
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Jakub Nalepa,
Silesian University of Technology, Poland

REVIEWED BY

Hitesh Mohapatra,
KIIT University, India
Pushkar Gole,
University of Delhi, India

*CORRESPONDENCE

Sook Yoon

syoon@mokpo.ac.kr

Hyongsuk Kim

hskim@jbnu.ac.kr

RECEIVED 12 June 2023

ACCEPTED 22 September 2023
PUBLISHED 13 October 2023

CITATION

Dong J, Fuentes A, Yoon S, Kim H and
Park DS (2023) An iterative noisy
annotation correction model for
robust plant disease detection.
Front. Plant Sci. 14:1238722.
doi: 10.3389/fpls.2023.1238722

COPYRIGHT

© 2023 Dong, Fuentes, Yoon, Kim and Park.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 13 October 2023

DOI 10.3389/fpls.2023.1238722
An iterative noisy annotation
correction model for robust
plant disease detection

Jiuqing Dong1,2, Alvaro Fuentes1,2, Sook Yoon3*,
Hyongsuk Kim1,2* and Dong Sun Park1,2

1Department of Electronic Engineering, Jeonbuk National University, Jeonju, Republic of Korea,
2Core Research Institute of Intelligent Robots, Jeonbuk National University, Jeonju,
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Previous work on plant disease detection demonstrated that object detectors

generally suffer from degraded training data, and annotations with noise may

cause the training task to fail. Well-annotated datasets are therefore crucial to

build a robust detector. However, a good label set generally requires much

expert knowledge and meticulous work, which is expensive and time-

consuming. This paper aims to learn robust feature representations with

inaccurate bounding boxes, thereby reducing the model requirements for

annotation quality. Specifically, we analyze the distribution of noisy

annotations in the real world. A teacher-student learning paradigm is proposed

to correct inaccurate bounding boxes. The teacher model is used to rectify the

degraded bounding boxes, and the student model extracts more robust feature

representations from the corrected bounding boxes. Furthermore, the method

can be easily generalized to semi-supervised learning paradigms and auto-

labeling techniques. Experimental results show that applying our method to

the Faster-RCNN detector achieves a 26% performance improvement on the

noisy dataset. Besides, our method achieves approximately 75% of the

performance of a fully supervised object detector when 1% of the labels are

available. Overall, this work provides a robust solution to real-world location

noise. It alleviates the challenges posed by noisy data to precision agriculture,

optimizes data labeling technology, and encourages practitioners to further

investigate plant disease detection and intelligent agriculture at a lower cost.

The code will be released at https://github.com/JiuqingDong/TS_OAMIL-for-

Plant-disease-detection.

KEYWORDS

annotation correction, plant disease detection, auto-labeling, noisy labels, teacher-
student model
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1 Introduction

According to the United Nations, the world population reached 8

billion in mid-November 2022 (Pison, 2022). Meanwhile, hunger-

related fatalities rose and reached 4 million in 2020, 10 times the

number of COVID-19 fatalities in the same period (He and Krainer,

2020). Given those antecedents, it is essential to find ways to feed a

growing population while limiting environmental damage and

improving the yield and quality of agricultural products (Smith

et al., 2022). Nonetheless, this endeavor presents a formidable

challenge given the susceptibility of crops to afflictions and

stressors, both of which have the potential to engender detrimental

economic repercussions and reductions in production output.

Consequently, the timely identification of preliminary indications

of disease and stress factors in vegetation assumes paramount

significance in instituting optimal conditions conducive to

crop cultivation.

Recent frontiers in non-invasive sensor technology and image

processing methodologies provide potential remedies for the

aforementioned challenges. Deep learning methods have shown

great success in various tasks, such as plant state monitoring (Xu

et al., 2021a; Bhise et al., 2022; Wang et al., 2022a; Dong et al., 2023;

Shoaib et al., 2023; Tomaszewski et al., 2023), medical diagnosis (Yao

et al., 2022; Nalepa et al., 2023), cell variation (Rahman et al., 2021),

and flora (Evangelisti et al., 2021; Ganesh et al., 2022). These

achievements frequently hinge upon the extraction of visual cues

from images and the provision of precise annotations. Nevertheless,

annotating these domain-specific datasets is not as simple as

identifying cats and dogs. Acquiring an accurately annotated

dataset relies on expert knowledge, which is only sometimes

feasible. Deploying current deep learning-based methods in real-

world applications may suffer primarily from limited and imperfect

data (Xu et al., 2023). In a real scenario, practitioners without

computer vision knowledge lack experience in annotating high-

quality boxes, and annotators without domain knowledge have

difficulties in annotating accurate object boxes. Annotation cost

would be significantly high if domain experts were to annotate the

entire dataset. Embracing these imperfect annotations is a promising

strategy that has not received sufficient attention (Dubel et al., 2023).

We need to consider the practical problem of whether it is worth

spending more on the expert and computational costs to get a better

performance or applying techniques to mitigate these issues.
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We attempt to answer this question in the general case. As

illustrated in previous work (Dong et al., 2022), enhancing

performance through increased computational expenditure is

prevalent in computer vision techniques. For instance, as

observed in (Liu et al., 2022c), the image classification accuracy

on ImageNet only improved by 6%, while the number of parameters

increased from 88 million to 30 billion. Compared to computational

cost, labor cost for annotation is more substantial. Particularly,

researchers refine the label set multiple times just for a weak

improvement in a specific task. Therefore, refinement labeling is

high-cost and low-reward, while spending a considerable cost for a

slight improvement in practical applications is unwise.

Compared to class noise, fully supervised object detector

(FSOD) performance is more susceptible to inaccurate

localization (Dong et al., 2022). Note that FSOD means that each

instance is assigned an accurate label during the training phase.

Moreover, localization noise is almost unavoidable compared to

class noise, because not all researchers can afford such colossal labor

or time costs and organize a professional processing line for

annotation as the COCO team (Lin et al., 2014) has done. As a

result, researchers are often faced with dealing with a noisy label set.

In this study, we address these challenges by considering a method

capable of handling noisy annotations to mitigate their impact. This

allows us to relax the strict annotation standards, which in turn

benefits intelligent agricultural practitioners by reducing the

threshold for their involvement.

Based on the above-mentioned, in this paper, we propose an

annotation correction strategy based on the teacher-student

learning paradigm, which is effective in two training settings. Our

method improves the model’s performance in supervised learning

tasks by correcting for noisy localization noise. While in semi-

supervised learning tasks, it can act as an automatic annotator,

generating accurate pseudo-labels. Figure 1 demonstrates two main

application scenarios of our method.

Regarding the correction of class noise, there are already a few

methods for training accurate Deep Neural Networks (DNNs)

under noisy labels (Li et al., 2020; Mao et al., 2021; Xu et al.,

2021c; Song et al., 2022; Huang et al., 2023; Zhang et al., 2023). A

significant line of research focuses on the classification task, which

develops various techniques to deal with noisy labels, such as

sample selection (Xia et al., 2021), robust regularization

(Gudovskiy et al., 2021; Huang et al., 2023), and robust loss
FIGURE 1

Two application scenarios of our method. In supervised learning, our method can correct noisy locations, while in semi-supervised learning, it can
generate accurate pseudo-labels from unlabeled data. Our method plays different roles in different settings.
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functions (Jiang et al., 2021). In contrast, there are significantly

fewer studies focused on addressing localization noise. Recently,

some efforts have extended the accumulated experience in

classification to object detection tasks, such as class noise

correction (Xu et al., 2021c), missing label correction (Xu et al.,

2019), and noisy localization correction (Liu et al., 2022a).

However, these methods mainly focus on general vision datasets,

such as MS-COCO (Lin et al., 2014), PASCAL VOC (Everingham

et al., 2010), and ImageNet (Deng et al., 2009), rather than domain-

specific datasets. Although, there are a large number of frontier

works in plant disease detection (Fuentes et al., 2018; Nazki et al.,

2020; Fuentes et al., 2021; Xu et al., 2021b; Khakimov et al., 2022;

Priyadharshini and Dolly, 2023), which can achieve 90% or even

higher performance on their respective datasets, these methods

assume in advance that they are trained on well-annotated datasets.

Unlike previous approaches, we emphasize that our model is

trained on noisy annotations.

Our paper further studies the distribution of localization noise

and the noise synthesis rules. Intuitively, the localization of a small

object noise seems more severe than large objects. Based on this

motivation, this paper provides an insightful analysis of the

distribution of location noise and the relationship between noise

distribution and bounding box size. Previous research work

generally synthesized noise by perturbing clean bounding boxes

(Liu et al., 2022a), while synthesized noise follows a uniform

distribution relativenoise ∼U( − r,  r). The r is a parameter to

control the noise level. We argue that such a noise synthesis rule

without considering object size is unreasonable. Unlike (Liu et al.,

2022a), our method is trained on a dataset with real-world noise

and synthesized noise following the real-world distribution.

To build a robust detector, we expect the model learns from

corrected labels rather than noisy labels. Therefore, we introduce an

iterative teacher-student learning framework on the correction

network (Liu et al., 2022a). Teacher-student learning is a learning

paradigm, introduced in knowledge distillation (Gou et al., 2021),

where knowledge is usually distilled from a teacher network to

improve the feature representation of students (Wang et al., 2022b).

Typically, a teacher model is more complicated than a student, but a

simple student network can achieve comparable performance to a

teacher. Unlike most existing teacher-student algorithms (Hu et al.,

2022), teacher and student networks, in this work, hold the same

architecture but different parameters. We train a teacher network

on noisy datasets and the corrected annotations are used as a

supervised signal for the student network. In addition, we found

that labels are still noisy after being corrected by OA-MIL (Liu et al.,

2022a) (refer to the red line in Figure 2). Therefore, a teacher-

student learning paradigm is adopted to correct noisy labels

iteratively. In other words, the performance improvement of the

student model comes from the optimized label set, which can be

regarded as the additional knowledge of the teacher model. Our

method avoids manually refining noisy labels, thereby reducing

annotation costs.

To further reduce annotation costs, semi-supervised and

unsupervised learning algorithms are usually used to learn the

feature representation from unlabeled data. However, unsupervised
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learning is often used to tackle more complex tasks such as domain

adaptation (Liu et al., 2022b) and learning from compression (He

et al., 2022), which requires a large-scale dataset. In addition,

unsupervised learning cannot provide an intuitive category label

like semi-supervised learning, which is not friendly to plant disease

detection. Therefore, semi-supervised learning is more suitable for

handling general plant disease detection tasks. Semi-supervised object

detection tasks aim to train an object detector with many image-level

annotations and a few box-level annotations (Li et al., 2022) and

generate many instance-level pseudo-labels. Suppose the pseudo-

labels generated during the semi-supervised learning process are

regarded as a collection of noisy labels. Our method can naturally

extend to semi-supervised learning tasks, requiring only limited box-

level annotations and no extra image-level annotations. To the best of

our knowledge, this is the first semi-supervised learning method in

plant disease detection, even though it is not explicitly designed for

the semi-supervised learning task.

Overall, our primary contributions can be summarized

as follows:
1. We investigate the distribution of location noise in real-

world plant data annotation and provide insightful

analyses.

2. An annotation correction network based on the iterative

teacher-student learning paradigm is proposed to offset the

impact of noise on model performance by correcting

imprecise labeled boxes.

3. Our method can be easily extended to semi-supervised

learning tasks and automatic labeling. For instance, we

achieve approximately 75% of the performance of fully

supervised learning methods using only 1% of accurate

labels.

4. Our approach lowers the labeling quality requirements for

practitioners, by improving the robustness of the model to

localization noise. Additionally, it is anticipated to advance

applications related to location-based tasks.
FIGURE 2

Distributions of relative boundary coordinate errors for noisy
annotations and our corrected ones.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1238722
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Dong et al. 10.3389/fpls.2023.1238722
The remaining sections of the paper are organized as follows.

Section 2 introduces the dataset used for noise analysis, the results

of the noise analysis, and the correction methods. Section 3 presents

the experimental results, including the correction results,

experimental results in the semi-supervised setting, and ablation

experiments. Section 4 discusses relevant topics, limitations, and

future work. Section 5 provides a conclusion for the paper. We have

included all qualitative results of the experiments in the appendix,

denoted as Figure A in the main text, where A represents

the appendix.
2 Materials and methods

2.1 Datasets

The paprika disease dataset (Dong et al., 2022) was used to

evaluate our methods. As previously noted, researchers often

engage in iterative model optimization and label set refinement

throughout the task processing to enhance the ultimate

performance. Indeed, the dataset in (Dong et al., 2022) was

refined through multiple mutual verifications between plant

experts and artificial intelligence experts to achieve a well-

annotated dataset finally. Therefore, based on the assumption that

the paprika disease dataset is clean, we conducted experiments and

analyses. Please note that the unrefined raw label set is called the

real-world noisy dataset, and the well-annotated label set is called

the clean dataset. Both followed the split strategy of the dataset in

(Dong et al., 2022). The Paprika disease dataset consists of five

disease categories, with 5,928 images.

If the pseudo-labels generated during the semi-supervised

learning process are considered as noisy labels, our method can be

employed to correct location noise. However, besides positional

noise, pseudo-labels also come with class noise. Therefore, it is

essential to evaluate the performance of positional correction using

a single-class object detection dataset to avoid the influence of multi-

class classification problems on our model. Unlike the paprika disease

dataset, the Global Wheat Head Detection (GWHD2021) (David
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et al., 2020; David et al., 2021) dataset only requires the distinction of

wheat heads and does not involve multi-class classification. Thus, we

evaluated our method in a semi-supervised setting using

GWHD2021. Please note that GWHD2021 is only used for

evaluating the performance of our method when extended to the

semi-supervised setting. While handling the labels, we found that

some images had no annotation information, totaling 128. Therefore,

we used a total of 6,387 images that had annotations. We followed

their dataset split scheme. More details about the dataset are

presented in Table 1.
2.2 Preliminaries on object detection

Most object detectors follow the dense prediction paradigm,

usually with an ingenious loss function to guide them to predict

correctly. Generally, a loss function in object detection mainly

consists of two parts: classification loss and regression loss.

Classification loss is used to distinguish categories, while

regression loss is designed to localize objects, which can be

abstracted as Equation 1:

L(Ĉ i, B̂ i) = lclso
i
Lcls(Ĉ i,  Ci) + lrego

i
I Ci≠0f gLreg(B̂ i,  Bi) (1)

where l denotes the normalization and reweighting factor. Lcls
and Lreg are classification loss and regression loss, Ĉ i and B̂ i  denote

the prediction results of category and location, Ci and Bi denote the

ground truth of category and location. IfCi≠0g  is the binary function,
being one if Ci ≠ 0 (foreground) and zero otherwise (background).

In fully supervised object detection, the default for evaluating

the dataset is treated as accurate ground truth labels without

considering possible human errors, which means that the

regression object Bi in Equation 1 is considered accurate. Due to

the high cost to elaborate annotation, some publicly available

datasets may satisfy the above criteria. However, some private

and self-collected datasets usually do not meet these conditions.

To explore the impact of noise in real-world scenarios, we studied

the form of the distribution of the noisy label set.
TABLE 1 Details of datasets and splits.

(A)Paprika dataset (Dong et al., 2022)

Category Training Validation Test Total

Blossom end rot 933 117 133 1183

Gray mold 355 43 43 441

Powdery mildew 334 37 45 416

Spider mite 347 33 40 420

Spotting disease 2773 367 328 3468

(B)GWHD2021 (David et al., 2020; David et al., 2021)

Category Train Validation Test Total

Wheat Head 3605 1448 1334 6387
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2.3 Location noise analysis

To quickly obtain a label set with real-world noise, we used the

raw label set that has yet to be refined. Furthermore, our real-world

noisy dataset shares almost the same class noise and missing labels

as the clean ones to ensure a fair comparison. The only difference

between noisy and clean label sets is that the location of bounding

boxes in the noisy label set is more inaccurate. Therefore, we

analyze real-world localization noise by traversing and matching

boxes of the same category in two different versions of the

annotation files. Specifically, in the clean and noisy label pairs, we

compute the intersection between each clean bounding box and all

noisy bounding boxes under the same category, selecting the largest

intersection as the matching box. Then, we calculate the difference

between this box and its corresponding matching box. For analysis,

the absolute error is defined as the difference between each

boundary of the clean bounding box and the corresponding

boundary of its noise bounding box. The relative error is defined

as the ratio of the absolute to the width or height of the clean

bounding box. We analyzed the location noise distribution from the

noisy label set, leading to three interesting observations: 1. The

absolute error is proportional to the corresponding bounding box

width or height; 2. The relative error related to the bounding box

width and height follows a Gaussian distribution; 3. The mean of

relative error is smaller than 0 in objects with a large width or

height, while it is greater than 0 with a small width or height.

Figure 3A defines four boundaries and absolute error in a

bounding box, where (H,  W) denotes image width and height, and

(h,  w) denotes clean bounding box width and height. For small,

middle, and large bounding box sizes, we refer to the definition of the

COCO dataset (Lin et al., 2014). For example, h is defined as small if

h=H ∈ (0,  0:1� , while h is defined as large if h=H ∈ (0:3,  1�.
Figure 3B shows the scatter plot of the relationship between the

absolute error of four boundaries and the bounding box width

or height.

Figures 4 shows the relative error distribution, the mean of

absolute error by size, and correlation analysis for four types of

boundary noises. Figure 4A, B indicate that boundary noises follow
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the normal distribution. We introduce the root mean square relative

error g to measure the noise level. By computing the location noise

for all boundaries, we get g = 0:15 in a real-world noisy label set.

The root mean square relative error is calculated by Equation 2:

g =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1

Di

Si

� �2
s

(2)

where Di represents the absolute error of the noise and Si
represents the width or height of the bounding box. Assuming

that the absolute error standard deviation is s , then s can be

expressed by Equation 3:

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(Di)

2

s
(3)

From (2) and (3), the relationship between s and g can be

obtained by Equation 4:

s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
½( Di

Si
)2  ·  S2i �

s
≈ g ·

ffiffiffiffiffiffiffiffiffiffi
E(Si)

p 2
(4)

Figure 4C shows the relationship between s in Equation3 and

bounding box size, where each point represents the local standard

deviation within a specific range. For example, the abscissa of the

first point represents the mean value of the bounding box size

between 0 and 64, and the ordinate represents the s in Equation3 of

the corresponding range. The slope of the fitted line is

approximately the same as g , as expressed in Equation 4.

Besides, Figure 4D shows that the noise distribution of the four

boundaries is weakly correlated, thus, g can share on the four

boundaries to synthesize the noise.

Overall, the relative error distribution follows a normal

distribution with mean 0. To obtain the synthetic noise label set,

we add absolute error Di to the four boundaries of each bounding

box, Di∼N(0, (g · Si)
2) . We generated synthetic noise datasets by

changing g and used them to train Faster-RCNN (Ren et al., 2015)

detector. Figure 5 shows the performance according to the datasets

used in the training. We can see that the performance of the
BA

FIGURE 3

The definition and distribution of the boundary noise. (A) An example of the noise of four boundaries. Four white gaps correspond to four boundary
noises (D*). (B) Scatter diagram of absolute error for each boundary coordinate with respect to corresponding bounding box width or height. Width
and height are scaled to 640 x 640.
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detector trained with a real noisy dataset with g = 0:15 and the

detector trained with a synthetic dataset made with g = 0:15 are

relatively similar, indicating that our noise synthesis method and

analysis are reasonable and realistic.
2.4 Robust detector via iterative noisy
annotation correction model

Researchers often face a dataset with noisy location

annotations due to limited labor or time budgets. Therefore, it

is worth exploring how to utilize these noisy annotations

effectively, as using them directly can lead to notable

performance degradation. Liu et al. (2022a) propose an object-

aware multi-instance learning (OA-MIL) approach that jointly

optimizes an instance selector, an instance classifier, and an

instance generator. They tried to generate high-quality

proposals guided by noisy annotations. Specifically, in OA-

MIL, an instance generator is used to generate multiple

proposal boxes near each noisy annotated bounding box. These

proposal boxes are generated to capture potential instances of the

target object. Subsequently, an instance classifier is employed to

assess the probability of containing the target object within these

proposal boxes. The instance classifier predicts whether the

proposal boxes contain the desired target. Then, the instances
Frontiers in Plant Science 06
selector considered the proposals and the noisy ground truth to

select the corrected bounding box. The corrected bounding box

was used as a supervised signal to update network parameters.

Finally, OA-MIL merges proposal boxes and the noisy ground

truth, which is formulated as follows:

Bcorrect
i = l · B*i + (1 − l) · Bi (5)

where Bcorrect
i denotes the corrected bounding box. B*i and Bi

denote the best proposal and noisy bounding box, respectively. l
denotes the normalized weight factor.

Inaccurate ground truth dominates strong object localization

priors. In some cases, poor instance initialization could render

failure during training, resulting in no performance gains or even

worse. Although the corrected bounding boxes have lower g than

the noisy annotations, only relying on the annotations corrected to

provide appropriate supervision still cannot achieve the optimal

performance of the model.

To address the above issues, we employed a teacher-student

learning framework in the training process. Specifically, we utilized

OA-MIL (Liu et al., 2022a) as the teacher model, trained on the

noisy dataset. Once the training of the teacher model was

completed, we froze its parameters and employed it to perform

inference on the training set, thereby generating relatively corrected

labels. These corrected labels were then utilized to train the student

model. The student model shared the same structure as the teacher
B

C D

A

FIGURE 4

Analyses of location noise in the real-world noisy dataset. (A) The distribution of relative errors for different sizes of width and height. (B) Relative
frequency of relative errors by size. (C) The standard deviation by sizes. (D) Correlation coefficients between relative errors of different boundaries.
Please note that width and height are normalized.
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model but benefited from the more accurate corrected labels,

enabling further refinement of the bounding box positions.

Once the student model was well-trained with the correct

annotations, it served as the teacher detector to further refine the

annotations. This iterative process of teacher-student learning and

annotation refinement helped improve the accuracy and reliability

of the final annotations. This process is repeated N times. We have

observed that increasing the number of iterations does not lead to a

sustained improvement in model performance. In our experiments,

we found that the label set typically reached its peak performance

after three iterations. Beyond this point, the model’s performance

tended to plateau, indicating diminishing returns in terms of

performance gains with further iterations. In this paper, the

default setting for N was three. The corrected annotations were

used as a supervised signal for the student detector, which improved

the model’s performance by a continuously optimized label set. The
Frontiers in Plant Science 07
localization performance of the student detector was thus improved.

Compared to Faster-RCNN, our model does not incur any

additional computation during the inference phase, resulting in

no extra latency. The overall framework is shown in Figure 6.
2.5 Extension to semi-supervised learning

Semi-supervised learning aims to train object detectors with a

large scale of image-level annotations and some box-level

annotations (Liu et al., 2022a) (Li et al., 2022). Generally, there

are mainly three steps in the semi-supervised learning paradigm.

Firstly, training the model on limited labeled data; then, pseudo-

labels are generated for the unlabeled data by using the output of the

previous step; finally, optimizing the quality of the pseudo-labels to

perform semi-supervised learning tasks. We argue that pseudo-
FIGURE 5

The impact of real-world noise versus synthesized noise on Faster-RCNN. The g equals 0.15 in real-world noise.
B

A

FIGURE 6

Iterative teacher-student learning framework. (A) The teacher detector corrects the noisy annotation. The corrected annotation is used as a
supervised signal to train a student detector. Once the student detector is well-trained, it will become a new teacher. (B) The pipeline for extending
our method to semi-supervised learning tasks. We use OA-MIL as teacher and student detector.
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labels can be treated as inaccurate instance-level annotations. In

other words, we transform the optimization problem of pseudo-

labels into a label correction problem. Therefore, extending our

method naturally to the semi-supervised learning paradigm is

meaningful and feasible. However, the model’s performance is

limited by annotated data scale, thereby sufficient mislabeled or

wrongly localized box predictions are selected as pseudo-ground

truth, resulting in a sub-optimal solution of detection performance.

As shown in Figure A.2, the model may generate predictions of two

classes for one symptom.

We observed that without cleaning up redundant labels during

the iterative process, it increased the number of false positive boxes

in subsequent iterations. To overcome this issue, we implemented a

post-processing step for the pseudo-labels using prior knowledge.

We iterated through all the predicted pseudo-labels and set an

intersection-over-union (IoU) threshold 0.3. For a pair of predicted

bounding boxes with different categories, we retained only the one

with the higher confidence score as the pseudo-label for the next

iteration, discarding the lower-scoring one. While for a pair of

predicted bounding boxes with the same category, we retained the

big one. This post-processing step helped refine the pseudo-labels

and improve the overall quality of the iterative process. The second

row in Figure A.2 showcases the pseudo-labels retained after

applying the label post-processing method.

Additionally, the model paid special attention to some samples’

healthy, unknown, and background regions, which is exacerbated

when the available labels are limited. As shown in Figure A.3, the

model generated many false positive bounding boxes in these

regions. To address this issue, we introduced additional control

class labels such as background class, unknown class, and healthy

label. These control class labels were added to improve the model’s

decision-making capability and mitigate the generation of false

positive predictions.

During the data annotation process, we can initially annotate a

subset (e.g. 1%) and then use our proposed method to infer and save

pseudo-labels. The process of preserving pseudo-labels is

commonly referred to as auto-labeling (Zhang et al., 2021).

Through auto-labeling, researchers can obtain a large number of

pseudo-labels. These pseudo-labels have relatively high quality and

require minimal further data cleaning to obtain high-quality labels.

Auto-labeling enables researchers to efficiently annotate data,

accelerating the annotation process and facilitating the

development of models with improved performance.
2.6 Evaluation metric

Intersection-over-Union metric (IoU): We utilized a threshold

of 0.5 to capture true positive detections generated by the model, as:

IoU =
A ∩ B
A ∪ B

����
���� (6)

where A and B represent the ground truth and predicted

box, respectively.
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Mean Average Precision score (mAP): mAP is the area under

the precision-recall curve calculated for all classes. We utilize the

standard mean average precision (mAP) metric with an intersection

over union (IoU) threshold of 0.5 (mAP@50).

AP =
1
11or∈½0,0:1,…,0:9,1�P(r) (7)

P(r) = max
~r :~r≥r

 p(~r) (8)

where, P(r) is the maximum precision for any recall values

greater than r, and p(~r) is the measured precision at recall ~r.
3 Experiments and results

3.1 Implementation details

3.1.1 Noise analysis
We utilized the LXML library to read clean annotation and

noisy annotation files. For each label pair, we computed the

intersection between each clean bounding box and all noisy

bounding boxes under the same category by using IOU function.

Then we selected the largest intersection as the matching box.

3.1.2 Detector
We benchmarked Faster-RCNN (Ren et al., 2015), a

representative two-stage detector. All experiments are based on

the popular open-source code libraries mmdetection (Chen et al.,

2019) and OA-MIL (Liu et al., 2022a) with default settings. A

distributed training method was adopted with a batch size of 8 per

GPU 3090. The learning rate was set to 0.02. ResNet-50 (He et al.,

2016) is used as a default backbone and initialized with weights pre-

trained on ImageNet.

3.1.3 Annotation correction
The model was trained for 12 epochs in one iteration, and the

learning rate was reduced by a factor of 0.1 at the 8th and 11th

epochs. In the experiments regarding label correction, no offline

data augmentation was employed. Instead, only horizontal image

flipping was employed as online training data augmentation. We

estimate the time complexity of the model using training duration.

Over 4742 training images, our model requires only 1.42 hours to

complete training, approximately 1.2 times faster than Faster-

RCNN (1.17 hours). The overall time complexity depends on the

number of iterations, and with the number of iterations set to 3, the

training duration is approximately four times that of Faster-RCNN

(including label correction and updates).
3.1.4 Semi-supervised learning
When 1% labeled data was available, the model was trained for

200 epochs, and the learning rate was decreased by 0.1 at the 150th

and 180th epochs. When 10% labeled data was available, the model

was trained for 100 epochs, and the learning rate was decreased by
frontiersin.org
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0.1 at the 75th and 90th epochs. Horizontal image flipping, vertical

flipping, 90-degree rotation, and random scaling were used as

offline training data augmentation for labeled data. Following the

completion of the initial training, the model was utilized to infer

over all unannotated images within the training set. We used the

LXML library to save pseudo-label files for automatic annotation.

Subsequent iterations were conducted using the default settings for

label correction. While this approach may require three times the

training duration compared to Faster-RCNN, it offers significant

cost savings regarding manual annotation.

3.1.5 Inference
Only the final student detector was needed in the inference

stage, so there was no additional computational cost. This indicates

that our model has the same inference speed as the baseline model

Faster R-CNN. All configurations at this stage can be performed

according to the default settings without additional modification.

The IoU threshold for non-maximum suppression was set to 0.5,

and the score threshold was 0.5 which is higher than the default

setting of 0.05 in most works.
3.2 Annotation correction results

For a fair comparison, all models were evaluated on the well-

annotated paprika disease test set in (Dong et al., 2022). The root

mean square relative error gwas set to 0.1, 0.15, and 0.2,

respectively, to generate datasets with synthesized noise and

evaluate the method’s effectiveness. The performance of Faster-

RCNN in various settings was used as a benchmark. Table 2 shows

the result on real-world noise datasets and synthesized noisy

datasets. Note that we performed validation experiments on

synthetic noise. The results presented in Table 2 are the mean of

two experiments. Surprisingly, our method achieved a slight

improvement even on clean datasets.

Our method can enhance the model’s robustness to location

noise. Under real-world noise, the performance improved from

57.1% to 83.1%. With synthetic noise at g = 0:15 , our model

improved from 58.5% to 82.1%, which is almost the same gain trend

as real-world noise. Therefore, it is reasonable to describe the noise

level by the root mean square relative error g . Compared with OA-

MIL, our model improved by 5.3%. It indicated that inaccurate
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ground truth dominates strong object localization priors, thereby

misleading the correction module in OA-MIL. Thus, optimizing a

model by itself by only learning corrected labels cannot achieve

optimal performance since corrected labels still contain noise. Our

method used a teacher-student learning framework to correct the

noisy labels and finally trained a more robust model. Extensive

experiments verify the effectiveness of our method. To benchmark

against state-of-the-art detectors, we provide the performance on

YOLOv8-L (Jocher et al., 2023), comparable in parameter count to

Faster R-CNN. Additionally, we compare our approach with the

noise correction method NDet (Wang et al., 2022b) based on Faster

R-CNN. The results indicate that these methods may perform better

on clean datasets or datasets with lower noise levels. However, our

approach demonstrates a clear advantage as the g increases.

As shown in Figure 7, the performance according to the number

of training epochs and the number of iterations was compared using

a clean and real-world noisy paprika dataset. Faster-RCNN was

used as the baseline detector. Figure 7A shows the mAP comparison

of different datasets used for training according to the number of

training epochs. Performance increases as the epoch increases in all

datasets. Using clean datasets for training shows the best

performance, and using real noisy datasets shows the worst

performance. The proposed method shows better performance of

the two types of label correction methods. The graph for the

proposed method with an iterative process shows the results in

the training period of the student detector in the last iterative

process. Figure 7B shows the change of g over epochs. Although

noisy bounding boxes corrected by OA-MIL (Liu et al., 2022a) have

a lower g than the noisy annotations, only relying on the

annotations corrected to provide appropriate supervision still

cannot achieve the optimal performance of the model. Figure 7C

shows how g and mAP change with iterations of the proposed

method. Our method can further correct noisy labels, thereby

iteratively improving model performance. We can see that g
decreases and mAP increases as the iteration proceeds to some

extent, which shows that the proposed iteration method is effective.

Besides, Figure 7D shows the comparison of performance

change rates of OA-MIL (Liu et al., 2022a) and ours over Faster-

RCNN. Note that our method achieved more remarkable

performance gain at higher noise levels, which undoubtedly

alleviated the adverse effects of location noise, thereby narrowing

the performance gap caused by noise. We can even conclude that if
TABLE 2 Performance comparison on the paprika disease test dataset. g denotes the synthesized noise level.

Methods (mAP@50(%))

Noise Type

Clean
(g = 0)

Real-world
(g ≈ 0.15)

Synthesized
(g = 0.1)

Synthesized
(g = 0.15)

Synthesized
(g = 0.2)

Faster-RCNN (Ren et al., 2015) 90.2 57.1 75.6 58.5 48.2

YOLO-v8-L (Jocher et al., 2023) 91.0 67.2 79.6 66.8 53.9

NDet (Wang et al., 2022b) 90.6 78.7 81.4 78.2 73.8

OA-MIL (Liu et al., 2022a) 90.6 (+0.4) 77.8 (+20.7) 80.2 (+4.6) 76.5 (+18.0) 71.6 (+23.4)

Ours 90.6 (+0.4) 83.1 (+26.0) 84.3 (+8.7) 82.1 (+23.6) 78.4 (+30.2)
Parentheses indicate the performance improvement of our method compared to the Faster RCNN. The best performance is in boldface. We use mAP@50(%) as performance metric to evaluate
our model.
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the performance of Faster-RCNN differs greatly from our method,

the dataset may contain severe noise interference.
3.3 Semi-supervised learning results

The pseudo-labels generated during semi-supervised learning also

contain localization noise. Therefore, our method can be easily

generalized to the semi-supervised learning paradigm naturally. We

randomly chose 1%, 10%, and 50% of the clean training label set as

available labeled data and the remaining data as unlabeled data. Table 3

shows the corresponding experimental results. For the paprika dataset,

our method achieved approximately 75% of the performance of a fully

supervised object detector when 1% of labels are available. In

comparison, with 10% available labels, our method achieved 86% of

the performance equivalent to fully supervised object detectors.

Furthermore, despite our post-processing techniques and

adding control categories, we observed that classification errors

persist in the pseudo-labels generated by this method. We attribute

this to the limited data volume and multi-class classification

problem. In other words, our method pays more attention to

annotation localization noise rather than class noise. The

GWHD2021 dataset only contains annotations for wheat heads

and no other categories. For rigor, the GWHD2021 dataset was also

used to validate the method’s performance in a semi-supervised

learning setting. Our method achieved 90.2% of the performance of

a fully supervised object detector when 10% of the labels are

available, reflecting our method’s efficiency. Therefore, the

annotation cost can be significantly reduced by deploying our

method on semi-supervised learning tasks.
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3.4 Ablation study

This section explores the impact of different components or

design choices in our approach. Noise-corrected ablation

experiments are based on Faster-RCNN with synthetic Gaussian

noise (g = 0:15 ). As mentioned in Section 2.4, relying only on the

predictions produced by the detector itself as a source of supervision

may not lead to optimal solutions. Therefore, we propose a teacher-

student learning framework. Table 4 shows the number of iterative

trainings versus model performance. We observed that too many

iterations could lead to model performance degradation. Therefore,

we iterated three times to stop for the final result. Unless otherwise

specified, all experimental results in the paper are reported based on

the results obtained after three iterations.

In semi-supervised learning tasks, we added control class labels,

pseudo-label post-processing, and data augmentation to the noisy

dataset to improve the discriminative power of the model. It is

essential to adopt the post-label processing process for the iterative

training of teachers and students in the later stage. Otherwise, the

model will generate many overlapping or wrong labels and cause the

task to fail. Table 5 shows the result of ablation experiments on semi-

supervised learning. We have presented the qualitative results of

model post-processing and class control in Figures A.2, A.3 in

the appendix.
3.5 Visualization

The distributions of relative boundary coordinate errors for

noisy annotations and our corrected ones are shown in Figure 2.
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FIGURE 7

Training process. (A) mAP evaluated on paprika disease test set at each epoch for different training scenarios. (B) The root mean square relative error
g of training samples in these training scenarios. We assume g equals 0 in the clean dataset. (C) Comparison of our method with OA-MIL. (D)
Comparison of performance change rates of OA-MIL and Ours over Faster-RCNN.
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The relative error of noisy annotations became smaller after being

corrected by our method. Besides, we also visualize the

experimental results in Appendix. In Figure A.1, each triplet

contains input annotations, OA-MIL corrected results, and our

method corrected results. The annotation correction results of our

method cover the actual object more tightly than OA-MIL’s. Figure

A.2 demonstrates that post-processing of pseudo-label can remove

low-confidence annotations and overlapping labels. Figure A.3

presents that the model reduces the misjudgment of suspicious

regions after adding the control category. Figure A.4 displays the

pseudo-labels generated by our method in the semi-supervised

setting, where the last two rows show some failed predictions.

The model is more prone to misclassify instances with similar

symptoms, which may be due to the limited dataset. Even with

misclassifications, the labels still closely match the actual objects,

demonstrating the robustness of our method to locations. Figure

A.5 shows the pseudo-labels generated by our method on the

unlabeled dataset in the wheat head classification dataset

GWHD2021. Our method can locate most of the wheat

heads accurately.
4 Discussion

4.1 Does human cost equal intelligence?

In computer vision, there is an old saying highlighting the

importance of labeling in deep learning methods: “As much human

cost, there is as much machine intelligence.” Labeled datasets have
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played a crucial role in the rapid development of deep learning.

Over the years, researchers have proposed methods to reduce

computation costs and improve intelligence, such as novel feature

extractors, optimized loss functions, and efficient augmentation

strategies. These methods have significantly contributed to the

advancement of related industries.

Nevertheless, in specific domains, inaccuracies in annotations

pose substantial hurdles for these methodologies. Our approach

tackles this challenge by embracing a semi-supervised learning

framework, which facilitates automatic annotation and fortifies

the model against localization errors. This dual benefit notably

slashes the costs associated with manual annotation. Figure 8

depicts the confusion matrix of the pseudo-labels for unlabeled

samples when only 1% of the training set is labeled. The results

show that backgrounds and some unseen instances are often

misclassified as known classes, while some instances are

overlooked due to limited diversity in the labeled data. Regarding

automatic labeling, further corrections for false positives and

negatives are required to achieve comparable performance to fully

supervised learning methods. Manual annotation is unnecessary for

well-learned instances as it would be a waste of resources.
4.2 Limitations and future work

In our previous studies (Dong et al., 2022), we established that

localization noise exerts a more pronounced impact on model

performance than class noise. Therefore, the core objective of this

research was to address the challenge of correcting inaccurate
TABLE 4 The choice of the number of iterations for teacher-student learning trained on the paprika disease dataset. g denotes the synthesized noise
level.

Methods
Clean Real-world noise Synthesized noise

g = 0 g ≈ 0:15 g = 0:1 g = 0:15 g = 0:2

Faster-RCNN 90.2 57.1 75.6 58.5 48.2

Ours(iter-1) 90.6 77.9 79.2 76.5 71.6

Ours(iter-2) – 82.6 84.1 81.6 78.5

Ours(iter-3) – 83.1 84.3 82.1 78.4

Ours(iter-4) – 82.4 83.5 81.6 77.9

Ours(iter-5) – 82.7 83.2 81.5 77.5
fron
We used mAP50 to validate the performance at different iteration times. The best performance is in boldface.
TABLE 3 The result of semi-supervised learning scenario setting on different datasets. The last row is the ratio of ours to Faster-RCNN*.

Paprika disease (mAP@50) (%) GWHD2021 (mAP@50) (%)

Faster-RCNN* 90.2 56.0

Labeled data 1% 10% 50% 1% 10% 50%

Faster-RCNN 54.6 69.9 75.2 33.6 46.0 48.2

Ours 67.5 77.6 82.9 42.1 50.5 53.4

(Efficiency) (74.8%) (86.0%) (91.9%) (75.2%) (90.2%) (95.3%)
* denotes the result of training Faster-RCNN on the full (100%) clean dataset.
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bounding box annotations caused by localization noise. It is

important to note that while our emphasis is on localization

noise, it does not suggest the absence of class noise within real-

world label sets. In practice, both types of noise can coexist, posing

significant hurdles in training accurate models for object detection

tasks. More research should focus on the patterns of real-world

noise, based on which more effective methods can be proposed and

further improve the detector performance. However, quantifying

class noise is very difficult due to the diversity of datasets.

Meanwhile, adding class noise in a random perturbation way

does not match the actual distribution of class noise. Therefore,

before the methodology is proposed, how to construct a class noise

dataset is a question worth considering.

Recently, large-scale vision-language models (Zhang et al., 2022;

Kim et al., 2023) have been applied to localization tasks. These

models can locate objects in images using only textual labels,

without the need for explicit training. This process is known as
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zero-shot inference (Cao et al., 2023). In the semi-supervised setting

of this paper, we require pre-labeling a portion of the data to train

the teacher model for automatic annotation. In contrast, it may be

possible to achieve fully automatic annotation by correcting the

zero-shot inference results of these large-scale vision-language

models. Therefore, correcting the zero-shot inference results of

these models is an interesting research topic that we plan to explore

in future work.
5 Conclusion

This paper investigated the impact of location noise on detector

performance in real-world environments. We observed that relative

location noise in real scenarios follows Gaussian distribution and is

dependent on object size, which guides how to synthesize location

noise. Furthermore, we proposed an annotation correction method
BA

FIGURE 8

Confusion matrix of pseudo-label on paprika disease training set with 1% labeled data. (A) Percentage count results. (B) Count results.
TABLE 5 Ablation studies in a semi-supervised learning setting.

Faster-RCNN Data Augmentation* Post-process Control Class Teacher-student

Paprika Disease
mAP@50(%)

1% 10%

√ √ 54.6 69.9

√ √ iter-1 55.8 61.0

√ √ √ iter-1 56.1 61.5

√ √ √ √ iter-1 57.3 64.2

√ √ √ √ iter-2 66.9 78.4

√ √ √ √ iter-3 67.5 77.6

√ √ √ √ iter-4 67.4 77.9

√ √ √ √ iter-5 67.1 77.4
fron
The models are trained on the paprika disease clean dataset. The best performance is in boldface. The * denotes only performing offline data augmentation on the labeled set.
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based on the teacher-student learning paradigm, which significantly

narrows the performance gap caused by noise. Utilizing our method

is crucial for performance improvement if the labeling budget is

limited or constrained. Our method also supports the correction of

imprecise pseudo-labels generated in a semi-supervised learning

task, implying that our method can be extended to semi-supervised

learning tasks. In summary, our method is suitable for handling

datasets with low-quality annotations, thus reducing the annotation

cost and improving traditional labeling methods.
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SUPPLEMENTARY FIGURE 1

Comparison of our method with OA-MIL results. The first row displays labels
with location noise. The second and third rows show the correction results

using OAMIL and our method (iter-3). The labels in the third row are more
closely aligned with the actual disease locations.

SUPPLEMENTARY FIGURE 2

Example results of post-processing the pseudo-labels. We use red color to

highlight false positive bounding boxes. Better displayed on the screen.

SUPPLEMENTARY FIGURE 3

The model reduces the number of false positive labels for suspicious regions

by adding control classes. When the data volume is low, the model is prone to
classifying backgrounds, unknown regions, and healthy areas as diseases. The

red color highlights false positive bounding boxes. Better displayed on

the screen.

SUPPLEMENTARY FIGURE 4

Pseudo-labels generated in a semi-supervised learning setting when only 1%

of the label set is available on the paprika disease dataset. The last two lines
present some failure cases, including classification failures, localization

failures, and missed detections.

SUPPLEMENTARY FIGURE 5

Pseudo-labels (after three iterations) generated in a semi-supervised learning
setting when only 1% of the label set is available on the GWHD dataset.
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