
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Sushil Satish Chhapekar,
University of Missouri, United States

REVIEWED BY

Sheikh Mansoor,
Jeju National University, Republic of Korea
Foad Fatehi,
Payame Noor University, Iran
Viswanathan Satheesh,
Iowa State University, United States

*CORRESPONDENCE

Gyanendra Kumar Rai

gkrai75@gmail.com

Vikas Srivastava

vikassrivastava25@gmail.com;

vikas.bot@cujammu.ac.in

Mariateresa Cardarelli

tcardare@unitus.it

Sumit G. Gandhi

sumit@iiim.res.in

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 11 June 2023

ACCEPTED 31 August 2023
PUBLISHED 04 October 2023

CITATION

Rai GK, Mishra S, Chouhan R, Mushtaq M,
Chowdhary AA, Rai PK, Kumar RR,
Kumar P, Perez-Alfocea F, Colla G,
Cardarelli M, Srivastava V and Gandhi SG
(2023) Plant salinity stress, sensing, and its
mitigation through WRKY.
Front. Plant Sci. 14:1238507.
doi: 10.3389/fpls.2023.1238507

COPYRIGHT

© 2023 Rai, Mishra, Chouhan, Mushtaq,
Chowdhary, Rai, Kumar, Kumar,
Perez-Alfocea, Colla, Cardarelli, Srivastava
and Gandhi. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 04 October 2023

DOI 10.3389/fpls.2023.1238507
Plant salinity stress, sensing, and
its mitigation through WRKY

Gyanendra Kumar Rai1*†, Sonal Mishra2†, Rekha Chouhan3†,
Muntazir Mushtaq1†, Aksar Ali Chowdhary2, Pradeep K. Rai4,
Ranjeet Ranjan Kumar5, Pradeep Kumar6,
Francisco Perez-Alfocea7, Giuseppe Colla8,
Mariateresa Cardarelli8*, Vikas Srivastava2*

and Sumit G. Gandhi3*

1School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of
Jammu, Jammu, India, 2Department of Botany, School of Life Sciences, Central University of Jammu,
Samba, Jammu & Kashmir, India, 3Infectious Diseases Division, Council of Scientific and Industrial
Research (CSIR)-Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, India, 4Advance Center
for Horticulture Research, Udheywala, Sher-e-Kashmir University of Agricultural Sciences and
Technology of Jammu, Jammu & Kashmir, India, 5Division of Biochemistry, Indian Council of
Agricultural Research (ICAR), Indian Agricultural Research Institute, New Delhi, India, 6Division of
Integrated Farming System, Central Arid Zone Research Institute, Indian Council of Agricultural
Research (ICAR), Jodhpur, India, 7Department of Nutrition, Centre for Applied Soil Science and
Biology of the Segura (CEBAS), of the Spanish National Research Council (CSIC), Murcia, Spain,
8Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
Salinity or salt stress has deleterious effects on plant growth and development. It

imposes osmotic, ionic, and secondary stresses, including oxidative stress on the

plants and is responsible for the reduction of overall crop productivity and

therefore challenges global food security. Plants respond to salinity, by

triggering homoeostatic mechanisms that counter salt-triggered disturbances

in the physiology and biochemistry of plants. This involves the activation of many

signaling components such as SOS pathway, ABA pathway, and ROS and osmotic

stress signaling. These biochemical responses are accompanied by

transcriptional modulation of stress-responsive genes, which is mostly

mediated by salt-induced transcription factor (TF) activity. Among the TFs, the

multifaceted significance of WRKY proteins has been realized in many diverse

avenues of plants’ life including regulation of plant stress response. Therefore, in

this review, we aimed to highlight the significance of salinity in a global

perspective, the mechanism of salt sensing in plants, and the contribution of

WRKYs in the modulation of plants’ response to salinity stress. This review will be

a substantial tool to investigate this problem in different perspectives, targeting

WRKY and offering directions to better manage salinity stress in the field to

ensure food security.

KEYWORDS

abiotic stress, ABA signaling, transcription factors, food security, ROS, SOS pathway
Abbreviations: ABA, abscisic acid; AKT, Arabidopsis potassium transporter; Ca2+, calcium; Cl−, chloride;

K+, potassium; MAPK, mitogen-activated protein kinase; Mg+, magnesium; Na+, sodium; ROS, reactive

oxygen species; SOS, salt overly sensitive; TF, transcription factor.
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1 Introduction

Salinity stress is a foremost abiotic constraint that affects

agricultural yields worldwide (Sanwal et al., 2022a). Nearly 20%

(~310 million hectares) of the total irrigated land (1,500 million

hectares) and 2% under dry land agriculture (~30 million hectares),

across the world, have degraded due to high salts (Sanwal et al.,

2022b). In India, it is estimated that ~10% of additional area is

getting spoiled by salts every year and 2.1% (6.74 million ha) of total

geographical area in India has already become salt affected (Kumar

and Sharma, 2020). Plants’ reaction to environmental cues involve

coordinated morphological, biochemical, and physiological

responses, regulated by stress-responsive genes. Particularly with

respect to high-saline conditions, genes related to synthesis and

regulation of secondary metabolites, ion homeostasis, reactive

oxygen species, salt overly sensitive (SOS) pathway, abscisic acid

signaling, transcription factors (TFs), and mitogen-activated

protein kinases (MAPK) are essential (Tuteja, 2007; Sytar et al.,

2018). In fact, these mechanisms are also fundamental during

chemical priming-based salt stress alleviation (Srivastava et al.,

2021; Srivastava et al., 2022a; Mishra et al., 2023). Regulation of

gene expression of associated pathways by TFs in response to

various environmental triggers constitutes a basic regulatory

mechanism of plants (Buscaill and Rivas, 2014). TFs comprise a

significant portion of plant genome and are represented by many

gene families such as NAC, AP2, MYB, and WRKY, which are

reported to offer multifaceted impact on plant development and

growth and regulate plants’ fitness against environmental

constraints (Srivastava et al., 2022b; Chowdhary et al., 2023).

WRKY proteins are among the important TFs involved in plants

defense against several abiotic and biotic stimuli (Chen F. et al.,

2017). These proteins are also known to be associated with different

developmental and physiological processes in plants like seed and

embryo development, trichome development, senescence,

dormancy, and many metabolic pathways, and their role in

mitigation of stress is widely studied (Eulgem et al., 2000; Pandey

and Somssich, 2009; Chen et al., 2012; Yu et al., 2016a; Kang et al.,

2021; Wani et al., 2021).

In plants, WRKY proteins constitute one of the biggest families

of TFs, characterized by WRKYGQK DNA binding motif, which

binds toW box (TTGACC/T) of the promoters (Eulgem et al., 2000;

Rushton et al., 2010). Since their discovery in 1994, from sweet

potato (Ishiguro and Nakamura, 1994, named as SPF1), WRKYs

were thought to be exclusive to the plant kingdom. Later, Zhang and

Wang in 2005 reported the presence of one copy of WRKY gene in

Giardia lamblia (primitive protozoan), Dictyosteliium discoideum

(slime mold), and Chlamydomonas reinhaidtii (green alga). With

their origin in early eukaryotes, these genes have duplicated many

times to evolve as an expanded super family of transcriptional

regulators in land plants, viz., Oryza sativa L. ssp. indica (Ross et al.,

2007), Saccharum spontaneum (Li et al., 2020b), Medicago sativa

(Ma et al., 2021), and Glycine max (Yin et al., 2013), where their

numbers reach hundreds. With this expansion in number, the

WRKY superfamily has also been specified into three major sub-

groups, namely, WRKY I, II, and III, based on the number of
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WRKY domains and Zn finger structure. The expansion of WRKY

family in higher plants is due to segmental duplication events and

subsequent divergent selection among the subgroups (Yin et al.,

2013), which also diversify the functional prospects of WRKY

protein family. WRKY genes are completely absent in kingdom

Monera, Fungi, and Animalia (Zhang and Wang, 2005).

WRKY gene expression has been found to be induced in

pathogenic conditions and other chemical and physical stresses

(cold, heat, salinity, wounding, oxidative stress, and nutrition

deficiency; Eulgem et al., 2000). Though the exact mechanisms of

WRKY proteins are not well understood, it is reported that these

factors repress or activate expression of other stress-responsive

genes that ultimately confer protective effects. WRKY proteins are

also known to regulate abscisic acid, ethylene, salicylic acid, and

jasmonic acid signaling pathways, which mediate plant response to

several stress conditions (Bakshi and Oelmüller, 2014) and are thus

responsible for effective signal cross-talk and multifold regulations.

Many investigations related to functional characterization of

WRKYs have also suggested their contribution towards

attainment of tolerance against abiotic stress like drought, heat,

salt, and cold, and also offer resistance to pathogenic infections

(Kumar et al., 2016; Gao et al., 2018; Shi et al., 2018; Wang et al.,

2018; Gao et al., 2020; Yang et al., 2020; Kang et al., 2021).

Moreover, WRKYs are also reported to regulate plant specialized

metabolism (Mishra et al., 2013; Schluttenhofer and Yuan, 2015;

Singh et al., 2017; Srivastava et al., 2017; Zhang et al., 2021).

Considering the significance of WRKY in plants’ life, many

excellent reviews on general account of WRKY have been published

(Eulgem et al., 2000; Rushton et al., 2010; Chen F. et al., 2017; Jiang

et al., 2017; Wani et al., 2021), yet a judicial compilation of its role in

individual stress is not much attempted. Nonetheless, several

studies have been conducted in recent years to investigate its

regulatory role in plant growth and development, and stress

management, including salinity. The current review gives a

comprehensive view on the WRKY-mediated plant response to

salinity stress management and the associated mechanisms. The

text discusses the impact of salinity stress and salt stress-related

signaling mechanisms in plants, followed by a brief understanding

of the WRKY gene family, their structure, and major classes in plant

genome. Furthermore, it also highlights the various WRKY

candidates involved in various stresses with a focus on salt stress

tolerance and associated mechanism in plants.
2 Salinity stress and its impact on
crop plants

The abiotic stresses decrease the yield, survival, and biomass of

food crops by 70%, posing a serious risk to world food security

(Ahmad et al., 2012; Parihar et al., 2015; Li et al., 2020a; Yoon et al.,

2020; Ma et al., 2021). Salinity is one of the most serious constraints

to crop development and productivity (Park et al., 2016). Among

abiotic stress, the fraction of irrigated land affected by salt in

different regions ranges from 9% to 34% with an average of 20%

in the world (Table 1, cf. FAO-ITPS-GSP 2015). Salinity stress is the
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detrimental effect of excess elements like Na+ and Cl− on plants

(Parihar et al., 2015; Isayenkov and Maathuis, 2019). In addition,

salinity is naturally complemented by secondary stresses like

oxidative stress due to generation of ROS (Isayenkov, 2012;

Mishra et al., 2017; Yang and Guo, 2018; Isayenkov and

Maathuis, 2019). Based on its cause, salinity is categorized as

primary or secondary (Kumar and Sharma, 2020). Primary

(natural) salinity is developed due to the accumulation of salts

during long-term natural processes (weathering of parent materials

and inland oceanic salt deposition by wind/rain) in soil or

groundwater. Contrary to this, secondary salinity involves various

human interventions resulting in the alteration of soil–water

equilibrium (Manchanda and Garg, 2008). Common examples of

such human activities are deforestation, replacement of perennial

crops with annual ones, irrigation with highly saline water, or

inadequate drainage.

Soil salinity is not a recent phenomenon; however, the issue has

been accentuated as a result of agricultural activities such as intensive

irrigation, poor water management, deforestation, and excessive use

of pesticide and chemical fertilizers (Zhu, 2001; Tuteja, 2007; Gupta

et al., 2022). It affects almost all the stages of growth and development

in plants, from seed germination to blooming and seed maturation,

thereby causing a significant loss in the crop yield (Singh et al., 2015;

Srivastava et al., 2022a). Excess salt concentrations in the soil

primarily affect ion balance in plants and create hyper osmotic

stress and secondarily affect the accumulation of harmful ions,

which results in poor or delayed germination and post-germination

growth abnormalities (Majeed et al., 2019). It has been reported that a

high Na+ concentration outside the plant cell has a negative impact

on intracellular K+ influx, which is required for plant growth (Kumar

and Sharma, 2020). Similarly, calcium and magnesium uptake by

plants is also negatively impacted by high sodium content in saline

soil. A disturbance in calcium uptake can lead to weakened cell walls,

reduced enzyme activities, and altered signaling processes.

Magnesium is critical for chlorophyll synthesis as well as

production and transport of photoassimilates. During germination

stage, salinity impairs the physiological function of seeds, which has a
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detrimental effect on seed germination and results in a general

decrease in plant leaf area, biomass, yield, and root and shoot

length (Zörb et al., 2019). Furthermore, it is known to cause

various metabolic and physiological changes, depending on

rigorousness and stress duration, and eventually reduces crop

production (Figure 1A). The inhibitory effect of salinity on plant

development involves reduction of water potential, disturbance of ion

homeostasis, and associated cellular toxicity (Greenway and Munns,

1980; Isayenkov and Maathuis, 2019). In addition, it is also associated

with numerous alterations in their physiology, such as hindering

plant roots’ capacity to absorb water and essential minerals, reduction

in the stomatal conductance, photosynthesis, and the inability for

ROS detoxification, thereby inhibiting growth and development in

plants (Abdallah et al., 2016; Ren et al., 2022; James et al., 2011; Gupta

and Huang, 2014; Gulzar et al., 2019). Furthermore, the salinity-

mediated oxidative stress causes accumulation of ROS such as

superoxide anion, hydrogen peroxide, and the hydroxyl radicals,

particularly in chloroplasts and mitochondria that damage cell

membranes, proteins, lipids, and nucleic acids and may even lead

to programmed cell death (Isayenkov, 2012; Mishra et al., 2017; Yang

and Guo, 2018; Isayenkov and Maathuis, 2019).
3 Salt stress signaling pathway
in plants

Plants differ widely in Na+ tolerance, and based on their

capacity to tolerate salt stress, they are physiologically classified as

glycophytes (low salinity tolerance) and halophytes (high salinity

tolerance). The former (citrus, tomato, etc.) usually require fresh

water and exhibit growth inhibition even under mild salinity. Citrus

crops, therefore, showed signs of destruction and could not produce

fruit and seeds even below 100 mM NaCl, whereas the halophytes

can sustain and grow under elevated or high NaCl conditions (200

mM) (Flowers and Colmer, 2008; Flowers et al., 2010). Some plants

such as Atriplex, Rhizophora, and Suaeda can even grow up to 1,000

mM NaCl (Ushakova et al., 2005; Park et al., 2016). Though the
TABLE 1 Salt-affected soils in various regions of the world (cf. FAO-ITPS-GSP 2015).

Continent Salt-affected area (mha)

Saline soils Sodic soils Total

Africa 122.9 86.7 209.6

Australasia 17.6 340.0 357.6

Mexico/Central America 2.0 – 2.0

North America 6.2 9.6 15.8

North and Central Asia 91.5 120.2 211.7

South America 69.5 59.8 129.3

South Asia 82.3 1.8 84.1

Southeast Asia 20.0 – 20.0

Total 412.0 618.1 1,030.1
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knowledge about sensor or receptor of Na+ is not known (Yang and

Guo, 2018), it has been noticed that the ionic or osmotic stress may

lead to increased cytosolic Ca2+ concentration (Kiegle et al., 2000;

Choi et al., 2014). Furthermore, salinity treatment activates salt

overly sensitive (SOS) pathway, abscisic acid (ABA) pathway, ROS

signaling, and osmotic stress signaling (Yang and Guo, 2018).

One of the adaptive responses for cellular sustenance during salt

stress is to retain ion homeostasis. This can be achieved by

maintaining cytoplasmic K+/Na+ ratio by lowering Na+ and

increasing K+ in the cytoplasm (Niu et al., 1995; Serrano et al.,

1999), which involves Na+ uptake restriction, Na+ efflux

enhancement, and Na+ compartmentalization in vacuole. Some of

the specific transport system for Na+ and K+ uptake includes the

low-affinity K+ channel (AKT1, Arabidopsis K+ Transporter1), the

high-affinity K+ channel (HKT1, high-affinity K+ transporter 1),

and the voltage-independent channel (Blumwald et al., 2000;

Tuteja, 2007; Yang and Guo, 2018). Among these, HKT1 serves

as a critical player in the improvement of tolerance to salinity by

reducing Na+ accumulation in shoots, thereby avoiding Na+ toxicity

in the leaves (Horie et al., 2005; Ren et al., 2005; Platten et al., 2006;

Horie et al., 2009; Moller et al., 2009). Moreover, the contribution of

Na+/Ca2+ exchanger-like proteins is also known to be prominent in

ionic homeostasis (Mishra et al., 2021).

The Na+ efflux mechanism is well characterized inArabidopsis by

genetic screening of SOS mutants exposed to salinity stress and

reviewed in detail as presented in Figure 2 (Yang and Guo, 2018). The

SOS pathway exports Na+ ion from cells and involves activation of
Frontiers in Plant Science 04
SOS2 (serine/threonine protein kinase) and SOS1 (Na+ antiporter)

(Lin et al., 2009). The other players include helix E-loop-helix-F (EF-

hand) calcium binding proteins (SOS3) and SCaBP8/CBL10, which

recognizes high salt concentration and induction of cytosolic calcium

signals (Liu and Zhu, 1998; Ishitani et al., 2000; Zhu, 2016). Under the

influence of salt-induced cytoplasmic calcium induction, SOS3/

SCaBP8 interact and induce SOS2 (Ishitani et al., 2000; Quan et al.,

2007; Lin et al., 2009). The 14-3-3, GIGANTEA (GI), and ABA-

INSENSITIVE 2 (ABI2) protein (phosphatase 2C) under non-saline

(normal) conditions inhibit SOS pathway by interaction with SOS2,

thereby repressing its kinase activity (Kim et al., 2013; Zhou et al.,

2014; Yang and Guo, 2018). During salt stress, the 26S proteasome

pathway degrades 14-3-3 and GI proteins. Additionally, PKS5 activity

is also repressed, leading to normal functioning of PM H+-ATPase

activity (Yang et al., 2010; Kim et al., 2013; Tan et al., 2016).

Na+ partitioning is also one of the adaptive responses that

reduce cytoplasmic ionic toxicity, a mechanism conserved in

glycophytes and halophytes (Blumwald et al., 2000; Hasegawa

et al., 2000). Additionally, the abiotic stress including salinity

leads to the generation of osmolytes, which can lower the water

loss under short-term osmotic stress and enhances cell turgor

during long-term osmotic stress (Apse and Blumwald, 2002).

Furthermore, the osmotic stress also influences the regulation of

enzymatic activities related to salt response.

The significance of ABA has also been observed in salinity stress.

ABA induction under salt stress activates sucrose non-fermenting 1-

related protein kinase 2 (SnRK2) kinase activities (Krzywinska et al.,
A

B

FIGURE 1

Salinity stress. (A) Impact on crop plants. (B) Significance of WRKY transcription factors (TFs).
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2016); however, some evidence also indicated the ABA signaling-

independent SnRK2 activation (Boudsocq et al., 2007; Zhang et al.,

2011a; Zhang et al., 2016a). Additionally, it has been noticed that

stimulation of salt stress led to the regulation of many stress-

responsive genes, demonstrating correlation with osmotic stress. A

study conducted by Sewelam et al. (2014) demonstrated induction of

932 genes under salt stress, out of which 435 overlap with transcripts

induced by osmotic stress. Furthermore, 367 genes were found

downregulated, in which 154 repressed genes were noted to overlap

with osmotic stress (Sewelam et al., 2014).

The osmolytes can be grouped under several categories, viz.,

charged metabolites like proline, choline-O-sulfate, betaine, and

glycine betaine; polyols like mannitol, glycerol, and myo-inositol;

sugars such as fructose; complex sugars like fructans, raffinose, and

trehalose; and ions such as K+ (Yang and Guo, 2018). Though these

metabolites are accumulated in various plant species, few are

specific to certain taxonomic categories. In addition, salt also

induces the secondary stress response due to ROS generation

(Ahmad and Prasad, 2011). ROS at low concentration functions

as a signal; however, at high concentration, it has damaging effects

over biomolecules (Miller et al., 2010; Gupta and Huang, 2014;

Mishra et al., 2017). Therefore, tight regulation of ROS metabolism

is a very important aspect for sustenance of normal plant growth

under stress conditions. Furthermore, some small molecules act as

signals, triggering downstream salt stress response (Yang and Guo,

2018), thereby improving salt tolerance, viz., proline (Khedr et al.,

2003), carbon monoxide (Xie et al., 2008), phosphatidic acid (Yu

et al., 2010), hydrogen sulfide (Christou et al., 2013; Srivastava et al.,
Frontiers in Plant Science 05
2022a), g-aminobutyric acid (Srivastava et al., 2021a), and

melatonin (Liang et al., 2015; Wei et al., 2015; Mishra et al., 2023).
4 WRKY transcription factor family

TFs regulate expression of genes involved in diverse biological

processes. More than 1,000 TF genes have been identified in

angiosperms, which can be divided into 58 families depending on

their DNA binding domains (Zhang et al., 2011b). WRKY is one of

the most numerous TF families in plants involved in many signaling

webs of several biological processes including specialized metabolism

and stress tolerance (Rushton et al., 2010; Mishra et al., 2013; Kumar

et al., 2016; Jiang et al., 2017). Being a TF, its predominant function is

transcriptional modulation of genes by its repressor and activator

(derepressor) activity. Since its initial reports (Ishiguro and

Nakamura, 1994; Rushton et al., 1996), this protein family had

been explored in several different plants that includes lower groups,

eudicots, and monocots, and many excellent reviews are available

mentioning its wide functional diversity (Eulgem et al., 2000; Rushton

et al., 2010; Jiang et al., 2017). The investigations includemodel plants

as well as several crops of high commercial significance (Chen F.

et al., 2017). The development of sequencing technology has also

triggered genome-wide investigation of imperative plant genes and

many plant genomes have also been explored for the WRKY TFs

(Table 2), which are mostly accompanied with expression study

under diverse developmental, stress, and phyto-hormone treatment

conditions (Kumar et al., 2016).
FIGURE 2

SOS pathway in plants under salinity stress.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1238507
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Rai et al. 10.3389/fpls.2023.1238507
TABLE 2 Plant system explored for WRKY gene family survey and their representation in different sub-groups.

Plant systems Number of WRKY TFs
(ungrouped WRKYs)

Number of WRKYs in different subgroups Reference

Group
I

Group II Group III

IIa IIb IIc IId IIe IIIa IIIb

Actinidia deliciosa
(Actinidia spp.)

97 25 4 8 25 10 13 12 Jing and Liu (2018)

Arabidopsis thaliana 72 14 3 8 18 7 1 5 8 Li et al. (2014)

Arachis duranensis 75 16 4 10 18 7 7 13 Song et al. (2016)

Arachis ipaensis 77 14 4 10 18 7 9 15 Song et al. (2016)

Artemisia annua 122 (5) 26 8 10 18 16 10 29 De Paolis et al. (2020)

Beta vulgaris
(Sugarbeet)

58 11 3 7 15 7 8 7 Wu et al. (2019)

Brachypodium
distachyon

86 (2) 15 3 6 21 6 10 23 Tripathi et al. (2012)

Brassica napus 287 (5) 80 11 34 55 28 30 44 He et al. (2016b)

Camellia sinensis (Tea) 50 13 4 3 12 6 5 6 Wu et al. (2016)

Cicer arietinum
(Chickpea)

78 (4) 13 5 11 16 6 12 11 Kumar et al. (2016)

Coffea canephora 49 10 3 6 15 6 4 5 Dong et al. (2019)

Corchorus capsularis
(Jute)

43 9 2 7 7 6 6 6 Zhang et al. (2020)

Cucumis sativus
(Cucumber)

62 11 8 9 12 7 8 7 Govardhana and Kumudini
(2020)

Dendrobium officinale
(Orchid)

63 (11) 14 4 3 9 6 6 10 He et al. (2017)

Glycine max (Soyabean) 188 32 14 33 42 21 20 26 Yu et al. (2016a)

Glycyrrhiza glabra 82 17 61 4 Goyal et al. (2020)

Glycyrrhiza uralensis 54 5 37 12 Goyal et al. (2020)

Gossypium aridum 109 17 7 15 30 15 13 12 Fan et al. (2015)

Hevea brasiliensis
(Rubber)

81 16 6 11 17 9 8 12 2 Li et al. (2014)

Hordeum vulgare
(Barley)

45 8 4 1 11 5 3 13 Mangelsen et al. (2008)

Ipomoea batatas (Sweet
potato)

79 16 5 10 21 7 10 10 Qin et al. (2020)

Malus domestica
(Apple)

127 (13) 23 8 27 13 13 16 14 Meng et al. (2016)

Manihot esculenta
(Cassava)

85 17 5 14 20 8 9 12 Wei et al. (2016)

Medicago sativa
(Alfalfa)

107 20 5 13 27 8 16 18 Mao et al. (2020)

Medicago truncatula 98 (7) 16 5 11 18 7 16 18 Kumar et al. (2016)

Morus notabilis 54 (1) 10 9 2 10 12 1 9 Baranwal et al. (2016)

Oryza sativa 98 17 4 8 16 7 1 8 26 Li et al. (2014)

Pennisetum glaucum
(Pearl millet)

97 12 3 8 20 5 16 33 Chanwala et al. (2020)

(Continued)
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Currently, the scope of the WRKY family has achieved a

broader perspective. In reference to functional diversity, the

WRKYs are associated with numerous functions in plants

including germination, growth and development, flowering,

senescence, carbohydrate synthesis, and secondary metabolite

synthesis (Yu et al., 2016b; Jiang et al., 2017; Yu et al., 2018). In

numerous studies, it has been reported that WRKY TFs enhance

tolerance to salinity stress (Lv et al., 2020; Zhu et al., 2020), drought

stress (He et al., 2016a; Wang et al., 2018), heat stress (He et al.,

2016a; Wang et al., 2018), chilling stress (Zhang et al., 2016b), heavy

metal stress (Sheng et al., 2019), and biotic stress (Cheng andWang,

2014; Bai et al., 2018) in plants.

Structurally, WRKY proteins consist of 60-amino-acid-long highly

conserved WRKY domains. These WRKY domains are made up of

four b-strand structures and a C-terminal zinc binding Cystine/

Histidine finger motif (Eulgem, 2006; Rushton et al., 2010). The b-
strand at the N-terminal contains a conserved stretch of seven amino

acids also referred to as “WRKY Signature”, usually composed of

“WRKYGQK”, while some WRKY variants, viz., WRKYGEK,

WRKYGKK, WRICGQK, WRMCGQK, WKKYGQK, WIKYGQK,

WKRYGQK, WSKYEQK, WRKYSEK, WRRYGQK, WSKYGOK,

WVKYGQK, WRICGQK, and WRMCGQK, have also been

reported in this family (Jiang et al., 2017). The hepta-peptide stretch

is considered essential for WRKY binding to the gene promoters [at
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specific location referred as W-Box–(T)TGAC(C/T)], and hence,

alterations in this pattern could lead to changes in their DNA

binding ability (Chen F. et al., 2017). W-box components are typical

in plant genomes and are made up of a conserved GAC core, a

downstream pyrimidine (C/T) residue, and an upstream thymine

residue. Although the core aids in WRKY binding, the neighboring

residues provide specificity for recognition of a given W-box by a

specific factor. For effective binding of WRKYs, more than one W-box

can occur in proximity. CertainWRKY are also known to regulate gene

expression by binding to elements other than W-box, which includes

WT-box (GGACTTTC), WK-box (TTTTCCAC), PRE4-element

(TGCGCTT), and SURE-element (TAAAGATTACTAATAGGAA)

(Phukan et al., 2016; Chen F. et al., 2017). Other domains also exist

among somemembers ofWRKY, including nuclear localization signals

(NLS), calmodulin binding sites (CBS), proline-rich region, nucleotide-

binding site, leucine-rich repeat, toll interleukin-1 receptor (TIR), NAC

(NAM, ATAF1/2 and CUC2) domain, SQUAMOSA promoter

binding protein (SBP) domain, ubiquitin-like protease domain,

paired amphipathic helix (PAH) domain, ATP-grasp, and other

structures. These systems may provide additional functional benefits

to WRKY TFs (Eulgem, 2006; Chen F. et al., 2017; Jiang et al., 2017).

The WRKY TFs have been classified into three groups (Table 2)

depending on number of WRKY domains (WDs) and pattern of Zn

finger motifs. Group I is composed of two WDs with C2H2-type
TABLE 2 Continued

Plant systems Number of WRKY TFs
(ungrouped WRKYs)

Number of WRKYs in different subgroups Reference

Group
I

Group II Group III

IIa IIb IIc IId IIe IIIa IIIb

Phaseolus vulgaris
(Bean)

90 (2) 16 5 14 22 7 11 13 Wang et al. (2016)

Populustrichocarpa 100 (1) 22 5 9 27 13 13 10 Jiang et al. (2014)

Prunuspersica (Peach) 58 10 3 8 15 7 7 8 Chen et al. (2016)

Ricinus communis
(Castor bean)

47 9 3 10 12 3 5 5 Li et al. (2012)

Saccharum spontaneum 154 (5) 17 6 12 40 11 12 51 Li et al, (2020b)

Salix suchowensis 85 19 4 8 23 13 11 7 Bi et al. (2016)

Solanum lycopersicum 81 (3) 15 5 8 16 6 17 11 Huang et al. (2012)

Solanum tuberosum
(Potato)

79 13 5 6 18 7 16 14 Zhang et al. (2017)

Sorghum bicolor
(Sorghum)

94 (2) 11 4 8 20 6 12 31 Baillo et al. (2020)

Theobroma cacao 61 (3) 10 3 8 17 6 6 8 Silva Monteiro de Almeida
et al. (2017)

Triticum aestivum 171 30 11 7 50 17 10 45 Ning et al. (2017)

Vitis vinifera
(Grapevine)

59 (2) 12 3 8 16 6 6 6 Wang et al. (2014)

Zea mays (Maize) 136 27 7 11 29 14 17 31 Wei et al. (2012)

Ziziphus jujuba
(Chinese jujube)

61 in Junzao variety 10 3 10 14 5 8 11 Chen et al. (2019)

52 in Dongzao variety 10 2 8 12 3 5 12
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zinc-finger motif, whereas group II has one WD with C2H2-type

zinc-finger motif. Group III also possesses single WD like group II,

but possesses C2HC-type zinc-finger motif (Kumar et al., 2016).

Furthermore, phylogenetic analysis, conserved domain structures,

and intron position of the WDs demonstrated further sub-grouping

of WRKY TFs (Eulgem et al., 2000; Zhang and Wang, 2005; Kumar

et al., 2016). Group II WRKYs are subdivided into five subgroups,

namely, IIa, IIb, IIc, IId, and IIe. Group III WRKYs are also

composed of two subgroups, namely, IIIa and IIIb (Wu et al.,

2005; Zhu et al., 2013). The WRKY domain at the C-terminus of

group I proteins is thought to be necessary for DNA binding activity

and exhibits similarity to the WRKY domains of group II and group

III proteins. WRKY TFs are further classified into two types: R-type

and V-type WRKYs, based on the position of intron. The R-type

WRKY has a splicing site between the first and second Gs of the

AGG codon (arginine), while the V-type WRKY has a splicing site

after the valine codon, which is located after the sixth amino acid

from the second cysteine residue of the zinc-finger motif (Jiang

et al., 2017).
5 WRKYs mediated transcriptional
modulation, its interacting
partners, and significance
under a stressed environment

WRKYs function as either activators or repressors in a variety of

molecular processes. They act in an auto-regulated or cross-

regulated manner by interacting with other WRKY members or

different proteins such as MAP kinases, calmodulin, histone

deacetylases, 14-3-3 proteins, and VQ proteins (Rushton et al.,

2010; Chi et al., 2013; Phukan et al., 2016). Sometimes, a single

WRKY may exhibit several responses, while several WRKYs may

also work together to mediate a particular response (Phukan

et al., 2016).

Various transcriptional, post-transcriptional, post-translational,

and proteasome-mediated mechanisms are known for regulating

expression and downstream activation of WRKY in normal and

stressed conditions. A zinc-finger protein, Zat12, induced by

various abiotic stimuli (salinity, drought, and wounding) was

reported to regulate the expression of AtWRKY25 (Mittler et al.,

2006). Certain MYB TFs also regulate the expression of WRKYs

(Ishida et al., 2007). Transcription of manyWRKYs is also regulated

by signal molecules. PTI [pathogen-associated molecular patterns

(PAMPs)-triggered immunity]- and ETI (effector-triggered

immunity)-mediated activation of WRKYs has been observed

under several biotic stresses. NaCl treatment induced the

expression of WRKY25 and WRKY33 in A. thaliana, and their

overexpression increased tolerance to salinity stress (Jiang and

Deyholos, 2009). Similarly, overexpression of GmWRKY54 in A.

thaliana increased the plant’s tolerance to salt stress. Salt stress also

led to accumulation of OsWRKY54 in rice, which, in turn, regulated

the expression of OsHKT1;5 by binding to the W-box motif in its

promoter. Extensive similarities and cross-talk exist between

salinity and drought stress responses in plants (Golldack et al.,
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2014). WRKY46, WRKY54, and WRKY70 together interact with

BES1 to regulate brassinosteroid-mediated drought response (Chen

J. et al., 2017). DREB TFs are considered as master regulators in

drought response. Regulation of DREBs by TaWRKY19 (Niu et al.,

2012) and GhWRKY59 (Jin et al., 2017) is another example of

crosstalk between TFs mediating salt response. On the other hand,

there are also examples where WRKYs function differently in salt

and drought stress. For instance, overexpression of GhWRKY25 in

Nicotiana benthamiana increases salinity tolerance but negatively

impacted drought tolerance and sensitivity to fungal pathogen.

Expression of WRKY was also reported to be controlled by

miRNAs at the post-transcriptional level (Phukan et al., 2016).

Interactions of histone deactelyases (HDAC), histone demethylase,

and histone methyl transferases with WRKY revealed the non-

genetic regulation of WRKYs in plants (Chi et al., 2013; Phukan

et al., 2016). Histone deactylase-19 removes acetyl groups from

histone tails and downregulates the expression of AtWRKY38 and

AtWRKY62 (Kim et al., 2008). The linker histone H1 MaHIS1

interacts with MaWRKY1 and functionally coordinates to influence

stress responses and ripening in banana fruit (Wang et al., 2012b).

Flowering Locus D (FLD) brings about histone modifications of

WRKY 29 and WRKY6 gene promoters and, thus, epigenetically

regulates their SAR (systemic-acquired resistance)-induced

expression (Singh et al., 2014). Chloroplast- and mitochondria-

mediated retrograde inter-organelle signaling to the nucleus

regulates several WRKY factors (Hammargren et al., 2008; Shang

et al., 2010). Furthermore, phosphorylation by kinases is also

known to modulate the expression and functioning of WRKY

TFs. MAPK regulates the expression of OsWRKY45 and provides

resistance to various pathogenic infections in rice. Responses to

bacterial and fungal infections are also modulated by AtWRKY22

and AtWRKY29 through the MAPK pathway (Göhre et al., 2012).

WRKYs in tobacco interact with MAPK cascade pathways in plant

defense against whiteflies (Yao et al., 2021). Proteasome-mediated

degradation also maintains the level of WRKYs under various

stressed and non-stressed conditions. UPS (ubiquitin proteasome

system) is known to degrade OsWRKY45 at normal un-diseased

state in plants, whereas the pathogenic invasions inhibit

proteasomes and accumulate OsWRKY45 (Matsushita et al., 2013;

Phukan et al., 2016).
6 WRKYs and crop improvement
for salt tolerance involve
multiple responses

WRKYs play promising roles during plant signaling and are

extensively reported for their contributions in abiotic and biotic

stress (Li et al., 2020a; Wani et al., 2021). Nevertheless, current

advances do divulge the vast significance of WRKY proteins for

regulation of plant abiotic stress tolerance (Huang and Amee, 2021;

Xiang et al., 2021). Researchers have employed specific WRKY TFs

to create transgenics with improved stress tolerance traits (Table 3),

because of their regulatory effects on stress-responsive genes

clusters (Banerjee and Roychoudhury, 2015). Understanding of
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the signaling cascades that lead to the activation and interaction of

the WRKY proteins with other signaling proteins, and the

regulation of downstream target genes are crucial in the choice of

WRKY genes for engineering stress tolerance in plants.

Salinity stress is a key abiotic stress that affects agricultural

productivity, mostly in semi-arid and arid areas. WRKYs are known

to play a critical role in the regulation of plant salt stress responses

(Figure 1B; Table 3). WRKY has been observed as both a positive

(Han et al., 2021; Xiang et al., 2021; Ye et al., 2021; Zhu et al., 2021)

and a negative regulator (Huang and Amee, 2021) for salinity stress.

In a study, 47 WRKY genes were reported to respond to salinity
Frontiers in Plant Science 09
stress in wheat (Hassan et al., 2019), which demonstrated the

significance of WRKY during salinity stress. The STZ (zinc finger

protein STZ/ZAT10) protein associated to ZPT2 (zinc finger

protein) is known for downregulating the deactivation of other

TFs and, therefore, functions as an inhibitor of transcription. Zhou

et al. (2008) reported that the STZ expression is inhibited by

GmWRKY54 in G. max, thus inducing response to salt stress via

the positive regulation of DREB2A-mediated pathway (Zhou et al.,

2008). In another study, Gong et al. (2015) demonstrated that

FcWRKY70 is involved in upregulating expression of arginine

decarboxylase (ADC), resulting in plant salinity tolerance. The
TABLE 3 Functional characterization of WRKYs towards salt stress and associated mechanism.

Plant system Type of
WRKY
protein

Response to
salinity

Biochemical and physiological changes References

Arabidopsis thaliana AtWRKY33 Enhances salinity
tolerance in transgenic
Arabidopsis thaliana

Improved stress tolerance via increased seedling length, reduced oxidative
stress, as well as by preventing leaf chlorosis.

Jiang and
Deyholos
(2009)

Brassica campestris BcWRKY46 Enhanced salinity
tolerance in transgenic
Nicotiana tabacum

Enhanced stress tolerance by increasing seed germination, mediated signal
transduction, as well as by activating the expression of osmotic stress
genes.

Wang et al.
(2012a)

Dendronthemagrandiform DgWRKY5 Improved salinity
tolerance in transgenic
Dendronthema
grandiform.

Improved stress tolerance via improvements to a number of growth
characteristics, including root length, chlorophyll content, fresh weight,
and leaf gas exchange parameters as well as by reduced oxidative stress
via upregulating the activity of antioxidant enzymes as well as the
expression of genes associated with stress.

Liang et al.
(2017)

Fagopyrumtataricum FtWRKY46 Enhanced salinity stress
tolerance in transgenic
Arabidopsis thaliana

Enhanced stress tolerance by modulating the ROS clearance as well as the
expression of stress-responsive genes.

Lv et al. (2020)

Glycine max GmWRKY49 Improved salinity stress
tolerance in transgenic
Glycine max and
Arabidopsis thaliana

Enhanced stress tolerance by improving several growth parameters like
germination rate, root length, survival rate, and rosette diameter by
reducing oxidative stress as well by regulating downstream stress-
responsive genes.

Xu et al. (2018)

Glycine max GmWRKY12 Confers salt tolerance in
transgenic Glycine max

It confers salt stress tolerance by lowering oxidative stress, as evidenced
by higher proline content and lower malondialdehyde (MDA) content in
transgenic lines

Shi et al. (2018)

Glycine max GmWRKY54 Improved salinity stress
tolerance in transgenic
Glycine max

Improved stress tolerance via regulated DREB2A and STZ/Zat10. Zhou et al.
(2008)

Gossypium hirsutum GhWRKY68 Reduced salinity
tolerance in transgenic
Gossypium hirsutum

Sensitive to oxidative stress. Jia et al. (2015)

Gossypium hirsutum GhWRKY17 Reduced salt tolerance The transgenic Nicotiana benthamiana overexpressing Gh WRKY17
exhibited impaired stomatal closer and also modulate the antioxidant
defense mechanism.

Yan et al.
(2014)

Ipomoea batatas L. IbWRKY2 Increased salinity stress
tolerance in transgenic
Arabidopsis thaliana

Increased stress tolerance via reduced oxidative stress by increasing gene
expression, associated with the ABA signaling pathway, proline
biosynthesis, and ROS-scavenging system

Zhu et al.
(2020)

Jatropha curca JcWRKY Improved salt stress
tolerance in transgenic
Nicotianata tabacum L.

Improved stress tolerance via improvement in several growth parameters
such as increasing germination potential, membrane stability, as well as
by reducing oxidative stress via improved activity of antioxidant enzymes.

Agarwal et al.
(2016)

Malus baccata (L.) Borkh MbWRKY5 Increases salinity
tolerance in transgenic
N. tabacum var. Xanthi

Increased stress tolerance by reducing oxidative stress via improving
activity of antioxidant enzymes as well as increased expression of stress-
responsive genes.

Han et al.
(2018)

(Continued)
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miR156/SPL is involved in modulation of tolerance to salinity stress

by upregulatingMdWRKY100 inMalus domestica (Ma et al., 2021).

The SbWRKY50 directly binds to SOS1 and HKT1 promoter and

participated in plant salt response by regulating ion homeostasis in

Sorghum bicolor (Song et al., 2020). The salt tolerance in transgenic

Arabidopsis-overexpressing peanut AhWRKY75 (Zhu et al., 2021)

involved the upregulation of genes associated with ROS scavenging

activity and improved antioxidant system (SOD, POD, and

catalase). Furthermore, the significantly lower accumulation of
Frontiers in Plant Science 10
malondialdehyde and superoxide anion content was also noticed

in transgenic plants (Zhu et al., 2021). Similar observation

was also noticed in transgenic Arabidopsis overexpressing

Myrothamnus flabellifolia MfWRKY70-mediated salt tolerance

(Xiang et al., 2021). The transgenic plants demonstrated the

positive regulation of stress-associated genes such as P5CS,

NCED3, and RD29A.

The salinity (and drought) tolerance in the ectopically expressed

TaWRKY75-A in Arabidopsis integrated jasmonic acid biosynthetic
TABLE 3 Continued

Plant system Type of
WRKY
protein

Response to
salinity

Biochemical and physiological changes References

Malus domestica MdWRKY30 Improved salinity stress
tolerance in transgenic
Arabidopsis thaliana.

Improved stress tolerance via transcriptional regulation of stress-related
genes.

Dong et al.
(2020)

Malus domestica MdWRKY100 Enhances salinity
tolerance in transgenic
Malus domestica

Improved stress tolerance via reduced oxidative stress. Ma et al. (2021)

Malus xiaojinensis MxWRKY55 Improved salinity
tolerance in transgenic
Arabidopsis thaliana

It enhances tolerance to stress by increasing proline and chlorophyll
content. Improving the antioxidant defense system, which reduced
malondialdehyde content

Han et al.
(2020)

Oryza sativa OsWRKY72 Increased susceptibility
to salinity stress in
transgenic Arabidopsis
thaliana and salt
sensitivity in Oryza
sativa.

Exogenous application of ABA and NaCl induced OsWRKY72 expression
in rice under salinity stress and improved the salt tolerance in rice by
upregulation of OsWRKY72

Song et al.
(2010)

Pennisetum glaucum PgWRKY33/
62

It enhances salt tolerance
in pearl millet

PgWRKY62 was significantly unregulated in salt-treated pearl millet
plants. Differential expression pattern in response to salinity stress in
various tissue such as leaf, stem, and root.

Chanwala et al.
(2020)

Phyllostachys edulis PeWRKY83 Enhanced salinity stress
tolerance in transgenic
Arabidopsis thaliana

It improves stress tolerance by regulating the stress-induced synthesis of
ABA.

Wu et al.
(2017)

Populus alba PagWRKY75 Negatively regulate salt
stress in Populus alba

PagWRKY75 reduces the ROS scavenging ability and proline
accumulation under various stresses, and positively regulates the water
loss rate of leaves. Thus, PagWRKY75 can negatively regulate salt and
osmotic tolerance by altering various physiological processes.

Zhao et al.
(2019)

Solanum lycopersicum L. SlWRKY8 Mediates salt stress
tolerance in transgenic S.
lycopersicum L.

Mediate salinity stress tolerance by reducing oxidative stress via increased
activity of antioxidant enzymes.

Gao et al.
(2020)

Triticum aestivum L. TaWRKY2/19 Improved salinity
tolerance in transgenic
wheat

Improved stress tolerance by regulating downstream stress-responsive
genes.

Niu et al.
(2012)

Triticum aestivum L. TaWRKY93 Enhanced salinity stress
tolerance in transgenic
Arabidopsis thaliana

It enhances salinity tolerance by enhancing osmotic adjustment, and
regulates transcription of stress-responsive genes.

Qin et al.
(2015)

Vitis pseudoreticulata VpWRKY3 Improves salinity
tolerance in transgenic
N. tabacum

VpWRKY3 is involved in abscisic acid signal pathway. Zhu et al.
(2012)

Vitis vinifera VvWRKY30 Improves salinity
tolerance in transgenic
Arabidopsis thaliana

Controlling the scavenging of reactive oxygen species as well as
accumulating osmoprotectants.

Zhu et al.
(2019)

Zea mays ZmWRKY17 Increased susceptibility
to salinity stress in
transgenic A. thaliana

Increased susceptibility to salinity stress via regulation of stress-responsive
genes.

Cai et al. (2017)
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pathways (Ye et al., 2021). In contrast, an increased expression level

of GhWRKY25 increases the salinity stress tolerance in upland

cotton, whereas transgenic tobacco plant showed comparatively

lower drought stress tolerance, signifying that the WRKY exhibited

different regulatory effects in response to diverse stress conditions

(Liu et al., 2016). Shen et al. (2015) revealed that the antioxidant

enzyme activity is enhanced during salt-induced H2O2 and cytosolic

Ca2+ stimulation in Populus euphratica, thus improving salt stress

tolerance. Salinity stress response has been shown to be largely

related to ABA-induced WRKY gene expression (Li et al., 2020a).

Various reports have demonstrated that ABA and NaCl when

applied exogenously can also induce WRKY expression like

AtWRKY25 and AtWRKY33 in Arabidopsis (Jiang and Deyholos,

2009), OsWRKY72 in rice (Song et al., 2010), GbWRKY1 in

Gossypium barbadense (Luo et al., 2020), and VpWRKY3 (Zhu

et al., 2012) and VpWRKY1/2 (Li et al., 2010) in grape. Functional

studies of WRKYs towards salt stress tolerance have been compiled

in Table 3, which also explains the pathways regulated during

WRKY-mediated tolerance to the salinity stress.

Additionally, WRKYs are also known as negative regulators of

salt stress tolerance trait in plants (Zhou et al., 2008; Huang and

Amee, 2021). The inhibition of salt stress tolerance via regulation of

the DNA binding and transcriptional activity of WRKY53 was

reported by Arabidopsis RPD3-like histone deacetylase HDA9

(Zheng et al., 2020). Li et al. (2015) reported overexpression of

Chrysanthemum CmWRKY17 in Arabidopsis, which resulted in

higher sensitivity towards salt stress. The study reported that stress

resistance-related genes in wild-type plants showed higher expression

against stress compared to transgenic Arabidopsis, demonstrating

that CmWRKY17may be implicated in negative regulation of salinity

stress inChrysanthemum (Li et al., 2015). Similarly, salinity sensitivity

was also observed in CdWRKY50 overexpressing Arabidopsis. The

CdWRKY50 can also bind to the AtDREB2A promoter, thereby

regulating its expression (Huang and Amee, 2021). In G. max, ABI1

could be the downstream target gene of GmWRKY13. Transgenic

studies in Arabidopsis exhibited that the overexpression of

GmWRKY13 enhanced ABI1 expression; however, plants were

found to be less tolerant to salt stress (Zhou et al., 2008).

Overexpression of ZmWRKY17 in Arabidopsis demonstrated an

inhibitory result on exogenous ABA treatment, ensuing

comparatively lower tolerance to high salinity (Cai et al., 2017).

Although the literature strongly supported this function of

WRKY in salinity stress, there are certain missing links that need

reasonable research, viz., How does salt stress cause WRKY

induction? Is this generalized or specific to plant/members of

WRKY gene family? Does post-translational modification of

WRKY impact its functionality during salt stress? Does the

homo- and heterodimerization of WRKY influence its behavior

during salinity? How does the WRKY-mediated metabolite

regulation influence its role in salt stress mitigation?
7 Conclusion and future directions

The ultimate solution to ensure crop production potential is to

incorporate tolerance traits into the plants. The significant impact
Frontiers in Plant Science 11
of salinity stress over crop production is an urgent challenge to

ensure sustainable crop production to feed the global population.

Salinity stress significantly deteriorates the crop production

potential throughout the globe, due to its larger effect on plant

physiology and biochemistry, thus ultimately leading to significant

agricultural loss. Plants differ significantly in terms of their

tolerance to salinity and have the capacity to sense this stress

through the SOS pathway, which involves many candidate

proteins. Among several tolerance mechanisms to address salinity

stress-mediated crop loss, the utility of TF-mediated tolerance is

well documented. Being one of the major TF families, WRKY plays

a significant role in plants at several avenues including stress

tolerance (plant fitness to environmental constraints). Over the

years, scientists have revealed that WRKY TFs not only contribute

to growth and development in plants, but also exhibit complex

regulatory networks and mechanism implicated in various stresses.

Since crops generally face different stresses and WRKYs play crucial

roles during stress response, further detailed studies on WRKY

genes are needed to specify their unique functions. So far,

characterization of WRKY is considered, and many plants have

been established as a model to support the significance of WRKY in

salt tolerance. Furthermore, the underlying mechanism is also

explored at few instances (Table 3) but broader validation is

needed. In addition, genomics has facilitated exploration of this

protein family in many crops and newer studies are continuously

enriching this data. Furthermore, such investigation offers a broader

perspective as the researcher can individually target most promising

WRKYs out of close putative candidates. Moreover, earlier research

work over WRKY gene functions was mostly focused on

transcriptomics and functional predictions, while further

applications of genetic confirmation integrated with novel tools

help to speed up the research regarding studies related to WRKY

neo-functionalization. Further characterization of the downstream

genes that are regulated through WRKY is still a challenge. Such

research explorations will help to elucidate the regulatory networks

involved in stress response in plants. Furthermore, non-coding

RNAs (ncRNA) and epigenetic modifications entailed in the

WRKY TFs regulation must be investigated in future research. By

integrating multiomics methods such as genomics, transcriptomics,

proteomics, and metabolomics, TFs have been investigated and

further modified utilizing genome editing tools such as CRISPR/Cas

systems to improve plant tolerance to various abiotic stresses such

as salt stress. In-depth studies of TFs will possibly enhance our

ability to improve the stress tolerance in crop plants to achieve food

security at the global level. Finally, using WRKY TFs to monitor

stress-tolerant plant cultivars and enhance stress resistance in plants

will considerably help to improve quality and yield in the

perspective of climate change and food security.
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