bacterial-specific molecules, and activation of plants’

defense mechanisms). Furthermore, these results were coherent with visual

phenotyping inspection and PCR results. The reported outcomes support the

application of spectral point measurements acquired in-vivo for plant disease

diagnosis, aiming for more precise and eco-friendly phytosanitary approaches.

KEYWORDS

plant disease diagnosis, early diagnosis, proximal sensing, hyperspectral spectroscopy,
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GRAPHICAL ABSTRACT
1 Introduction

The tomato (Solanum lycopersicum L.) crop holds great

importance worldwide due to its significant impact on agriculture,

the economy, and human nutrition. This globally cultivated vegetable

crop is very sensitive to diseases leading to dramatic yield and

economic losses (Blancard, 2012). Bacterial diseases of tomato

plants caused by the Gram-negative bacteria Pseudomonas syringae

pv. tomato (Pst, bacterial speck) and Xanthomonas euvesicatoria

(Xeu) formerly known as Xanthomonas campestris pv. vesicatoria,

bacterial spot, are two important etiological agents responsible for

several plant outbreaks and considerable losses in tomato production

worldwide. These two diseases are responsible for severe alterations

in the host physiology, biochemistry, and structural composition,

causing plant phenotype modifications (e.g., reduction of the

photosynthetic capacity of diseased foliage, defoliation, flower

abortion, and fruit lesions, among others). Ultimately, they result in

yield reductions due to the damage caused to plants and fruits, which

makes them unsuitable for the fresh market or processing. Control

measures for these two crop diseases may be ineffective, especially

when the bacteria are well-established in a production site (medium

to late stage of the disease infection process. Phytosanitary products,

such as copper and antibiotics (Alves et al., 2023), can be applied to

mitigate the negative effects of the disease. Nevertheless, this

approach can lead to bacteria tolerance to phytosanitary

compounds (Blancard, 2012), and conduct to considerable damage

to the environment and food security due to non-targeted

applications of these products (Zhang et al., 2020).

Nowadays, bacterial diseases are diagnosed essentially through

scouting and ‘wet lab’ -based approaches. The first requires a careful

and detailed inspection of crop fields (usually visual) by specialized

trained observers. They must detect and identify diseased plants

based on modifications to the characteristic phenotype of the crop,

and the presence of disease symptoms (Parker et al., 1995). Thus, it

is subjective, error-prone (as symptoms alone are not entirely

disease-specific, and can be promoted by other biotic and abiotic

stresses), labor-intensive, time-consuming, and expensive (Mahlein,

2016). In turn, laboratory-based techniques consist of serological
Frontiers in Plant Science 02
and molecular assays, frequently applied due to their sensitivity,

accuracy, and effectiveness. The most widespread lab methods

include Enzyme-Linked Immunosorbent Assay (ELISA) and

Polymerase Chain Reaction (PCR) methods. They involve

comprehensive sampling procedures, which require several hours

to be completed, and destructive sample preparation, precluding the

accompaniment of disease development nor its field mapping to

support precision agriculture systems (e.g. Site-Specific

Management) (Fang and Ramasamy, 2015; Martinelli et al.,

2015). Nevertheless, laboratory-based approaches lack appropriate

high throughput and speed for supporting real-time agronomic

precision decisions in-field since they were developed to verify the

presence of pathogens. They also still have some diagnostic

constraints, mostly in the non-symptomatic and early disease

infection stages, related to the irregular spread of bacteria inside

plants (Fang and Ramasamy, 2015; Martinelli et al., 2015).

Hyperspectral spectroscopy (HS) is one innovative approach

that has been studied and successfully applied to assess different

plant(host)-pathogen interactions in a fast, sensitive, standardized

cost-effective, high-throughput, and non-invasive way (Golhani

et al., 2018). Through spectral measurements in the visible (VIS,

400-700 nm) and infrared (IR, 800-2500 nm) regions, HS showed

the capability of effectively assessing a wide variety of plant

structural, chemical, biophysical, and metabolic traits in living

tissues (Thenkabail et al., 2000; Delalieux et al., 2007). Changes in

the typical spectral phenotype of a crop may indicate deviations in

its health status, leading to an indirect method of diagnosing

diseases. Plant-pathogen interactions shift plant metabolism and

tissue composition, resulting in detectable variations in the plant’s

optical behavior. In brief, these dynamics typically promote

modifications in the VIS spectra of plants, due to changes

in pigments ’ concentration and physiological processes.

Furthermore, variations in the IR region may also occur and are

essentially linked to leaf water levels, chemical compounds (namely

lignin’s and proteins content), structural elements, and internal

scattering processes (Thenkabail et al., 2014; Tosin et al., 2022).

Different types of pathogens, such as pests (Herrmann et al., 2017;

Zhang et al., 2017), fungi (Yu et al., 2018; Skoneczny et al., 2020),
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bacteria (Bagheri et al., 2018), and viruses (Morellos et al., 2020)

affecting different crops have already been detected using the HS

technique, mostly in symptomatic stages. Thus, this spectral

phenotyping technique constitutes an interesting diagnosis method,

allowing the distinction between the spectral signature of healthy and

disease tissues, as well as between the spectral signature of diseased

tissues infected with different pathogens.HS holds great potential for

early disease diagnosis, i.e., when plants are diseased but still don’t

manifest any visual symptoms of the infection (Gold et al., 2020a; Reis-

Pereira et al., 2022). However, the use of this approach for non-

symptomatic plant disease diagnosis remains largely unexplored.

Understanding host-pathogen specific interactions and overcoming

technical challenges related to the biophysical status of infected plants,

organ of the plant assessed, sensing technology, data processing, and

modeling approaches is essential for the effective application of HS in

vivo crop disease diagnosis (Mahlein et al., 2018). Addressing these

challenges is crucial for real-time monitoring of disease progression.

The most used sensing devices for plant disease detection are non-

imaging (e.g., point-of-measurement, POM) and imaging sensors. In

POM sensing, light usually enters the leaf, and undergoes internal

reflections conditioned by tissue structures and composition status.

Thus, this technique can indirectly infer certain internal tissue

characteristics affected by the host-pathogen interaction. POM

sensors are typically designed to measure specific parameters without

being significantly affected by factors like lighting conditions or surface

textures. This reduces the potential for external interference and

ensures more accurate and consistent measurements. This allied with

their higher spectral resolution, cost-effectiveness, compactness, and

reduced data processing requirements, makes them an attractive option

for plant studies (Martins et al., 2022).

Spectral information provided by HS is extremely valuable,

nonetheless, in biological tissues, it is super-imposed in the

recorded spectra at different scales of interference (Barroso et al.,

2022; Tosin et al., 2022). Moreover, HS data can present substantial

amounts of redundant information in contiguous wavelengths, and

just some specific spectral features might be relevant to predict and

classify diseased tissues (Caicedo et al., 2014; Rivera et al., 2014).

Applied predictive classification modeling strategies can be

developed to study spectral data and extract useful information.

Diverse approaches of data correction and pre-processing (e.g., data

scaling and normalization) can be computed to reduce undesired

spectral effects, such as ‘noise’ and scattering effects. Additionally,

modeling strategies, as well as feature selection (FS), feature

extraction and dimensionality reduction techniques (DR), can be

useful for determining the wavelength features which have more

influence in disease discrimination (Mahlein et al., 2010; Ahmadi

et al., 2017). In plant disease research, different predictive

approaches using HS data have been explored to classify tissues

affected by biotic stress, considering all the spectral features or only

specific variables, designated by FS or DR techniques (Gold et al.,

2020b; Meng et al., 2020). Nevertheless, there is a lack of

standardized protocols for acquiring hyperspectral data from

tomato leaves. Different studies employ various acquisition setups,

lighting conditions, and preprocessing techniques, making

comparing and integrating findings challenging.
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This work addresses the main technological challenges for

efficiently applying hyperspectral technologies in phenotyping to

diagnose plant diseases. Conducting analysis for healthy and

bacterial inoculated plants over time, this study aims i) to compare

visual phenotyping against spectral phenotyping based on the

hyperspectral point-of-measurement (HS-POM) for healthy and

diseased tomato leaflets, ii) to evaluate the HS-POM ability to

accurately classify samples at various stages of disease development,

including those without any visible symptoms and iii) distinguish the

etiological agents of distinct tomato bacterial diseases. The specific

goals include developing an applied predictive modeling strategy

(combining data pre-processing, dimensionality reduction, and a

supervised machine learning algorithm) for tomato bacterial disease

classification and establishing causal relationships between plant

health status, specific spectra characteristics, and the physiological

changes that occur during infection dynamics to advance theoretical

knowledge and provide a foundation for further research.
2 Materials and methods

2.1 Bacterial inoculation and plant growth

2.1.1 Inoculation on tomato leaflets
Tomato (Solanum lycopersicum L.) plants of the cultivar Cherry

were grown in 200 mL pots containing a commercial potting substrate,

in a walk-in plant growth chamber under controlled conditions (25-27

°C, humidity of approximately 60%, photoperiod of 12/12 h and light

intensity 30W). Plants were divided into three groups of three plants

each (nine plants in total), being a) one group of plants inoculated with

Pseudomonas syringae pv. tomato DC 3000 (Pst) bacteria, b) a second

group of plants inoculated with Xanthomonas euvesicatoria LMG 905

(Xeu) bacteria, and c) a third group of plants was treated with sterile

distilled water only (Control group) (Figure 1). Plants were physically

separated to avoid cross-contamination.

Plants were inoculated in the laboratory, at the growth stage of

5-6 fully expanded leaves, by spraying until they became fully wet,

and run-off occurred. The bacterial suspensions used for these

inoculation assays consisted of 1 x 108 cells/mL. They were

prepared from 48-h-old cultures of Pst grown in KB medium

(peptone, 20.0g; K2HPO4, 1.5g; MgSO4, 1.5g; glycerol, 10 mL;

agar, 15g; distilled water up to 1.0 liter), and of Xeu cultures

grown in YDC medium (yeast extract, 10.0g; dextrose, 20.0g;

CaCO3, 20.0g; agar, 15.0g; distilled water up to 1.0 liter). The

inoculated plants were then covered with transparent polythene

bags for 48 h to increase the relative humidity that fosters bacterial

entry into plant tissues through natural openings such as stomata

(Lamichhane, 2015). Plants were monitored daily for symptom

development for 18 days (Figure 1).

During the inoculation period, to verify if the bacteria cultures

used in these inoculation tests were viable, 20 mL of Pst solution and

20 mL of Xeu solution were cultured in Petri dishes containing KB

and YDC media, respectively. After 48 h was possible to observe the

bacteria growth in both nutrient media, proving that bacteria were

viable at the moment of inoculation.
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2.1.2 Bacterial isolation from diseased leaflets
After the last spectral measurement, sample preparation for

bacterial isolation was performed for all the leaflets. Leaflets were

excised from plants using a sterile scalpel (Fernandes et al., 2017).

Bacterial isolation was carried out as defined by Fernandes et al.

(2017; 2021). Briefly, each sample of excised leaflet tissue was

disinfected by immersion in 70% ethanol followed by washing

with sterile distilled water (SDW), and then macerated with SDW

in extraction bags. The suspensions obtained, and corresponding

dilutions, were streaked on KB (samples inoculated with Pst

bacteria), and on YDC medium (samples infected with Xeu

pathogen). Characteristic colonies from these two bacteria species

(milky white colonies in the case of Pst, and mucoid yellow colonies

in the case of Xeu) were selected for growth on fresh nutrient agar

medium to ensure purity.

Pst characteristic symptoms resemble small greasy dark stains

(circular or slightly angular), that become brown to black, and

appear randomly on the leaflets (often on the youngest or the ones

located at the edge of the canopy plant). These lesions may typically

show a yellow halo of various sizes. They are about 2–3 mm and can

develop and coalesce (especially in the presence of moisture),

affecting large areas of the leaf, that may later become necrotic

and desiccate (Blancard, 2012). In turn, Xeu characteristic

symptoms comprise small, circle, or slightly angular, translucent,
Frontiers in Plant Science 04
and water-soaked lesions, which turn brown with time. They appear

randomly in leaflets, and eventually become necrotic spots, with

light gray centers and dark margins, which also can become

surrounded by a yellow hallow with time. Smaller lesions can

coalesce into each other forming larger injuries, whose diameter

can range from 2 to 3 mm. In severe cases, tissues in the center of a

lesion become dry and fall out, leading to “shot-hole” symptoms

(Ritchie, 2000; Blancard, 2012).

2.1.3 Colony PCR protocol
A colony PCR was performed to validate the presence of both

bacteria species on tomato leaflets isolates. PST2 (Vieira et al., 2007)

and XV14 (Albuquerque et al., 2012) were the chosen markers, for

Pst and Xeu, respectively, with amplicon lengths of 200, and 713 bp,

correspondingly. A 20 μL PCR reaction mix consisted of 1 ×

DreamTaq Buffer (ThermoFisher Scientific, Waltham, MA, USA),

0.2 mM of each deoxynucleotide triphosphate (dNTP) (Grisp,

Porto, Portugal), 0.2 mM of each forward and reverse primers, 1

U of DreamTaq DNA Polymerase (ThermoFisher Scientific,

Waltham, MA, USA) and 10 μL of DNA isolate solution. Sterile

distilled water was used as the negative control. PCR cycling

parameters were defined as stated by Vieira et al. (2007) for Pst,

and Albuquerque et al. (2012) for Xeu. PCR products were then

separated by electrophoresis on a 0.8% agarose gel (1 × TAE buffer)
FIGURE 1

Experimental setup of the bacterial inoculation assay performed on tomato leaves (A), and visual and spectral assessments (of the 4th, 5th, and 6th

leaves) made in a dark room (B). Spectral measurements were performed on the adaxial side of leaflets, using a spectrometer combined with an
optical fiber bundle with a reflection probe. A white LED was placed beneath each leaflet. Both visual and spectral assessments were made 18 Days
After Inoculation (DAI), collecting leaflets’ spectral signatures and registering modifications in their phenotype (e.g., the appearance of the first
symptoms, both chlorosis and necrosis).
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and visualized using Xpert Green DNA stain (Grisp, Porto,

Portugal) with a Molecular Imager Gel Doc XR+ System (Bio-

Rad, Hercules, CA, USA).
2.2 Spectral measurements in vivo tissue

2.2.1 Experimental setup for plant
spectral acquisition

Figure 1 presents the main procedures for spectral

measurements in the experimental setup. Hyperspectral point-of-

measurements (HS-POM) were collected in vivo from the adaxial

side of healthy and diseased leaflets of the nine tomato plants in the

study, in a dark room. For each plant, spectral assessments were

performed randomly on nine points of different leaflets, belonging

to the 4th, 5th, and 6th expanded leaflets.

Hyperspectral data were acquired using a Hamamatsu

Photonics K.K. TM Series C11697MB spectrometer, which covers

a wavelength range of 200-1100 nm with a spectral resolution of 0.6

nm. A transmission optical fiber bundle (FCR-7UVIR200-2-45-BX,

Avantes, Eerbeek, The Netherlands) with a range of 200-2500 nm

was used along with a stainless-steel slitted reflection probe that was

positioned 0.5 cm above the sample surface to capture the leaflet’s

spectral signal and direct it to the spectrometer’s entrance lens. A

white LED light was placed underneath the leaflet to provide

uniform illumination to its entire abaxial surface. The spectral

range of the LED emits light from 390 to 800 nm. Therefore, the

LED spectra were used as a reference to the spectral range measured

by the spectrophotometer and to check measurement and light

emission stability (Figure 1B). The hyperspectral data were collected

using specialized evaluation software (SpecEvaluationUSB2.exe,

Hamamatsu Photonics K.K., Japan).

2.2.2 Preprocessing hyperspectral data
The performance of the modeling approach in detecting

bacterial diseases in tomato leaflets was assessed using only the

spectral region of 400 to 800 nm, approximately. This decision was

based on the spectral wavelength range of the light LED source used

(where possible useful information could be retrieved) and due to

the observation of spectral noise near the limits of the equipment’s

spectral range, which could negatively affect the performance of the

classification process. Therefore, a total of 944 features (wavelength)

were used in the development of the prediction modeling (Figure 2).

Preprocessing data was performed following spectra

normalization (Figures 2, 3). This approach aimed to standardize

the data to a common scale, enabling meaningful comparison and

analysis across different scenes or datasets. Additionally, it aims to

decrease spectral signal oscillations, related to measurement

equipment specifications (including devices’ internal noise),

variations in data assessment conditions (comprising differences

in global spectral trend, total energy, high-frequency noise, and/or

local background) (Randolph, 2006), associated to changes in

environmental conditions or induced by the operator in the

moment of assessment (e.g. variations in sample-sensor distance,

uneven illumination conditions, choice of leaflets sample point

location, appropriate scan parameters, spectral calibration, among
Frontiers in Plant Science 05
others). This results in model abilities improvement by aiding in

class separation (Randolph, 2006; Guezenoc et al., 2019).

Furthermore, this process enables the elimination of the spectral

response of both the sensor and light source, making possible the

transfer of the acquired classifier to a different sensing

device. Spectral data retrieved from measurements in tomato

leaflets S(ln)rawm were normalized through their division by the

white LED source spectral signature S(ln)reference (considering

the time of exposure of the spectral measurements), through the

computation of the following forming (Equation 1):

S(ln)
normalized
m = S(ln)

raw
m =S(ln)

reference (1)
2.3 Modeling leaflets symptomatology
over time

2.3.1 Data set structure
Seeking bacterial tomato disease classification, spectral

signatures from leaflets were then grouped to perform an applied

predictive modeling approach related to the plants’ experimental

condition. Leaflets were classified according to the plant treatment

group and their health status, including the classes: i) healthy,

including all the measurements which were performed before

bacteria inoculation, and the remaining assessments that were

made in non-inoculated plants considered as control plants; ii)

non-symptomatic Pst; iii) non-symptomatic Xeu; iv) symptomatic

Pst; and v) symptomatic Xeu. All the spectral data collected from

tomato leaflets on different dates were unified in a single

classification model (Figures 1, 2).

Data classification was, thus, performed seeking the unraveling

of spectral phenotyping differences between i) healthy and non-

symptomatic diseased tissues (early diagnosis), ii) healthy and

diseased tissues (showing visual modifications due to changes in

chemical and structural composition), ii) healthy and diseased

tissues affected by different bacterial etiological agents (which

present distinct host-pathogen specific interactions), iii) and

diseased tissues infected by different bacteria species (responsible

for causing similar visual symptoms but showing different

pathogenic dynamics).
2.3.2 Dimensionality reduction of spectral data
Multi-scale interference in plants ’ tissue promotes

super imposi t ion on hyperspectra l data , resul t ing in

autocorrelations in their spectral signal at several scales (Martins

et al., 2022). To mitigate the effects of high dimensional, redundant

information, several methodologies have been cited in the state-of-

the-art, including dimensionality reduction (DR) approaches

(Lapajne et al., 2022; Reis-Pereira et al., 2022). DR techniques are

a class of predictor transformations. They can reduce data by

creating a minor set of predictors that aim to retain most of the

information contained in the original variables. Usually, these

approaches generate new predictors which are functions of the

original ones (signal extraction or feature extraction techniques)

(Kuhn and Johnson, 2013).
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This study examined a DR approach called Linear Discriminant

Analysis (LDA), generally computed as a pre-processing. It is a

supervised learning algorithm used for classification tasks. LDA is

usually applied as a feature extraction technique, performed to

reduce the dimensionality of the data while maximizing the class

separability. It projects the high-dimensional data onto a lower-

dimensional space while preserving the discriminative information

between classes. In brief, data is projected onto a linear subspace

that maximizes the ratio of between-class variance to within-class

variance. Thus, the projected data points are as far apart as possible

in the new space, while the points belonging to the same class are as

close as possible. Therefore, LDA contributes to reducing the

problem’s computational complexity and avoiding overfitting. It

can also be useful for visualizing the data in a lower-dimensional

space, helping interpret patterns in data (Tharwat et al., 2017).

Furthermore, this technique was applied since our dataset is not

linearly separable, and LDA can organize it in another space with

the maximum possible linear separability (Sachin, 2015).
Frontiers in Plant Science 06
LDA feature space loadings (also called coefficients or weights)

were additionally used to infer the most relevant wavelength

variables, through the computation of the interquartile range

(IQR) for the weights. A threshold at 1.5 times the IQR beyond

the upper quartile was established. This process aimed to increase

sensitivity to the weight distribution, enabling the capture of

outliers and extreme values. An applied predictive classification

model was later computed to help deal with the non-linearity of

the data.

2.3.3 Machine learning classification model
A Support Vector Machines (SVMs) algorithm was chosen to

integrate this modeling strategy. This supervised machine learning

algorithm performs classification based on the concept of optimal

separating hyperplane (Vapnik, 1999; Mosavi et al., 2021). SVMs are

nonlinear approaches that discover the most extensive margin between

two classes in feature space. These approaches aim to decrease the error

test and model complexity (Ballabio and Sterlacchini, 2012).
FIGURE 2

Conceptual diagram for the applied predictive modeling approaches of bacterial tomato leaflet disease.
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SVMs can present distinct hyperparameters and kernel forms, which

convert raw data inputs from the original user space into kernel space

through a user-defined feature map (Patle and Chouhan, 2013; Ding

et al., 2021). This study used a radial basis function (RBF) kernel was

used since it allows SVMs to capture non-linear relationships between

input features and target variables. It may also allocate distinct weights

to different points since they learn the decision surface according to the

relative importance of the data points in the training set (being well-

suited for handling outliers and noisy data) (Xulei et al., 2005).

Moredetailed information about the SVM algorithm, including

relevant principles and calculation formulas, can be found in

Ballabio and Sterlacchini (2012) and in Chang and Lin (2011). The

parameters of the SVM applied corresponded to the default values of

the algorithm implemented in the ‘Scikit-learn’ machine

learning library (Pedregosa et al., 2011), which also can be found

in Table 1.

0The datasets were divided into training data (70% of random

observations) and validation data (30% of the remaining

observations) (Kuhn and Johnson, 2013), following a holdout

method (Lantz, 2019). The training and validation sets combined

the pairs of concurrent measurements of the group and health

status and the corresponding values of the predicting variables.

A resampling strategy was performed as stated in Reis-Pereira et al.
Frontiers in Plant Science 07
(2022) to reduce the possibility of overfitting (Berrar, 2019;

Valier, 2020).

2.3.4 Model performance evaluation
Different metrics were additionally retrieved to investigate

model performance, namely the Confusion Matrix (CM),

accuracy score (Equation 2), and F1-Score (Equation 3) whose

description is detailed in Reis-Pereira et al. (2022). Furthermore,

precision (the fraction of correct positive predictions out of all

positive predictions, Equation 4) and recall (fraction of correct

positive predictions out of all observed positive samples, Equation

5) were also computed using the following formula, where true

positive, false positive, false negative, and true negative values are

denoted by TP, FP, FN, and TN, respectively:

Accuracy =
TP + TN

TP + TN + FN + FP
(2)

F1   score =
2 ∗TP

2 ∗TP + FP + FN
(3)

Precision =
TP

TP + FP
(4)
B

A

FIGURE 3

Original (raw, A) and normalized (B) hyperspectral signatures assessed in tomato leaflets during the experimental assay.
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Recall =
TP

TP + FN
(5)

All the computational analyses were performed in the Jupyter

Notebook software using the libraries ‘Matplotlib’ (Ari and

Ustazhanov, 2014), ‘numpy’, ‘pandas’ (Betancourt et al., 2019),

and ‘Scikit-learn’ (Pedregosa et al., 2011).
3 Results

3.1 Observational-based phenotyping of
leaflets symptomatology over time

3.1.1 PCR validation
Tomato plants were inoculated with Pst and Xeu bacteria,

respectively. After spectral analysis, leaf samples from each

treatment were tested for the presence of these bacteria. Proper

controls from samples known to be positive and negative for Pst

and Xeu bacteria were included to confirm the assay results. After

the colony PCR reaction, the amplified products were separated by

agarose gel electrophoresis and visualized under UV light. The PCR

results showed bacteria-specific bands for each bacteria species,

namely a 200-base pair (bp) fragment of Pst, and a 713 bp fragment

for Xeu, indicating that Pst and Xeu bacteria were present in each

inoculation treatment group. No PCR amplification was observed

from samples collected from healthy leaves.
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3.1.2 Visual and hyperspectral phenotyping
Tomato plants infected with Pst bacteria showed the first visual

typical chlorotic symptoms mostly between four and five days after

infection (DAI). These spots evolved into necrotic lesions at six to

seven DAI. In turn, chlorotic lesions in samples inoculated with Xeu

mainly developed among twelve to fifteen DAI, only evolving to the

necrotic stage at seventeen to eighteen DAI. Pst-infected plants died

12 DAI (Figure 4).

Table 2 presents the dataset structure used, composed of 3478

spectral point measurements, from which 1377 (39.6%)

observations correspond to the healthy class. Of these, 1215

(34.9%) assessments belonged to Control leaflets, 81 to

measurements performed on Pst leaflets before bacteria

inoculation, and 81 to captures made on Xeu leaflets also before

bacterial infection. Spectral records performed before symptom

appearance reached the value of 844 (24.3%), where 101 (2.9%)

measurements belonged to non-symptomatic leaflets inoculated

with Pst, and 743 (21.4%) to leaflets inoculated with Xeu bacteria.

Lastly, after symptom development, 1257 (36.1%) spectra were

captured (866 – 24.90% – from symptomatic Pst leaflets, and 391

– 11.24% – from Xeu symptomatic tissue). Class imbalance is

observed due to the disease infection process’s dynamic, resulting

in symptoms appearing throughout the measurements dates at

different rates (Table 1). Spectral assessments were performed

during 18 DAI for Control and Xeu leaflets. For Pst, the process

was only made until 15 DAI because the plants presented high-
FIGURE 4

Observational-based phenotyping of leaflet symptomatology over time. Spectral measurements were performed before bacteria inoculation (Day 0),
until day 15 (Pseudomonas syringae pv. tomato diseased leaflets), and 18 days after infection (Control and Xanthomonas euvesicatoria diseased
leaflets). In the last measurement date, tomato leaflets were detached from each diseased plant and isolated in different bags for later performing
the bacteria isolation assay.
TABLE 1 Default parameters of the SVM algorithm of ‘Scikit-learn’ library used in this study.

Parameter Value Parameter Value Parameter Value Parameter Value

C 1.0 Probability False Verbose False Break ties False

Kernel rbf Shrinking True Cache size 200 Tolerance 1e-3

Gamma ‘scale’
1/(n_features *X.var())

Class weight None Decision function shape One-vs-rest (ovr) Random state None

Max iteration -1
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TABLE 2 Spectral data characterization of the measurements randomly performed on tomato leaflets (healthy, diseased with Pseudomonas syringae
pv. tomato – Pst –, and diseased with Xanthomonas euvesicatoria – Xeu), showing the number of assessments made by class and date.

Days after
Infection (DAI)

Non-inoculated Inoculated classes

Non-symptomatic Symptomatic

Xeu Pst Xeu Pst

0 243* 0 0 0 0

3 81 81 81 0 0

4 81 81 17 0 64

5 81 81 3 0 78

6 81 81 0 0 81

7 81 81 0 0 81

8 81 81 0 0 81

10 81 71 0 10 80

11 81 63 0 18 80

12 81 33 0 48 80

13 81 28 0 53 81

14 81 28 0 53 79

15 81 34 0 47 81

17 81 0 – 81 –

18 81 0 – 81 –

Total
(n=3478)

1377 743 101 391 866

39.6% 21.4% 2.9% 11.2% 24.9%
F
rontiers in Plant Science
 09
* Including all plants. After day 0, only Control plants belong to this class.
Bold values correspond to the total number of assessments.
B C
A

FIGURE 5

Mean normalized spectra of healthy, non-symptomatic, and symptomatic leaflet measurements for the first ten measurements performed (12 DAI,
A). Healthy and non-symptomatic infected leaflets presented equal visual phenotype (B). With infection evolution over time, chlorotic symptoms
started to appear and later turned into necrotic lesions (C).
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stress levels, and leaf dehydration after this date, interfering with the

spectral signal recording (Figure 1; Table 1).

Hyperspectral signatures captured in healthy leaflets showed

the typical spectral behavior of healthy green tissues. On the other

hand, spectral assessments belonging to disease leaflets (both with

Pst and Xeu bacteria) presented deviations in their format

(Figure 5). Thus, a more detailed analysis was performed for

these measurements to evaluate the spectral modifications caused

by the different bacteria, resulting in a higher number of classes in

the study. Spectra signatures belonging to Pst inoculated samples

had a more distinct spectral curve (for both, non-symptomatic and

symptomatic stages) compared to the healthy measurements,

showing higher intensity on the wavelength ranges of

approximately 430 to 520 nm, and 560 to 680 nm. Nevertheless,

the lower intensity was captured from 710 to 800 nm (Figures 6A,

B). Xeu-inoculated tissues also displayed modification in their

spectral signature in these regions. The intensity measured in the

first two spectral intervals was marginally higher than the one

captured on healthy leaflets. However, a more evident variance was

observed in the 710 to 780 nm range (Figures 6A, C). When

measurements belonging to disease samples were compared, the

data showed differences between the samples infected with the
Frontiers in Plant Science 10
different etiological agents. Pst measurements (for both non- and

symptomatic stages) demonstrated greater intensity in the ranges of

430 to 520 nm, and 560 to 680 nm, but lower intensity in the 710 to

800 nm interval (Figures 6A, D).
3.2 Hyperspectral sensing-based
phenotyping of leaflets symptomatology
over time

3.2.1 Reducing the spectral
dataset dimensionality

A Linear Discriminant Analysis (LDA) was performed to

reduce the dimensionality of the normalized dataset, organizing

the spectral observations in a new space as the maximum linear

separability possible. LDA results were plotted and showed spectral

separability between the different classes studied (Figure 7A). It was

possible to see an evolution pattern through LD 1 for spectral data

belonging to healthy, and Pst diseased leaflets regardless of whether

they exhibit symptoms or not (Figures 7A, B). In turn, healthy and

Xeu-diseased leaflets (including, non- and symptomatic data)

presented a spectral separation gradient through LD2
B

C D

A

FIGURE 6

Mean normalized spectra for all classes in study (i.e., healthy, non-symptomatic, and symptomatic Pseudomonas syringae pv. tomato – Pst – leaflet
measurements, and non-symptomatic Xanthomonas euvesicatoria – Xeu – assessments) for the first ten measurements performed (12 DAI, A).
Different behaviours of healthy samples compared to Pst (B), and Xeu (C) diseased leaflets are shown, as well as, between non-symptomatic and
symptomatic diseased leaflets (D).
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(Figures 7A, C). When data of diseased leaflets infected with distinct

bacteria were compared, it was possible to observe a divergence

gradient between the LD1 and LD2, especially at the symptomatic

stage (Figures 7A, D). Since data presented a non-linear

characteristic, overlapping between classes was observed. Thus,

these findings demonstrated the efficacy of the LDA technique for

reducing the dataset dimensionality to the most important features.

LDA’s DR results were, then, applied in the following steps of the

modeling process helping in the classification task and

avoiding overfitting.

The most relevant wavelength variables for LD1 were assessed

based on their coefficients, equaling 44 features. These variables

were mostly located in the blue-green and red VIS regions of the

electromagnetic spectrum (blue - 434.9, 435.72, 438.17, 438.58,
Frontiers in Plant Science 11
440.21, 441.44, 442.67, 443.08, 445.53, 445.94, 448.4, 448.81, 494.6

nm; green - 503.74, 508.74, 527.53 nm; red - 556.09, 562.0, 562.84,

590.37, 607.82, 609.1, 611.24, 618.5, 643.36, 650.24, 673.97, 680.02

nm), coinciding with the wavelength absorption range of

chlorophylls (430 to 480 nm, and 640 to 700 nm), and

carotenoids pigments, namely b-carotenes (whose primary and

secondary absorption peaks are respectively located at 450 to 480

nm, and 600 to 650), and xanthophylls (520 to 580 nm) (Figure 8).

This coincides with the action of Pst and Xeu bacteria on tomato

leaves ’ levels of photosynthetic pigments during the

infection process.

Other plants whose metabolites are affected by these two

bacteria also have their absorption spectrum coinciding with the

selected wavelengths of LD1, namely some phenolic compounds
B

C D

A

FIGURE 7

Scatter plots of the outcomes of the application of Linear Discriminant Analysis on the normalized data, for Linear Discriminant 1 (LD1) and Linear
Discriminant 2 (LD2), when were used all the classes in study (A), only healthy and Pseudomonas syringae pv. tomato infected samples (B), just
healthy and Xanthomonas euvesicatoria diseased leaflets (C), and only diseased symptomatic samples (D).
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(e.g., flavonoids, 400 to 500 nm), and composts derived from

chlorophylls decomposition, namely pheophytins (400 to 500 nm,

and 600 to 700 nm) (Figure 8).

Applied predictive classification modeling was, then, performed

using the LDA-reduced normalized data (including all classes: i)

healthy; ii) non-symptomatic diseased Pst leaflets; iii) non-

symptomatic Xeu samples; iv) symptomatic inoculated Pst tissues;

v) symptomatic Xeu observations) and an SVM algorithm with a

Radial Basis Function (RBF) kernel. The model was trained using

70% (2434) of the spectral observations (randomly selected), and

then, it was validated using the remaining 30% (1044) of the

observations (test set), and the complete dataset. The test set

comprised 413 healthy samples, 30 non-symptomatic Pst disease

leaflets, 223 non-symptomatic Xeu, 260 symptomatic Pst

observations, and 118 symptomatic Xeu.
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The developed model performed well for both the test set and

the complete dataset. The model achieved an accuracy of 0.85 for

the test set and 0.86 for the complete dataset, indicating that it can

correctly classify most of the measurements (Table 3; Figure 9).

Furthermore, it demonstrated high metric values (precision, recall,

and F1-score) for all the classes, indicating that it can identify both

healthy and infected measurements. In detail, higher precision,

recall, and F1-score values were found for the healthy and non-

symptomatic Pst leaflets measurements (Table 3). This shows that

the model more easily predicted spectral assessments belonging to

these classes. Nevertheless, it showed more difficulties in classifying

measurements of Xeu inoculated leaflets, especially those captured

before symptom appearance (indicated by lower metric scores). It is

important to note that the model’s performance was consistent

across both the test set and the complete dataset, indicating that the
TABLE 3 Performance metrics for the classification SVMs-based model using all the data (train and test set – All), only the train set (Trn) and only the
test set (Test).

Class of leaflets
status

Precision Recall F1-score Accuracy

Trn All Test Trn All Test Trn All Test Trn All Test

Healthy 0.86 0.85 0.84 0.89 0.89 0.88 0.88 0.87 0.86 0.89 0.85 0.88

N Sym. Pst 0.97 0.96 0.94 0.86 0.90 1.00 0.91 0.93 0.97 0.86 0.90 1.00

N Sym. Xeu 0.78 0.78 0.77 0.74 0.74 0.74 0.76 0.76 0.75 0.74 0.74 0.74

Sym. Pst 0.94 0.94 0.94 0.95 0.94 0.93 0.95 0.94 0.93 0.95 0.94 0.93

Sym. Xeu 0.83 0.83 0.83 0.80 0.79 0.77 0.81 0.81 0.80 0.79 0.79 0.77

Weighted
Avg ± s.d

0.86±
0.07

0.86 ±
0.07

0.85±
0.07

0.86±
0.07

0.86 ±
0.08

0.85±
0.10

0.86±
0.07

0.86 ±
0.07

0.85 ±
0.08

0.86 ±
0.07

0.86 ±
0.08

0.85 ±
0.10
fron
SVMs, Support Vector Machines; Trn, Train; N Symp., Non- symptomatic; Sym., Symptomatic; Avg., Average; s.d., standard deviation.
FIGURE 8

Absolute values of the coefficients results of Linear Discriminant Analysis for Linear Discriminant 1. Forty-four spectral wavelengths were identified as
relevant when variable weights were computed. These variables coincided with the absorption spectra of different photosynthetic pigments, namely
chlorophylls (Chl, highlighted in green for chlorophyll), and carotenoids (b-carotenes, b-car, highlighted in yellow; and xanthophyll’s, Xan, highlighted
in orange).
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model is robust and can be used to classify new spectral

samples accurately.

Model predictions for the non-symptomatic Pst class did not

present any misclassification in the test set. In the complete dataset,

the model accurately predicted 96% of the spectral measurements but

missed 1% of the predictions, which it classified as assessments made

on non-symptomatic leaflets infected by Xeu (Figure 9). Symptomatic

spectral captures performed in Pst diseased leaflets were correctly

categorized in 94% of the cases for both the test and complete sets.

Nevertheless, the model mistakenly classified these assessments as

non-symptomatic Xeu observations in 4% and 3% of the cases, and as

healthy samples in 2% when the test set and complete dataset were

used, respectively. Predictions of Xeu spectral assessments were more

challenging to the model, presenting a higher number of wrong

classifications in the non-symptomatic class than in the remaining

classes studied. In fact, the model successfully classified 77% of the

measurements of this class in the test set, and 78% when all data was

used. However, it attributed 11% and 10% of the measurements as

healthy, 5% and 8% as symptomatic diseased Xeu leaflets

assessments, 3% as non-symptomatic inoculated Pst observations,

and 2% as symptomatic Pst captures, when the test set and complete

dataset were used, respectively. The model showed more efficacy in

identifying symptomatic Xeu leaflets measurements, predicting 83%

of these samples in the test and complete datasets. In terms of missed

classifications, it predicted 6% and 5% of the assessments as non-

symptomatic, 3% and 2% as healthy, 3% and 1% as non-symptomatic

spectral captures of Pst infected leaflets, and 1% and 2% as

symptomatic Pst, in the test set and complete dataset, respectively

(Figures 9A, B).

For the complete dataset prediction, we investigated the number

of misclassifications per class and date (Figure 10). As expected, the

observed tendency for healthy spectral assessments showed a

regular number of observations per date (81). Nonetheless, the

developed model categorized more samples than the true value per

date, except for 7, 13, 17, and 18 DAI. On the other hand, the

spectral model consistently underfit the infected Xeu leaflets,

regardless of whether they exhibit symptoms or not (Figure 10A).
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In plants inoculated with Xeu, discrepancies between observed

and predicted classes are more evident in the non-symptomatic Xeu

class in the observations recorded up to 10 days after infection.

During this period, which included seven measurement dates of the

non-symptomatic Xeu class, 53 observations were recorded below

the predicted value of the developed model. In contrast, the healthy

class accumulated 47 observations above the predicted value during

the same period. Furthermore, according to the confusion matrix

results (All data), 10% (148) of the non-symptomatic Xeu

observations were misclassified as healthy. Considering the period

up to 10 days after infection (data not shown), out of the 150

observations wrongly classified as healthy, 100 were from the non-

symptomatic Xeu class. These results indicate that in the early

stages of Xeu-induced disease infection, the symptoms developed in

the plant leaflets are not strong enough for the developed model to

distinguish them from healthy observations efficiently. Therefore,

the non-symptomatic Xeu class, compared to other tested classes,

exhibits the lowest model performance indicators (all data: accuracy

0.74, precision 0.78, recall 0.74, and F1-score 0.76). For the non-

symptomatic stage, the actual observations presented a stable

pattern until 8 DAI, and after a sharp drop was observed until 13

DAI, where the rate of infected leaflets increased up to 65%. A stable

number of observations was maintained until 15 DAI, after which a

period of exponential increase in observed symptomatic spectral

measurements was registered. After this day, all leaflets were

symptomatic. The model was rigorous in discriminating non-

symptomatic Xeu leaflet measurements after 9/10 DAI, presenting

a percentage of error inferior to 10% (correctly classifying 64 of the

71 observations) when about 90% of the sampled leaflets (71 of

the initial 81 assessments) still didn’t show any typical symptoms of

the disease (Figure 10B).

For the prediction of the Pst disease samples, the non-

symptomatic phase was very similar for both observed and

predicted. Nevertheless, the prediction of the symptomatic phase

showed irregularities between the five and seven days

(corresponding to the dates were necrosis appeared). Is possible

to observe that most of the Pst inoculated leaflets (79%) started to
BA

FIGURE 9

Confusion Matrix of the percentage of predicted samples for each class (column) that were correctly classified for each true class (row), for the
complete (A) and test (B) sets. (N Symp., Non-symptomatic; Sym., Symptomatic).
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show the first symptoms of the disease 4 DAI. The number of

symptomatic sampled leaflets increased until 6 DAI, where all the

leaflets assessed were symptomatic (Figure 10C).
4 Discussion

Plant infectious diseases are critical in agriculture and food

security, impacting crop yields and quality. Understanding and
Frontiers in Plant Science 14
effectively managing them is crucial for more sustainable

agriculture, based on more preventive measures and early diagnosis.

The suitability of spectral phenotyping based on hyperspectral

spectroscopy point-of-measurement (HS-POM) for diagnosing

bacterial infectious diseases in tomato plants, namely bacterial

speck and spot, was evaluated. In this approach, light penetrates

the leaflet tissue and undergoes internal reflections, before

ultimately being redirected to the spectrometer via a central fiber

optics pinhole. This method ensures that all light reaching the
B

C

A

FIGURE 10

Number of observed and predicted samples by date of measurement for healthy (A), Xanthomonas euvesicatoria diseased (B), and Pseudomonas
syringae pv. tomato diseased (C) leaflets’ assessments.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1242201
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Reis Pereira et al. 10.3389/fpls.2023.1242201
sensor interacts with the leaf tissues, thereby maximizing the

spectral information from all internal tissues, including any

changes caused by the interaction between the host and bacteria.

An applied predictive model integrating an SVM algorithm

showed the capacity to accurately classify healthy and diseased

tomato leaflets at various stages of disease development (specifically

healthy, non-symptomatic diseased Pst, non-symptomatic disease

Xeu, symptomatic Pst, and symptomatic Xeu). Even before

symptom appearance, it showed a classification accuracy of 74%

for Xeu and 100% for Pst diseased leaflets measurements, and a

weighted average accuracy, precision, recall, and F1-score of

85%.This model was, thus, capable of categorizing healthy, disease

(both non-symptomatic and symptomatic), and disease leaflet

tissues infected with distinct bacteria species (both before and

after symptom appearance), being coherent with visual

phenotyping and PCR results. These outcomes, thus, demonstrate

the suitability of this technique for performing an early disease

assessment and class distinction (according to the phytosanitary

health status, and type of pathogen responsible for the infection).

This is extremely valuable since crops in the field are generally

exposed to variable environmental and phytosanitary conditions

and vulnerable to different types of abiotic and biotic stresses

(which may cause similar visual lesions, difficult to distinguish by

the naked eye). Also, bacterial spot and speck of tomato can develop

in 6 to 14 days, depending on several factors (e.g., environmental

conditions, pathogen strain, infection severity, inoculum

concentration, and the susceptibility of the plants’ variety) (Horst,

2013; Borkar and Yumlembam, 2016), and their spread among

several plants in a production field is not immediate and may take

time to occur. Thus, early diagnosis is crucial to prevent disease

spread, promote preventive treatments, and lead to environmentally

friendly practices, promoting precision agriculture principles.

LDA computation revealed spectral divergence between the

different classes in study through LD1 and LD2 and uncovered

relevant wavelengths for diagnosing the diseases caused by

Pseudomonas syringae pv. tomato (Pst), and Xanthomonas

euvesicatoria (Xeu). These were mostly located in the blue-green

and red visible regions of the electromagnetic spectrum,

corresponding to chlorophyll (mainly: 430 to 480 nm, and 640 to

700 nm) and carotenoid pigments’ absorption spectra (i.e., 450 to

480 nm, 520 to 580 nm, and 600 to 650 nm), indicating

modifications in the photosynthetic pigment’s levels throughout

the infection process. These findings are aligned with the impact of

both bacteria species on host leaves’ pigments values during

infection, which start prior to symptoms appearance and became

more pronounced with the formation of chlorotic and necrotic

lesions. In this medium/late stages of infection, the breakdown of

chlorophyll, in particular, can result in a subsequent accumulation

of pheophytins (brown pigments, whose maximum absorption peak

is located at 660-670 nm, and secondary peak around 430-450 nm),

which also affect plant spectral behavior (Bhandari et al., 2015).

Also, spectral divergences in the 700 to 800 nm range may indicate

that structural components of leaves are affected during the

infection process, resulting in the degradation of leaf structures

along disease development. Spectral divergence between diseased

leaves infected by different bacteria may be related to the production
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of specific molecules by each pathogen, which may affect the host

spectral signature. As an example, Pst produces a phytotoxin called

coronatine which alters chlorophyll fluorescence (by modifying the

photosystem II – PSII) and can affect the absorption and scattering

of light by plant tissues, leading to modifications in the spectra

(Zhang et al., 2021). In turn, the host plant can activate different

defense responses when in contact with distinct pathogens,

triggering a series of biochemical and molecular responses, which

also promote spectral modifications in the visible wavelength

ranges. An example are phytoalexins (e.g., flavonoids), whose

production was hypothesized to be related to increased plants’

spectral reflectance in the VIS range (Leucker et al., 2016).

Hence, the present research findings demonstrate that HS-POM

holds promise as an effective, fast, and cost-effective overtime

method for early diagnosis of two bacterial infections caused by

distinct pathogen species in vivo tomato plants, and for unraveling

specific host-pathogen spectral dynamics. In the future, it is

advisable to conduct further analysis, entailing the expansion of

the dataset under study, test various values for SVM algorithm

parameters, and enhance the modeling algorithms, among other

potential approaches. This study corroborates previous research

performed by our team using HS-POM for the early detection of

bacterial tomato spot caused by Xeu bacteria. The spectral response

properties of disease tomato leaves presented a divergent behavior

when compared to healthy tissues, even before symptom

appearance. This tendency was more evident in the absorption

regions of photosynthetic pigments (namely, chlorophyll). A

Principal Component Analysis (PCA) allowed the identification

of relevant discriminative wavelengths at approximately 454-654

nm (Reis-Pereira et al., 2021), coinciding with the wavelengths

identified by the LDA approach.

Other studies also demonstrated the potential of hyperspectral data

and SVM-based classification modeling for disease diagnosis,

presenting similar model evaluation metrics. As an example, Cen

et al. (2022) studied the possibility of early detection of bacterial wilt

in tomato by applying a portable hyperspectral spectrometer. Their

model combined Genetic Algorithms and SVM and achieved overall

accuracies (OA) of 90.7% in the distinction of healthy and symptomatic

tissues. Tomaszewski et al. (2023) also demonstrated the suitability of

hyperspectral measurements and machine learning for the early

detection of anthracnose, bacterial speck, early blight, late blight, and

septoria leaf, using a temporally-aggregated approach. When all the

data were analyzed, the researchers found that the best-quality

classification approach (integrating a Ridge classifier) presented an

F1 score ranging from 0.71 to 0.95 (0.84 average) for the period of the

first two weeks from inoculation. Despite being possible to find

research diagnosing different types of biotic stress agents in the same

assay, they are usually more related to fungi identification. Scarce

results can be retrieved for studies comparing the assessment of

diseases caused by different types of bacterial species.

Besides tomato crop studies, hyperspectral measurements were

also valuable to achieve disease diagnosis in several plant species

with agronomic interest. For instance, Rumpf et al. (2010) studied

the suitability of hyperspectral reflectance, SVM, and vegetation

indexes (VIs) for detect and classify diseases on sugar beet leaves

(namely, Cercospora leaf spot, leaf rust, and powdery mildew).
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Early differentiation between healthy and inoculated plants, as well

as among specific diseases was achieved using SVM, registering

accuracy values ranging from 65 to 90%. When data belonging to

healthy and diseased leaves (including all the samples affected by the

three different pathogens) was used, the classification model

achieved an accuracy higher than 86%. Furthermore, Tian et al.

(2021) also proved the efficacy of spectroscopy and machine

learning techniques for rice leaf blast infection from non-

symptomatic to mild stages. An approach integrating an SVM

algorithm achieved maximum classification accuracies of over

80% and 83% for the early infection stage of the 2018 and

2019 experiments.

The desirable possibility of applying hyperspectral data for in-

field detection and classification of diseases was also proved. Deng

et al. (2019) also demonstrated the possibility of applying

hyperspectral reflectance in-field detection and classification of

citrus Huanglongbing disease. They developed an SVM learner

which achieved 90.8% accuracy in healthy, asymptomatic, and

symptomatic discrimination. Our team, likewise demonstrated the

capability of using HS to diagnose in situ bacterial canker disease,

caused by another Pseudomonas pathovar, specifically Pseudomonas

syringae pv. actinidiae (also known as Psa). Asymptomatic and

symptomatic leaves were successfully discriminated through the

computation of several modeling approaches involving different

feature selection techniques, as well as multivariate analysis

methods and machine learning algorithms. The best predictive

classification model for discriminating the bacterial kiwi canker

disease showed an overall accuracy of 0.85, with an F1-score (Reis-

Pereira et al., 2022). These findings suggest that hyperspectral data

can be successfully used to predict plant diseases both indoor and

infield conditions, caused by different etiological agents (e.g., fungi,

bacteria, and virus), in both herbaceous and woody crops. Despite

these encouraging findings, it is important to highlight that

comparison between different research can be challenging due to

the pathogens in study (e.g., generally disease detection using HS is

mostly performed for fungal infections), host-pathogen specific

interactions, number of samples used, number of classes analyzed,

moment of disease assessment (before or after symptoms appearance,

in a specific date or overtime), environmental and experimental

conditions on the moment of data acquisition, among others. Thus,

future studies using tomato plants should be performed to evaluate

the efficacy of this approach.

In summary, point-of-measurement Hyperspectral Spectroscopy

devices combined with applied predictive models seem to be suitable

for spectral phenotyping of bacterial-infected tomato leaflets.

Nevertheless, HS-POM approaches as plant disease diagnostic

methods are still in a very initial phase of development, and their

Technology Readiness Levels (TRLs) must be improved.

Standardized protocols for hyperspectral data acquisition should be

developed aiming to uniformize the diagnosis processes and reduce

noise and undesired spectral interferences. Also, more research on

different host-pathogen interactions must be performed.

Classification models developed under controlled conditions can be

highly effective and constitute an important step for improving and

maturing the diagnosis process. In fact, these models usually can

detect symptoms earlier than in field assays (since optimal conditions
Frontiers in Plant Science 16
for bacteria development, dissemination, and infection can be

recreated), making the process faster and specific to the host-

pathogen in study. Hence, the more challenging in-field application

of HS-POM for disease diagnosis, posing additional complexities due

to sensing system configurations (e.g., light source, probe position,

among others), can be established and improved.

Future studies must be conducted to complement these gaps

and validate the application of this technique as a suitable tool for

accurately predicting different host-pathogen interactions and their

impact on the crops’ spectral signature. Further methodological

developments are necessary to address these challenges and

enhance the suitability of HS-POM for real-time disease

monitoring and precision agriculture systems. Moreover,

the implementation of feature selection techniques and

dimensionality reduction approaches can help identify relevant

wavelengths for distinguishing crop diseases, making possible the

development and production of more cost-effective multiband

sensors. These devices can be integrated into different platforms,

enabling spectral data acquisition at different levels, such as leaf,

single-plant, and canopy scales.
5 Conclusion

The present research explored the application of in-vivo POM

hyperspectral spectroscopy combined with applied predictive

modeling to classify bacterial leaf diseases in tomato crop, caused

by Pseudomonas syringea pv. tomato and Xanthomonas

euvesicatoria. Healthy leaves showed a characteristic spectral

signature of green and photosynthetically active vegetation, while

symptomatic leaves presented differences in their spectral signature

in the VIS region. Spectral differentiation between healthy and

diseased leaves was observed, even in the early stages of the

infection process, when diseased samples didn’t present any visual

symptom (asymptomatic stage). Furthermore, plants inoculated

with Pst bacteria also revealed a divergent spectral behavior from

the ones infected with Xeu, indicating that this approach may be

suitable for differentiating the etiological agents. Colony PCR also

validated the effectiveness of the infection process for each sample

group. The developed model revealed a classification accuracy for

the test set of 100% for Pst disease leaflets without any visual

symptom, and of 74% for Xeu disease leaflets also in a non-

symptomatic stage of infection. The developed model achieved a

weighted average accuracy, precision, recall, and F1-score of 85%

for the test set. These findings strength the applicability of applied

predictive classification modeling using HS-POM to early detect

bacterial crop diseases. Nevertheless, complementary, and

additional studies are recommended to unravel the host-pathogen

interactions and their impact on the crop spectral signature. More

economic, multiband devices can be developed hereafter

considering the features selected for crop disease discrimination.

Thus, different agronomic tasks (including mapping, monitoring,

scouting, and treatment of plant diseases) can be performed more

accurately with this methodology, fulfilling the precision agriculture

concept. Spectroscopy sensors can also be mounted on diverse

platforms, creating different functioning measurement systems,
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which can assess spectral data on distinct levels (namely, leaf,

single-plant, and canopy scale).
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