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Leaf area index (LAI) is an important biophysical parameter of vegetation and

serves as a significant indicator for assessing forest ecosystems. Multi-source

remote sensing data enables large-scale and dynamic surface observations,

providing effective data for quantifying various indices in forest and evaluating

ecosystem changes. However, employing single-source remote sensing spectral

or LiDAR waveform data poses limitations for LAI inversion, making the

integration of multi-source remote sensing data a trend. Currently, the fusion

of active and passive remote sensing data for LAI inversion primarily relies on

empirical models, which are mainly constructed based on field measurements

and do not provide a good explanation of the fusionmechanism. In this study, we

aimed to estimate LAI based on physical model using both spectral imagery and

LiDAR waveform, exploring whether data fusion improved the accuracy of LAI

inversion. Specifically, based on the physical model geometric-optical and

radiative transfer (GORT), a fusion strategy was designed for LAI inversion. To

ensure inversion accuracy, we enhanced the data processing by introducing a

constraint-based EM waveform decomposition method. Considering the spatial

heterogeneity of canopy/ground reflectivity ratio in regional forests, calculation

strategy was proposed to improve this parameter in inversion model. The results

showed that the constraint-based EM waveform decomposition method

improved the decomposition accuracy with an average 12% reduction in

RMSE, yielding more accurate waveform energy parameters. The proposed

calculation strategy for the canopy/ground reflectivity ratio, considering

dynamic variation of parameter, effectively enhanced previous research that

relied on a fixed value, thereby improving the inversion accuracy that increasing

on the correlation by 5% to 10% and on R2 by 62.5% to 132.1%. Based on the

inversion strategy we proposed, data fusion could effectively be used for LAI
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inversion. The inversion accuracy achieved using both spectral and LiDAR data

(correlation=0.81, R2 = 0.65, RMSE=1.01) surpassed that of using spectral data or

LiDAR alone. This study provides a new inversion strategy for large-scale and

high-precision LAI inversion, supporting the field of LAI research.
KEYWORDS

Leaf Area Index (LAI), remote sensing, full-waveform LiDAR, physical model, forest
canopy, GORT model, data fusion
1 Introduction

Leaf area index (LAI) is one of the prime determinants of

photosynthesis, which makes it an important quantity controlling

physical and biological processes of plant canopies and assessing

forest growth potential (Chen and Black, 1992; Barclay and

Goodman, 2000). As a fundamental attribute of global vegetation,

LAI has been listed as an essential climate variable by the global

climate change research community (Fang et al., 2019). The ability

to accurately and rapidly acquire LAI is an indispensable

component of process-based ecological research facilitating the

understanding of gas-vegetation exchange phenomenon at an

array of spatial scales from the leaf to the landscape (Zheng and

Moskal, 2009).

Remote sensing data provides large-scale, systematic land

surface observations consistently over the globe (Pan et al., 2008).

With remote sensing technology, LAI can be mainly derived from a

variety of sensors including passive optical sensors, active light

detection and ranging (LiDAR) instrument, and microwave sensors

(Fang et al., 2019). In passive optical sensors, multispectral and

hyperspectral sensors provide spectral measurements across the

electromagnetic spectrum, which are sensitive to subtle variations in

reflected energy and, therefore, have a giant potential for detecting

differences in vegetation (Mananze et al., 2018). However, LAI

retrieval using multispectral and hyperspectral data has potential

problems, such as the low signal-to-noise ratios (SNRs) of some

remote sensing data, the “curse of dimensionality” and problems of

saturation (Liu et al., 2016). In addition, optical remote sensing is

only capable of capturing information from the horizontal canopy,

resulting in a lack of information pertaining to vertical canopy (Xu

et al., 2022). In active LiDAR instrument, full-waveform LiDAR

systems can digitize the entire reflected energy, resulting in

complete waveforms from the top of the canopy to the ground

which reflect vertical profiles (Lefsky et al., 1999; Mallet and Bretar,

2009). It has been used to estimate LAI based on canopy structure

and radiation transfer principles, especially by means of the

correlation with the gap fraction (Wang and Fang, 2020). The

primary advantage of LAI estimation using full-waveform LiDAR

lies in its ability to capture detailed structural information beneath

the canopy through the complete energy waveform, thereby

mitigating estimation errors stemming from leaf aggregation.

However, the high-density data obtained from airborne LiDAR is

limited to the measurement range, whereas spaceborne full-
02
waveform LiDAR data is characterized by its substantial volume.

Multi-source remote sensing data have their own advantages and

disadvantages in LAI estimation. On this basis, researches on using

multi-source remote sensing data fusion to estimate LAI is

becoming a research hotspot for which it can give full play to the

advantages of different remote sensing data (Clevers and

vanLeeuwen, 1996; Yang et al., 2011; Ma et al., 2014; Qu

et al., 2015).

Existing methods for fusing spectral and LiDAR data are mostly

based on empirical models. The empirical model directly relates

inputs to outputs by pure statistical means, the advantage of which

lies in its simplicity (Weiss et al., 2020). Thomas et al. (2011)

estimated LAI with LiDAR and multispectral data by constructing

fused LiDAR-optical indices. Ma et al. (2014) combined LiDAR

data with the MODIS and MISR products to retrieve canopy height

and LAI by multivariate linear regression model and geometric-

optical mutual-shadowing (GOMS) model. Luo et al. (2019)

estimated maize LAI using the combined hyperspectral imagery

and LiDAR pseudo-waveforms by random forest (RF) regression

algorithm. Zhang et al. (2022) estimated the LAI of a short-crop

using UAS-based SfM and LiDAR point clouds, as well as the

spectral information from multispectral imagery. Zhang et al.

(2023) used six typical machine learning algorithms to construct

prediction models of LAI, among which the XGBoost model

showed the best performance. It also showed that the fusion of

data could significantly improve the predictive ability of the models.

However, the empirical model is strongly grounded with a large

amount of statistical data and can only be applied within a relatively

localized area because their performance is highly dependent on

vegetation types, canopy structures, sensors, and temporal change

(Xu et al., 2020). Empirical models, even superior deep learning

models, can also suffer from statistical problems such as overfitting

(Verrelst et al., 2015; Neinavaz et al., 2016).

In contrast to empirical methods, the physical model can be

better generalized and its physical principles is helpful for the

analysis of fusion mechanism (Myneni et al., 1997; Verrelst et al.,

2019; Kennedy et al., 2020). Based on LiDAR waveform, commonly

used models include gap fraction models (homogeneous canopy or

clumping-aware canopy) and three-dimensional (3-D) radiative

transfer models. Within multiple gap fraction models, gap

fraction can be performed by directly computing its aggregate

value (Luo et al., 2013; Fieber et al., 2014; Tseng et al., 2016; Jiang

et al., 2022) or by considering the vertical accumulation of gaps
frontiersin.org
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within the canopy layers (Ni et al., 1999; Yang et al., 2019). Gap

fraction models, with minimal input parameters, streamline LAI

computation through forward modeling (Zhao et al., 2011). The

geometric-optical and radiative transfer (GORT) model, one of the

gap fraction models, capitalizes on the capability of lidar waveform

data to characterize the underlying canopy structure (Ni-Meister

et al., 2001). Accurate vertical profiles of LAI can be derived by

GORT (Tang et al., 2012). This methodology has been employed in

the derivation of products for the spaceborne lidar GEDI and

exhibits a strong applicability of large-scale LAI estimation (Tang

et al., 2014; Wang et al., 2023). Regarding the 3-D radiative transfer

models such as Discrete Anisotropic Radiative Transfer (DART),

they are proficient in simulating lidar waveforms effectively

(Gastellu-Etchegorry et al., 2016; Gastellu-Etchegorry et al., 2017).

However, due to its multitude of model parameters and complex

scenarios, time-consuming aspects arise during the inversion

process. Taking the above reasons into consideration, we consider

conducting a data fusion inversion study based on the GORT

model. It is still a challenge to combine spectral imagery and

LiDAR waveform for LAI retrieval based on physical models. In

LAI estimation, spectral features including sensitive bands’

reflectance and spectral indices, play a pivotal role in accuracy

(Potithep et al., 2013; Liang et al., 2015). Waveform information

such as height, echo energy ratio and leaf coverage are key

parameters of LAI estimation using full-waveform LiDAR (Pope

and Treitz, 2013; Ma et al., 2015). Improving the physical model to

use the above parameters so as to make use of the respective

advantages of multi-source data is the key for LAI estimation

using both spectral and LiDAR data. In addition, the accuracy of

the physical model is susceptible to the initial assignment value of

model parameters and the quality of the input data (Houborg et al.,

2007). Adjusting the input parameters of the model based on the

study area and source data is also an important measure to ensure

the accuracy of LAI estimation.

In response to the above problems, the main objectives of this

paper are: (1) Developing an estimation strategy based on GORT

model to achieve data fusion. (2) Extracting accurate parameters for

LAI estimation from both spectral and LiDAR waveform data. (3)

Assessing the performance of the joint data fusion for LAI

estimation. Specifically, for the first time, we attempt to fuse

spectral and waveform data within the GORT model, achieving a

joint LAI estimation. We enhance the waveform decomposition

method to extract more accurate waveform parameters.

Furthermore, on the basis of the existing retrieval, we improve

the model input parameter canopy/ground reflectivity ratio (rv=rg)
to make it more suitable for the large-scale forest with the

heterogeneity of the spectrum. The significance of this study lies

in providing novel insights into the fusion of active and passive

remote sensing data, thereby contributing to the enhancement of

accurate large-scale LAI estimation.
2 Study area and data

The study area is located in Harvard Forest, a 4000 acres forest

in Petersham, Mass., which is now among the most studied forests
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in the world. As a critical node in USA national ecological network

(LTER, NEON and ForestGEO), Harvard Forest department

gathers and produces various datasets from its ecological scientific

researches. At the same time, many remote sensing ecosystem

projects choose Harvard Forest as study area, which provide

multi-source remote sensing data. For these reasons, we chose the

Harvard Forest to carry out remote sensing research of multi-

source data.
2.1 LVIS airborne LiDAR data

NASA’s Land, Vegetation, and Ice Sensor (LVIS), is an

airborne, wide-swath, full waveform imaging laser altimeter

system, which emits 1064nm wavelength laser pulses to collect

data on surface topography and 3-d structure with medium

25m footprint.

During summer 2021, LVIS operated as a NASA Facility to

calibrate and validate the space-based LiDAR sensor GEDI (Global

Ecosystem Dynamics Investigation) by conducting overflow ground

tracks over the Eastern United States and French Guiana. The LVIS

Classic instrument was flown on Gulfstream V at a flight altitude of

41,000’, covering Harvard Forest completely on August 6, 2021. The

data products of LVIS include Level 1B Geolocated LVIS

Waveforms (HDF format) and Level 2 Geolocated Surface

Elevation and Height Product (ASCII Text format), from which

ecosystem structure parameters can be derived (Blair et al., 1999;

Blair and Hofton., 2020).

In this research, we used data products of the LVIS flight on

August 6, 2021, obtained from ‘https://nsidc.org/data/LVISC1B/

versions/1’. From these, we extracted multiple parameters for each

pulse into a comprehensive dataset (.csv). The parameters included:

laser shot (shotnumber), longitude (lon), latitude (lat), elevation of

the highest detected signal (zt), elevation of the lowest detected

mode within the waveform (zg), return waveform (rxwave), signal

mean noise level (sigmean).
2.2 Sentinel-2 multispectral images

The Copernicus Sentinel-2 mission comprises a constellation of

two polar-orbiting satellites. It offers free multi-spectral images with

high spatial resolution (four bands at 10 m, six bands at 20 m and

three bands at 60 m spatial resolution). The orbital swath width is

290 km with high revisit time (5 days with 2 satellites under cloud-

free conditions which results in 2-3 days at mid-latitudes), which

support to accurately monitor land surface changes especially

vegetation changes and are beneficial to biophysical indicators

estimation (Drusch et al., 2012). The Sentinel-2 data has good

temporal and spatial resolution with high-quality. Numerous

studies have shown that it provides accurate retrieval of LAI.

(Korhonen et al., 2017; Hu et al., 2020; Zhou et al., 2020; Sun

et al., 2022).

Sentinel Applications Platform (SNAP), released by European

Space Agency (ESA), has been accelerating Earth observation

innovation since 2014. It can help to process and analyze
frontiersin.org
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Sentinel-2 imagery. In this experiment, the Sentinel-2 image was

processed by the Sentinel-2 Toolbox (S2TBX) in SNAP. We

acquired an L2A image of Sentinel-2 covering the Harvard Forest

on July 31, 2021 (https://doi.org/10.5270/S2_-znk9xsj). The base

map of Figure 1 is the Sentinel-2 RGB image of the study area

processed by SNAP. Based on SNAP, we obtained canopy cover

map from Sentinel-2 L2A image. Subsequently, using the latitude

and longitude information of the laser pulse from the LVIS, we

extracted parameters at each pulse point, including spectral

reflectance and canopy cover (CC) values.
2.3 Ground based LAI in Harvard Forest

The Harvard Forest Data Archive contains various datasets

from scientific research at the Harvard Forest, in which HF150

dataset collects Leaf Area Index at Harvard Forest HEM and LPH

Towers since 1998 (https://harvardforest.fas.harvard.edu/harvard-

forest-data-archive). Leaf area index is measured with the LAI-2000

canopy analyzer with one LAI sensor made at multiple plots within

each forest type - usually 12 plots within the old-growth hemlock

forest, and 36 plots on Little Prospect Hill (Orwig and Hadley,

2022). The time, distance from tower, compass direction from

tower from geographic north, LAI value of each plot is given in

the dataset, which help to correlate exact coordinates and values of

plots. The spatial distribution of ground plots is shown in Figure 1.
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3 Methods

To better utilize the advantages of spectral imagery and LiDAR

waveform, and considering the scale difference between satellite and

airborne data, we first designed a LAI estimation strategy based on a

physical model GORT, using airborne LiDAR waveform as the

main body and satellite spectral data as support. In order to

improve the LAI inversion accuracy, we optimized the model

input data and parameters: optimizing waveform decomposition

algorithm for more precise waveform energy data, improving the

method for obtaining the canopy/ground reflectivity ratio as model

parameter to obtain values more consistent with the actual research

area. Figure 2 shows an overview of the methods used in this paper.
3.1 A fusion strategy proposal based on
GORT model deconstruction

In order to perform joint estimation of LAI using both

spaceborne multispectral images and airborne LiDAR waveforms,

we decomposed the GORT model and developed a data

fusion strategy.

The geometric-optical and radiative transfer (GORT) model is

for the bidirectional reflectance of a vegetation cover combines

principles of geometric optics and radiative transfer (Li et al., 1995).

Ni-Meister et al. (2001) developed a method based on the modified
FIGURE 1

The spatial distribution of ground plots in Harvard Forest (The base map is Sentinel-2 RGB image.).
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GORT model to derive gap probability and canopy cover from

LiDAR waveforms. In the modified GORT model, the cumulative

canopy height profile (CHP) was calculated by using a logarithmic

transformation of (1-canopy cover). The canopy cover and gap

probability could be calculated as follows (Ni-Meister et al., 2001):

fcoVer(h) = 1 − Pgap(h) =
RV (h)
RV (0)

1
1+rv

rg
 

Rg
RV (0)

(1)

In formula (1), Pgap(h) and fcoVer(h) represented the gap

probability and canopy cover percentage above a particular height

h within canopy respectively. The terms RV (h), RV (0) and Rg were

the integrated laser energy returns from the canopy top to height h,

from canopy top to canopy bottom, and from the ground return

individually. The canopy and ground reflectance were rv and

rg respectively.
Canopy cover (CC) is typically defined as the extent of ground

area covered by the foliage of trees or other vegetation, as projected

from a vertical viewpoint onto a horizontal plane (Fiala et al., 2006).

From the perspective of remote sensing approaches, two types of

canopy cover estimates are commonly derived: metrics describing

the 2D horizontal extent of canopy, which is often expressed for a

given cover type as a percentage of pixels (Silvan-Cardenas and

Wang, 2010); or as 3D LiDAR metrics that represent the

transmission of light through the canopy (Morsdorf et al., 2006;

Korhonen et al., 2011; Moran et al., 2020). Researches have

demonstrated a strong correlation between canopy cover
Frontiers in Plant Science
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extracted from spectral data and LiDAR-derived inversion values,

with the latter frequently exhibiting higher accuracy (Smith et al.,

2009; Ma et al., 2017). Figure 3 shows a schematic diagram of the

principles of acquiring forest canopy information using active and

passive remote sensing sensors.

Based on the above researches, we assumed that the canopy

cover obtained by spectral imagery and LiDAR waveform are equal

in this study:

fcoVer(z) = RV (z)
RV (0)

1
1+rv

rg
 

Rg
RV (0)

= FVC (2)

where fcoVer(z) represented canopy cover percentage above

height z. We set the accumulated canopy cover percentage above

height z as equal to the estimated canopy cover (FVC) in the pixel at

the position of the LiDAR pulse using spectral imagery. z was set to

the height corresponding to 80% of the canopy energy in the return.

Therefore, the estimate of rv=rg could be expressed as:

rv
rg

= RV (z)
FVC*Rg

− RV (0)
Rg

(3)

Based on the above formulas, the canopy/ground reflectivity

ratio value of each pulse could be calculated according to LiDAR

waveform and spectral imagery.

Tang et al. (2012) deduced the formula of LAI derivation based on

the GORT model. The effectiveness of the method has been proved by

experiments. Total LAI can be calculated as (Tang et al., 2012):
FIGURE 2

The overview of the methods used in this paper.
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LAItotal =
C
G � ln 1 + RV (0)

rv
rg
�Rg

� �
(4)

where C represented the clumping index which adjusted the

linear relationship between effective LAI and true LAI (Chen, 1996).

We chose the clumping index value of 1.58 for the in Harvard

Forest (Tang et al., 2012). G was the projection coefficient and was

set to be 0.5 assuming a random foliage distribution within the

canopy (Ni-Meister et al., 2001). RV (0) and Rg were the integrated

laser energy returns from canopy top to canopy bottom, and from

the ground return individually, which were obtained by waveform

processing. rv=rg was calculated as formula (3) using both spectral

data and LiDAR waveforms. Based on formula 3 and 4, LAI was

estimated by combining spaceborne and airborne data. The

strength of this strategy is that we used the physical model to

realize the data fusion, and improve the parameter rv=rg by using

the spaceborne spectral reflectance.
3.2 Optimization of waveform
decomposition method for accurate
waveform energy parameters extraction

Waveform energy parameters are the main input data in LAI

inversion based on the GORT model, including canopy backward

energy, ground backward energy and waveform energy integral

returned at different altitudes, which are useful for segmentation,

classification and inversion purposes, in both forested and urban

areas (Mallet and Bretar, 2009). Selecting an appropriate processing

method to “purify” the original waveform data is vital to extract

structure parameters of forest, so as to accurately invert physical

parameters of vegetation. In this paper, waveform processing

procedure was designed for the processing of the Level 1B

Geolocated LVIS Waveforms and Level 2 Geolocated Surface

Elevation and Height Product. Specifically, to extract energy

parameters more accurately from waveforms, the waveform

decomposition algorithm was improved. The processing flow

chart is shown in Figure 4.

Firstly, the background noise of the echo was removed based on

the average noise parameter “sigmean” of each echo calculated in
Frontiers in Plant Science 06
flight provided by LVIS Level 1B product. Values less than the noise

threshold was eliminated.

Secondly, the Gaussian filtering algorithm was used to remove

other types of noise and smoothed the waveform. The methods of

waveform denoising mainly include Gaussian filtering, mean

filtering, Fourier low-pass filtering, etc. (Zhang et al., 2020).

Gaussian filtering has small time-frequency window area and a

simple design, which makes it widely used in the field of signal

processing. By measuring the echo denoising effect and adjusting

the parameters, a Gaussian filter with better denoising effect was

finally selected for echo denoising.

Finally, waveform decomposition method was applied to

decompose the echo and extracted effective waveform parameters.

Since the backscattered echo signal can be considered as the

superposition of multiple Gaussian signals, the Gaussian

decomposition method was used to fit the original signal to the

superposition of multiple Gaussian function curves (Zhou et al.,

2022). The backscattered echo can be expressed as:

W(t) = e + o
Np

m=1
Amexp −

(t − tm)
2

2sm
2

� �
(5)

In formula (5),W(t) is the amplitude of the waveform at time t;

e is the bias of the Gaussian waveform; Np is the number of

Gaussian components; Am,   tm,  sm are the amplitude, peak

position and waveform width of the waveform of the mth

Gaussian component respectively.

There are two main steps in the waveform decomposition: 1)

estimation of the initial parameters; 2) optimization of the

parameters and fitting the waveform (Zhou et al., 2021). After

extracting accurate initial values of parameters, the commonly used

waveform fitting methods include LM (Levenberg-Marquardt

optimization algorithm) method (Wagner et al., 2006) and EM

(Expectation-Maximization algorithm) method (Persson et al.,

2005), the accuracy of which has no significant difference (Zhou

et al., 2022). In the global optimization algorithm, waveform

components that are too close in distance are prone to being

merged during optimization, leading to significant fitting errors.

In this paper, in order to address recognition errors caused by some

echo components being close to the target, constraints were placed
FIGURE 3

The schematic diagram illustrating the principle of acquiring forest canopy information through active and passive remote sensing methods.
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on the values of each peak to improve the accuracy of the fitting

based on EM algorithm. The specific approach of the constraint-

based EM was designed as follows:

E-step: Compute the posterior probabilities for each component

given the data points using Bayes’ rule. The posterior probability for

the jth component of the Gaussian mixture model for the   ith data

point was given by:

gij =
wjpj(xi)

oK
k=1wkpk(xk)

(6)

where gij represented the probability that the ith data point

belonged to the jth component, pj(xi) was the probability density

function of a Gaussian distribution at   xi of the j th component.

M-step: Update the parameters of the Gaussian mixture model

using the posterior probabilities computed in the E-step. The

update equations for the means (mj), and standard deviations (sj)

of the jth component were given by:

P½a,b�(x) =

a   if   x <   a

x if   a ≤ x ≤ b

b if   x > b

8>><
>>: (7)
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a = mj0 − sj0 ,   b = mj0 + sj0 (8)

mj = P½a,b� oN
i=1gijxi
oN

i=1gij

 !
(9)

s2
j = o

N
i=1gij xi − mj

� �2
oN

i=1gij
(10)

where P½a,b�(x) was the projection operator that maps x onto the

interval ½a, b�, mj0 ,sj0 were the initial values of the mean and

standard deviation for the jth component.

Repeat E-step, M-step until convergence was achieved. The

constrained EM algorithm for LiDAR waveform decomposition

imposed constraints on the parameter range within the

optimization problem, leading to enhanced stability and accuracy

of the algorithm.

After waveform processing, we identified the last waveform

component as the ground component, and the rest as the canopy

components. Rg was the area enclosed by the amplitude of the last

waveform component and the coordinate axis within its start-stop
FIGURE 4

The flow chart of waveform processing (Rv (z), Rv (0) and Rg are the integrated laser energy returns from the canopy top to height z, from canopy top

to canopy bottom, and from the ground return individually.).
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range. RV (0) was the integral value of the other waveform

components within their start-stop range. RV (z) was the integral

value of the waveform from the initial position of canopy

component to the height of z.

In this section, we implemented the processing of LiDAR

waveforms, especially by adding constraints on the peak positions

in the waveform decomposition algorithm to obtain better

waveform decomposition results and calculate more accurate

waveform energy parameters.
3.3 Optimization of model parameter rv=rg
for large scale forest by gridding study area

When using the strategy proposed in Section 3.1 to calculate the

LAI of each pulse position, both spectral and LiDAR data are used

to calculate the model parameter rv=rg at this point, that is, rv=rg
varies with the input data in each position. Although the parameter

setting strategy is more accurate than taking a fixed value for the

entire study area, it causes large data uncertainty and increases the

computation of inversion. For example, abnormal waveform of a

pulse will result in abnormal calculated value of rv=rg , thus leading
to abnormal LAI inversion results at this point.

To solve this problem, we proposed a method to optimize the

model parameter rv=rg , that was, gridded the study area and

calculated the mean value of rv=rg in each grid. Then the LAI

estimation model was constructed by each grid. In a large area, the

canopy/ground reflectivity ratio varies with forest environmental

conditions. Gridding the study area not only accounts for the spatial

heterogeneity within Harvard Forest but also reduces the

computational complexity of LAI modeling, thereby mitigating

uncertainty arising from anomalous input data. Theoretically, the

optimization method is helpful to improve the inversion accuracy.

Specifically, we divided the study area into 2331 rectangular

grids (63*37), the coordinate size of each grid was 0.002° * 0.002°

(about 36118m2). In order to reduce the uncertainty, the statistical

method of histogram distribution was used to eliminate extreme

abnormal ratio values that without the range of the mean plus or

minus three standard deviations in each grid. Then an average

reflectivity ratio was assigned for all the pulses in grid to reduce the

uncertainty caused by pulse quality. The reflectivity ratio of each

grid was the trimmed mean of all pulses in the grid.
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4 Result and discussion

4.1 Waveform energy parameters
based on optimized waveform
decomposition method

For the purpose of obtaining accurate canopy and ground

energy parameters, we processed a total of 187,302 LiDAR

waveforms in the study area through denoising, smoothing, and

waveform decomposition based on least squares optimization.

During this process, the waveform energy parameters Rg and RV

obtained using different least squares optimization methods

were compared.

The correspondence between the original waveforms and

Gaussian model estimates of Rg and  RV using different

optimization algorithms is shown in Table 1. Overall the

correspondence is high for both RV and Rg , the R2 of which are

all above 0.99. Further comparative analysis between the canopy

and ground components reveal that the overall canopy R2 is lower

than that of the ground. The RMSE for the canopy is significantly

higher than that of the ground, with a maximum difference of

35.656. It can be attributed to two main factors. Firstly, the canopy

component often has one or more echo components in LiDAR

waveforms, whereas the ground component typically only has one.

Multiple echo components result in larger errors in waveform

decomposition, leading to poorer correspondence of RV .

Secondly, due to the significant differences in canopy coverage,

the waveform energy fluctuation of canopy is also much larger,

resulting in a much higher RMSE compared to the ground.

Comparing the results obtained from two different optimization

methods, it is found that correspondence is higher for both Rg and

 RV when the bound of peaks are constrained, compared to the

result without parameter constraints (higher R2 and lower RMSE).

To investigate the reasons for the result, we compare the waveform

fitting results of two different optimization methods. The results of

waveform decomposition using unconstrained optimization

algorithm and optimization algorithm with peak boundary

constraints are shown in the Table 2. We conducted an average

statistical analysis of the fitting results for all waveforms in the study

area and found that the constrained optimization algorithm yielded

a fitting waveform with R2 of 0.979,MAE of 6.907,MSE of 103.016,

and RMSE of 8.596. The fact that the average R2 is almost close to 1
TABLE 1 Correlation results of waveform and Gaussian model integrals using different optimization algorithms for the ground (Rg) and canopy (Rv)
components of the waveforms.

Waveform energy parameters Optimization algorithms R2 RMSE

Rv
Constraint-based EM 0.991 62.980

EM 0.990 65.926

Rg
Constraint-based EM 0.998 27.324

EM 0.997 33.766
front
“Constraint-based EM” means the Expectation-Maximization algorithm with peaks boundary constraints, “EM” means the original Expectation-Maximization algorithm.
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https://doi.org/10.3389/fpls.2023.1237988
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shi et al. 10.3389/fpls.2023.1237988
and the small values of the average MAE and RMSE indicate good

overall waveform fitting results, suggesting that the model is able to

fit the majority of the LiDAR waveforms accurately. The

optimization algorithm with no constrain yielded a fitting
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waveform with R2 of 0.978, MAE of 6.971, MSE of 104.740, and

RMSE of 8.681. Compared with the constrained method, the

average MAE, MSE, and RMSE values are higher for the

unconstrained method, while the difference of average
TABLE 2 Performance of waveform decomposition using different optimization algorithms.

Optimization algorithms R2 MAE MSE RMSE

Constraint-based EM 0.979 6.907 103.016 8.596

EM 0.978 6.971 104.740 8.681
fron
“Constraint-based EM” means the Expectation-Maximization algorithm with peaks boundary constraints, “EM” means the original Expectation-Maximization algorithm.
A

B

C

FIGURE 5

Waveform fitting and waveform energy parameters results using two different optimization methods. (A) with two canopy echoes and one ground
echo; (B) with two canopy echoes and one ground echo; (C) with three canopy echoes and one ground echo (The left column: the original
Expectation-Maximization algorithm, the right column: the Expectation-Maximization algorithm with peaks boundary constraints).
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R2is not significant. This suggests that the overall fitting

accuracy of the unconstrained method is lower than that of the

constrained method.

To further analyze the waveform decomposition result using

different methods and its effects on the value of Rg and  RV , we

extracted some waveforms with significant differences in inversion

accuracy using two different optimization methods (Figure 5). The left

column shows results obtained by EMmethod, while the right column

shows results obtained by constraint-based EMmethod. The waveform

energy parameters result of the three waveforms are shown in Table 3.

Waveform (a) contains two canopy echoes and one ground echo. The

waveform decomposition using EMmethod identifies only one canopy

echo, and the calculated energy of the canopy echo is 2179.58, which

differs significantly from the actual value of 2166.87. The constraint-

based EM method identifies two canopy echoes, and the calculated

value of 2166.21 is almost the same as the actual value. Waveform (b)

contains two canopy echoes and one ground echo, and the second
Frontiers in Plant Science 10
canopy echo and ground echo are combined into one waveform

component using the EM method, resulting in a large difference

between the canopy and ground energy calculation results of 1510.62

and 805.17 and the actual 1562.44 and 775.86, while the added

constraint method does not show this phenomenon. Waveform (c)

contains three canopy echoes and one ground echo, which are partially

combined by the EM method due to the close distance of each canopy

echo, resulting in a large difference between the calculated canopy

energy (1939.33) and the actual value (1945.25). The results reveal that

the waveform energy parameters calculated by constraint-based EM

method are more precise than the unconstrained EM method. The

waveform diagram shows that the main reason for the difference in

accuracy between the two waveform decomposition methods is that

after constraining the peak position of each waveform component, the

merge of the closed waveform echoes can be avoided.

These results provide evidence that compared to optimization

algorithms without parameter boundary constraints, the proposed
FIGURE 6

The heat map of gridded canopy/ground reflectivity ratios in the study area (left) (The right image shows the Sentinel-2 RGB image of the study area).
TABLE 3 Rg and Rv of typical waveforms based on different methods.

Typical waveforms Parameter Constraint-based EM EM Actual value

(a)
Rv 2166.21 2179.58 2166.87

Rg 130.32 131.19 128.82

(b)
Rv 1552.01 1510.62 1562.44

Rg 779.52 805.17 775.86

(c)
Rv 1951.70 1939.33 1945.25

Rg 292.26 291.28 294.82
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constraint-based EM method can perform waveform decomposition

more accurately and, to a certain extent, avoid decomposition errors

caused by waveform components being too close to each other. Based

on the waveform decompositionmethod, more precise RV and Rg can

be obtained, providing accurate values for subsequent LAI inversion.
4.2 The gridded rv=rg result

After gridding the study area, the rv=rg value of each grid is

shown in Figure 6, and the statistical result is shown in the Table 4.

Comparing the value heatmap (Figure 6 left) with the RGB images

(Figure 6 right) of the study area, it can be found that the rv=rg is
correlated with the degree of vegetation coverage. The value of rv
=rg in non-vegetated and sparsely vegetated areas is generally lower

than that of areas with higher vegetation coverage. The spatial

distribution of rv=rg coincided with the actual vegetation

distribution, indicating the accuracy of the calculation method we

proposed. The statistical results show that the final ratio of 2331

grids in the study area is within the range of [0, 3.68], the average

value is 2.45, and the root mean square is 0.80.

In previous studies, Lefsky et al. (1999) suggested using a constant

(rv=rg = 2) for 1064 nm. Tang et al. (2012) obtained the rv=rg value
of 2.5 at 1064 nm and used it as the mean value for the whole study

area. In addition to determining the ratio by empirical field

measurements, extracting from LiDAR waveforms using statistical

methods (Ni-Meister et al., 2010; Armston et al., 2013) is also a way to

calculate this ratio. The value of canopy/ground reflectivity ratio is

basically between [0, 3]. Due to the lack of measured data, and no

research has used the method of combining spectral and LiDAR data

to calculate rv=rg , it is currently impossible to accurately

demonstrate the accuracy of the calculated ratios. However, the

average and mean square deviation results show that most of the

reflectance ratios are [0, 3] with only a few abnormal values, it can be

proved that accurate gridded rv=rg of the study area can be obtained

by this strategy. These provide a new idea for the calculation of rv=rg .
4.3 Comparison of LAI inversion
results based on different data and
inversion methods

In this section, we explored the LAI retrieval results based on

different datasets and different methods for calculating rv=rg . The
accuracy is compared with the existing field measurement data.
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Using the fusion strategy we proposed, we obtained the LAI

map using LiDAR waveform and multispectral image (Figure 7).

The result shows that directly using the data of entire study area

without land cover classification can estimate LAI well. For

example, LAI values of the road in the lower left of this research

area are 0. We can clearly distinguish the vegetation and non-

vegetation areas from the LAI map. In the vegetated area, the LAI

values are generally around 3-7, and reach above 7 in a few dense

areas, indicating that the area is relatively heavily forested, which is

basically consistent with the actual situation. Comparing the

inversion results with the true LAI value provided by Harvard

Forest HEM plots, the correlation, R2 and RMSE are 0.81, 0.65, 1.01

respectively (Figure 8), which shows that the LAI map obtained

have high accuracy. The method we proposed to invert LAI by

fusing LiDAR and spectral data is feasible.

We conducted LAI estimation based on four different strategies

for comparative analysis. These strategies encompassed two that

exclusively utilized LiDAR data, one that solely relied on spectral

data, and one that integrated both LiDAR and spectral data. Using

only LiDAR data, we reproduced the methods used by Tang et al.

(2012) and Armston et al. (2013) respectively. They both performed

the inversion based on the GORT model, only some of the

parameters in the model were determined in different ways. The

LAI estimation maps (Figures 9A, B) were performed according to

the parameters they set. Using only spectral data, we adopted the

most traditional empirical model to construct the linear
TABLE 4 The statistics of the canopy/ground reflectivity ratio of each
grid.

Parameters Value

Number of grids 2331

Max 3.68

Min 0.00

Average 2.45

Standard deviation 0.80
FIGURE 7

LAI map of the study area using both spectral and LiDAR data.
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relationship between NDVI-LAI for LAI inversion using the LAI

true value of the Harvard Forest LPH flux tower’s 36 plots

(Figure 9C). Using LiDAR waveform and spectral data, we

employed the method proposed by Yang et al. (2019) and the

obtained result was depicted in Figure 9D. Based on the true LAI

value of Harvard Forest, the accuracy evaluation of the estimation

results obtained by various methods was carried out. The overall

accuracy results are shown in Table 5.

Figures 9A, B indicates the LAI inversion results using only

LiDAR data. Similar to LAI map obtained by the method proposed

in this study, the results show obvious differentiation between

vegetation and non-vegetation areas. However, the difference lies

in that, LAI values of invention are too high in places with dense

vegetation only using LiDAR data. By Tang et al. (2012) ‘s method,

the LAI inversion result shows the correlation of 0.63, R2 of 0.40 and

RMSE of 2.01 with ground plot LAI, indicating a moderate

correlation between the two. By Armston et al. (2013) ‘s method,

the inverted LAI is weakly correlated with the true value, with a

correlation coefficient of 0.53, R2 of 0.28 and RMSE of 2.85. It shows

that the accuracy of the two LiDAR-only inversion methods is lower

than that of the fusion of LiDAR and spectral data. The LAI map

inverted by the empirical model is shown in Figure 9C. The results

show that there is a large difference between the LAI inversion

results obtained by using only spectral data and those obtained by

fusing the two data. Based only on spectral data, the inverted LAI is

an underestimate with the highest value being only 4.8. It shows a

correlation of 0.48, R2 of 0.25 and RMSE of 2.72 with ground plot

LAI, which is poor compared to the inversion result that combines

the two data. Figure 9D illustrates a low accuracy in LAI estimation

(the correlation of 0.51, R2 of 0.30 and RMSE of 2.76), with LAI

values consistently underestimated. This discrepancy may be

attributed to the unsuitability of the model for the tree species

and data sources in this study area. The original LiDAR waveform

used by Yang et al. (2019) is acquired from a large-footprint LiDAR

system (70m), which significantly differs from the experimental
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data used in this study (25m). Comparing various estimation

strategies, it is evident that the fusion of both active and passive

remote sensing data contributes to improved LAI estimation

accuracy. The enhancements we have proposed for the GORT

model further enhance LAI estimation precision.

We successfully estimate LAI based on the GORT model

combining LiDAR and spectral data with a correlation of 0.81

and R2 of 0.65, which shows a large accuracy improvement

compared to both LiDAR data alone and spectral data alone.

These improvements can be attributed to the addition of spectral

data to improve the parameters of the model. Comparing the three

inversion methods based on the GORT model, the main difference

between them is the rv=rg value of the model, which may be the

main reason for the difference in inversion accuracy. The rv=rg of
the study area is determined as a constant value of 2.5 by experience,

which helps to reduce the amount of computation. But this

empirical value may not necessarily be applicable to Harvard

Forest and a fixed value cannot adequately represent the forest

conditions of the entire study area, which may be the prime causes

of the low accuracy. The use of least squares methods provides a

new approach for the calculation of the ratio, which does not rely on

manual measurements, but rather on the energy returned by the

LiDAR. Based on this approach, we obtain rv=rg of 1.17 for the

study area. The main reasons for the low accuracy can be attributed

to two factors. Firstly, similar to using experienced value, calculating

a single value for the entire Harvard Forest will cause abnormal

results due to the complexity of the forest canopy. Secondly, the

quality of the LiDAR can greatly affect the results. Such as areas in

low point density in canopy that do not reflect enough energy

(Chauve et al., 2009). Combining the spaceborne spectral data and

airborne LiDAR data to calculate the reflectance ratio can use high-

quality spectral data to a certain extent to eliminate the abnormal

phenomenon of reflectance ratio caused by the abnormal collection

of some LiDAR footprints. Compared with the above two methods,

the gridded rv=rg calculation method we proposed considers the

influence of these factors. By combining spaceborne spectral data

and airborne LiDAR waveform to calculate the rv=rg , the influence
of abnormal waveforms on the value of rv=rg   can be eliminated to

some extent. At the same time, laborious ground truth

measurements of reflectance are no longer needed (Yang et al.,

2006). Furthermore, dividing the study area into grids and

calculating the average rv=rg in each grid can not only further

eliminate abnormal values through statistical method, but also

calculate different rv=rg in view of the canopy heterogeneity in

large-scale complex forest. It can be found from the LAI maps of the

three methods that the method of taking a constant value would

lead to higher LAI values in the areas of dense vegetation, which is

due to the fact that the actual rv=rg   in these areas are higher than

the determined value of the model. LAI results obtained by the

method we proposed are basically within 7, with only a few outliers.

The results also confirm the validity of the proposed method.

In addition to the inversion based on the GORT physical model,

the LAI inversion based on the empirical NDVI-LAI relationship

(Turner et al., 1999) is also carried out based on the spectral data. The
FIGURE 8

Scatterplots of field-observed LAI against estimated LAI using both
spectral and LiDAR data.
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results show that the inversion accuracy of the empirical model using

spectral data (correlation of 0.48 and R2 of 0.25) is much lower than

that of the physical model using LiDAR waveforms. The empirical

model needs a certain amount of truth values to ensure the accuracy

of the inversion equation. However, there are only 48 small plots in
Frontiers in Plant Science 13
the study area, which in theory can cause large errors when used for

empirical model construction and verification. Also, the existing plots

of Harvard Forest HEM and LPH Towers are concentrated in a small

area, which cannot well represent the NDVI-LAI relationship of the

entire study area. It is the main reason for the lower precision., Our
A B

DC

FIGURE 9

LAI maps of the study area using different strategies. (A) by Tang et al. (2012) ’s method; (B) by Armston et al. (2013) ’s method; (C) by NDVI-LAI
relationship model; D: by Yang et al. (2019) ’s method.
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results show that the strategy we proposed in this study is viable for

predicting forest LAI. The combined multispectral imagery and

LiDAR waveform can improve the input parameter rv=rg of the

GORT model and contribute to prediction accuracy of LAI.
4.4 Limitations

While this study has successfully achieved the joint inversion of

spectral and LiDAR data for LAI estimation based on a physical

model, there are still some limitations. Firstly, due to the limited

number of ground measurement points in our study area, we are

unable to achieve the fusion of LiDAR and spectral data for LAI

retrieval based on empirical models, and compare it with the results

from physical models. Nevertheless, this also partly demonstrates

the advantages of developing data fusion inversion based on

physical models, which helps us reduce reliance on ground

measurements, lower manual labor costs, and facilitates the

widespread application of large-scale regions. Secondly, while

both LiDAR data and spectral data are commonly employed for

retrieving canopy cover, there remains a disparity between the

values obtained through these two methods (Smith et al., 2009; Li

et al., 2023). This discrepancy, though overlooked in this

experiment, may cause errors in inversion. It might be one of the

contributing factors to the limited precision in LAI inversion.

Research is warranted in future experiments to address this issue

and enhance the inversion accuracy. Additionally, due to time and

resource constraints, we do not validate the effectiveness of this

method in regional scale. In future research, we will further explore

the contribution of data fusion to LAI based on theoretical analysis.
5 Conclusion

Spectral imagery and full-waveform LiDAR data can provide

reflectance information and echo energy information reflecting the

vertical structure of the forest canopy respectively. Joint active and

passive remote sensing data has great potential for accurate

inversion of forest canopy LAI. Our research is one of the few
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attempts to derive LAI using both spectral imagery and LiDAR

waveform based on physical model retrieval rather than through

empirical methods. We proposed a useful data-joint LAI inversion

strategy based on the GORT model using LiDAR waveform and

spectral data. For the large-scale heterogeneous forest, we further

accurately extracted the waveform energy parameters as the model

input data and optimized the model input parameter canopy/

ground reflectivity ratio to improve the inversion accuracy. The

results show that comparing with only using LiDAR or spectral

imagery, the LAI calculated by the proposed strategy using both

LiDAR waveform and spectral imagery has a higher accuracy,

indicating the effectiveness of the proposed strategy. Overall, our

study confirms that optimizing the input parameter and data of the

model for the study area can help improve the inversion accuracy,

and the combined LiDAR waveform and multispectral imagery

have potential for improving prediction accuracies of LAI.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

Conceptualization, ZS and SS. Methodology, ZS and SS. Formal

analysis, ZS and LX. Investigation, ZS and BW. Data curation, BC

and QX. Writing—original draft preparation, ZS. Writing—review

and editing, JS and SS. Supervision, WG. Project administration,

WG. Funding acquisition, WG and SS. All authors contributed to

the article and approved the submitted version.
Funding

This work is supported by the National Natural Science

Foundation of China (Grant No.41971307), Fundamental Research
TABLE 5 The accuracy of LAI retrieval results using different methods.

Data Reference Model
rv=rg calculation
strategy

rv=rg Correlation R2 RMSE

LiDAR waveform and Spectral
imagery

\ GORT Fusion strategy (proposed)
Change
value

0.81 0.65 1.01

LiDAR waveform Tang et al. (2012) GORT Set experienced value 2.50 0.63 0.40 2.01

LiDAR waveform
Armston et al.
(2013)

GORT Least squares 1.07 0.53 0.28 2.85

LiDAR waveform and Spectral
imagery

Yang et al. (2019)
Gap fraction-based
model

Set experienced value 2.00 0.51 0.30 2.76

Spectral imagery \
NDVI-LAI
relationship

\ \ 0.48 0.25 2.72
front
\, indicates that the grid value is empty.
iersin.org

https://doi.org/10.3389/fpls.2023.1237988
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shi et al. 10.3389/fpls.2023.1237988
Funds for the Central Universities (Grant No.2042022kf1200,

2042023kf0217), State Key Laboratory of Geo-Information

Engineering (Grant No.SKLGIE2023-Z-3-1), Wuhan University

Specific Fund for Major School-level Internationalization Initiatives,

and LIESMARS Special Research Funding.
Acknowledgments

We gratefully acknowledge the Harvard Forest, National Snow

& Ice Data Center (NSIDC) and Copernicus SENTINEL-2 mission

for providing public data and the open access to the python, SNAP.

The authors would also like to thank reviewers for many

constructive comments on the manuscript.
Frontiers in Plant Science 15
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Armston, J., Disney, M., Lewis, P., Scarth, P., Phinn, S., Lucas, R., et al. (2013). Direct
retrieval of canopy gap probability using airborne waveform lidar. Remote Sens.
Environ. 134, 24–38. doi: 10.1016/j.rse.2013.02.021

Barclay, H. J., and Goodman, D. (2000). Conversion of total to projected leaf area index in
conifers. Can. J. Botany-Revue Can. Botanique 78, 447–454. doi: 10.1139/cjb-78-4-447

Blair, J. B., and Hofton., M. (2020). LVIS Classic L1B Geolocated Return Energy
Waveforms, Version 1 (Boulder, Colorado USA: NASA National Snow and Ice Data
Center Distributed Active Archive Center). doi: 10.5067/O8UCOA2D6ZE3

Blair, J. B., Rabine, D. L., and Hofton, M. A. (1999). The Laser Vegetation Imaging
Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping
vegetation and topography. Isprs J. Photogrammetry Remote Sens. 54, 115–122. doi:
10.1016/S0924-2716(99)00002-7

Chauve, A., Vega, C., Durrieu, S., Bretar, F., Allouis, T., Deseilligny, M. P., et al.
(2009). Advanced full-waveform lidar data echo detection: Assessing quality of derived
terrain and tree height models in an alpine coniferous forest. Int. J. Remote Sens. 30,
5211–5228. doi: 10.1080/01431160903023009

Chen, J. M. (1996). Optically-based methods for measuring seasonal variation of leaf area
index in boreal conifer stands. Agric. For. Meteorol. 80, 135–163. doi: 10.1016/0168-1923(95)
02291-0

Chen, J. M., and Black, T. A. (1992). Defining leaf-area index for non-flat leaves.
Plant Cell Environ. 15, 421–429. doi: 10.1111/j.1365-3040.1992.tb00992.x

Clevers, J., and vanLeeuwen, H. J. C. (1996). Combined use of optical and microwave
remote sensing data for crop growth monitoring. Remote Sens. Environ. 56, 42–51. doi:
10.1016/0034-4257(95)00227-8

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., et al.
(2012). Sentinel-2: ESA's optical high-resolution mission for GMES operational
services. Remote Sens. Environ. 120, 25–36. doi: 10.1016/j.rse.2011.11.026

Fang, H. L., Baret, F., Plummer, S., and Schaepman-Strub, G. (2019). An overview of
global leaf area index (LAI): methods, products, validation, and applications. Rev.
Geophys. 57, 739–799. doi: 10.1029/2018RG000608

Fiala, A. C. S., Garman, S. L., and Gray, A. N. (2006). Comparison of five canopy
cover estimation techniques in the western Oregon Cascades. For. Ecol. Manage. 232,
188–197. doi: 10.1016/j.foreco.2006.05.069

Fieber, K. D., Davenport, I. J., Tanase, M. A., Ferryman, J. M., Gurney, R. J., Walker, J.
P., et al. (2014). Effective LAI and CHP of a single tree from small-footprint full-waveform
liDAR. IEEE Geosci. Remote Sens. Lett. 11, 1634–1638. doi: 10.1109/LGRS.2014.2303500

Gastellu-Etchegorry, J. P., Lauret, N., Yin, T. G., Landier, L., Kallel, A., Malenovsky,
Z., et al. (2017). DART: recent advances in remote sensing data modeling with
atmosphere, polarization, and chlorophyll fluorescence. IEEE J. Selected Topics Appl.
Earth Observations Remote Sens. 10, 2640–2649. doi: 10.1109/JSTARS.2017.2685528

Gastellu-Etchegorry, J. P., Yin, T. G., Lauret, N., Grau, E., Rubio, J., Cook, B. D., et al.
(2016). Simulation of satellite, airborne and terrestrial LiDAR with DART (I):
Waveform simulation with quasi-Monte Carlo ray tracing. Remote Sens. Environ.
184, 418–435. doi: 10.1016/j.rse.2016.07.010

Houborg, R., Soegaard, H., and Boegh, E. (2007). Combining vegetation index and
model inversion methods for the extraction of key vegetation biophysical parameters
using Terra and Aqua MODIS reflectance data. Remote Sens. Environ. 106, 39–58. doi:
10.1016/j.rse.2006.07.016

Hu, Q., Yang, J., Xu, B., Huang, J., Memon, M. S., Yin, G., et al. (2020). Evaluation of
global decametric-resolution LAI, FAPAR and FVC estimates derived from sentinel-2
imagery. Remote Sens. 12, 912. doi: 10.3390/rs12060912
Jiang, H. L., Cheng, S. Y., Yan, G. J., Kuusk, A., Hu, R. H., Tong, Y. Y., et al. (2022).
Clumping effects in leaf area index retrieval from large-footprint full-waveform liDAR.
IEEE Trans. Geosci. Remote Sens. 60, 1–20. doi: 10.1109/TGRS.2021.3118925

Kennedy, B. E., King, D. J., and Duffe, J. (2020). Comparison of empirical and
physical modelling for estimation of biochemical and biophysical vegetation properties:
field scale analysis across an arctic bioclimatic gradient. Remote Sens. 12 (18), 3073. doi:
10.3390/rs12183073

Korhonen, L., Hadi,, Packalen, P., and Rautiainen, M. (2017). Comparison of
Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf
area index. Remote Sens. Environ. 195, 259–274. doi: 10.1016/j.rse.2017.03.021

Korhonen, L., Korpela, I., Heiskanen, J., and Maltamo, M. (2011). Airborne discrete-
return LIDAR data in the estimation of vertical canopy cover, angular canopy closure
and leaf area index. Remote Sens. Environ. 115, 1065–1080. doi: 10.1016/
j.rse.2010.12.011

Lefsky, M. A., Harding, D., Cohen, W. B., Parker, G., and Shugart, H. H. (1999).
Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern
Maryland, USA. Remote Sens. Environ. 67, 83–98. doi: 10.1016/S0034-4257(98)
00071-6

Li, L. Y., Mu, X. H., Jiang, H. L., Chianucci, F., Hu, R. H., Song, W. J., et al. (2023).
Review of ground and aerial methods for vegetation cover fraction (fCover) and related
quantities estimation: definitions, advances, challenges, and future perspectives. Isprs J.
Photogrammetry Remote Sens. 199, 133–156. doi: 10.1016/j.isprsjprs.2023.03.020

Li, X. W., Strahler, A. H., and Woodcock, C. E. (1995). A hybrid geometric optical-
radiative transfer approach for modeling albedo and directional reflectance of
discontinuous canopies. IEEE Trans. Geosci. Remote Sens. 33, 466–480. doi: 10.1109/
TGRS.1995.8746028

Liang, L., Di, L. P., Zhang, L. P., Deng, M. X., Qin, Z. H., Zhao, S. H., et al. (2015).
Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion
method. Remote Sens. Environ. 165, 123–134. doi: 10.1016/j.rse.2015.04.032

Liu, K., Zhou, Q. B., Wu, W. B., Xia, T., and Tang, H. J. (2016). Estimating the crop
leaf area index using hyperspectral remote sensing. J. Integr. Agric. 15, 475–491. doi:
10.1016/S2095-3119(15)61073-5

Luo, S. Z., Wang, C., Li, G. C., and Xi, X. H. (2013). Retrieving leaf area index using
ICESat/GLAS full-waveform data. Remote Sens. Lett. 4, 745–753. doi: 10.1080/
2150704X.2013.790573

Luo, S. Z., Wang, C., Xi, X. H., Nie, S., Fan, X. Y., Chen, H. Y., et al. (2019).
Combining hyperspectral imagery and LiDAR pseudo-waveform for predicting crop
LAI, canopy height and above-ground biomass. Ecol. Indic. 102, 801–812. doi: 10.1016/
j.ecolind.2019.03.011

Ma, H., Song, J. L., and Wang, J. D. (2015). Forest canopy LAI and vertical FAVD
profile inversion from airborne full-waveform liDAR data based on a radiative transfer
model. Remote Sens. 7, 1897–1914. doi: 10.3390/rs70201897

Ma, H., Song, J. L., Wang, J. D., Xiao, Z. Q., and Fu, Z. (2014). Improvement of
spatially continuous forest LAI retrieval by integration of discrete airborne LiDAR and
remote sensing multi-angle optical data. Agric. For. Meteorol. 189, 60–70. doi: 10.1016/
j.agrformet.2014.01.009

Ma, Q., Su, Y. J., and Guo, Q. H. (2017). Comparison of canopy cover estimations
from airborne liDAR, aerial imagery, and satellite imagery. IEEE J. Selected Topics Appl.
Earth Observations Remote Sens. 10, 4225–4236. doi: 10.1109/JSTARS.2017.2711482

Mallet, C., and Bretar, F. (2009). Full-waveform topographic lidar: State-of-the-art.
Isprs J. Photogrammetry Remote Sens. 64, 1–16. doi: 10.1016/j.isprsjprs.2008.09.007
frontiersin.org

https://doi.org/10.1016/j.rse.2013.02.021
https://doi.org/10.1139/cjb-78-4-447
https://doi.org/10.5067/O8UCOA2D6ZE3
https://doi.org/10.1016/S0924-2716(99)00002-7
https://doi.org/10.1080/01431160903023009
https://doi.org/10.1016/0168-1923(95)02291-0
https://doi.org/10.1016/0168-1923(95)02291-0
https://doi.org/10.1111/j.1365-3040.1992.tb00992.x
https://doi.org/10.1016/0034-4257(95)00227-8
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.1029/2018RG000608
https://doi.org/10.1016/j.foreco.2006.05.069
https://doi.org/10.1109/LGRS.2014.2303500
https://doi.org/10.1109/JSTARS.2017.2685528
https://doi.org/10.1016/j.rse.2016.07.010
https://doi.org/10.1016/j.rse.2006.07.016
https://doi.org/10.3390/rs12060912
https://doi.org/10.1109/TGRS.2021.3118925
https://doi.org/10.3390/rs12183073
https://doi.org/10.1016/j.rse.2017.03.021
https://doi.org/10.1016/j.rse.2010.12.011
https://doi.org/10.1016/j.rse.2010.12.011
https://doi.org/10.1016/S0034-4257(98)00071-6
https://doi.org/10.1016/S0034-4257(98)00071-6
https://doi.org/10.1016/j.isprsjprs.2023.03.020
https://doi.org/10.1109/TGRS.1995.8746028
https://doi.org/10.1109/TGRS.1995.8746028
https://doi.org/10.1016/j.rse.2015.04.032
https://doi.org/10.1016/S2095-3119(15)61073-5
https://doi.org/10.1080/2150704X.2013.790573
https://doi.org/10.1080/2150704X.2013.790573
https://doi.org/10.1016/j.ecolind.2019.03.011
https://doi.org/10.1016/j.ecolind.2019.03.011
https://doi.org/10.3390/rs70201897
https://doi.org/10.1016/j.agrformet.2014.01.009
https://doi.org/10.1016/j.agrformet.2014.01.009
https://doi.org/10.1109/JSTARS.2017.2711482
https://doi.org/10.1016/j.isprsjprs.2008.09.007
https://doi.org/10.3389/fpls.2023.1237988
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shi et al. 10.3389/fpls.2023.1237988
Mananze, S., Pocas, I., and Cunha, M. (2018). Retrieval of maize leaf area index using
hyperspectral and multispectral data. Remote Sens. 10 (12), 1942. doi: 10.3390/rs10121942

Moran, C. J., Kane, V. R., and Seielstad, C. A. (2020). Mapping forest canopy fuels in
the western United States with liDAR–landsat covariance. Remote Sens. 12 (6), 1000.
doi: 10.3390/rs12061000

Morsdorf, F., Kotz, B., Meier, E., Itten, K. I., and Allgower, B. (2006). Estimation of
LAI and fractional cover from small footprint airborne laser scanning data based on
gap fraction. Remote Sens. Environ. 104, 50–61. doi: 10.1016/j.rse.2006.04.019

Myneni, R. B., Nemani, R. R., and Running, S. W. (1997). Estimation of global leaf
area index and absorbed par using radiative transfer models. IEEE Trans. Geosci.
Remote Sens. 35, 1380–1393. doi: 10.1109/36.649788

Neinavaz, E., Skidmore, A. K., Darvishzadeh, R., and Groen, T. A. (2016).
Retrieval of leaf area index in different plant species using thermal hyperspectral
data. Isprs J. Photogrammetry Remote Sens. 119, 390–401. doi: 10.1016/
j.isprsjprs.2016.07.001

Ni, W. G., Li, X. W., Woodcock, C. E., Caetano, M. R., and Strahler, A. H. (1999). An
analytical hybrid GORT model for bidirectional reflectance over discontinuous plant
canopies. IEEE Trans. Geosci. Remote Sens. 37, 987–999. doi: 10.1109/36.752217

Ni-Meister, W., Jupp, D. L. B., and Dubayah, R. (2001). Modeling lidar waveforms in
heterogeneous and discrete canopies. IEEE Trans. Geosci. Remote Sens. 39, 1943–1958.
doi: 10.1109/36.951085

Ni-Meister, W., Lee, S. Y., Strahler, A. H., Woodcock, C. E., Schaaf, C., Yao, T. A.,
et al. (2010). Assessing general relationships between aboveground biomass and
vegetation structure parameters for improved carbon estimate from lidar remote
sensing. J. Geophys. Research-Biogeosciences 115. doi: 10.1029/2009JG000936

Orwig, D., and Hadley, J. (2022). “Leaf Area Index at Harvard Forest HEM and LPH
Towers since 1998 ver 23. EDI (Environmental Data Initiative) Data Portal.
doi: 10.6073/pasta/912d4da0d326da63d82e93de68ca5ad4

Pan, M., Wood, E. F., Wojcik, R., and Mccabe, M. F. (2008). Estimation of regional
terrestrial water cycle using multi-sensor remote sensing observations and data
assimilation. Remote Sens. Environ. 112, 1282–1294. doi: 10.1016/j.rse.2007.02.039

Persson, Å., Söderman, U., Töpel, J., and Ahlberg, S. (2005). Visualization and
analysis of full-waveform airborne laser scanner data. Int. Arch. Photogrammetry
Remote Sens. Spatial Inf. Sci. 36, 103–108.

Pope, G., and Treitz, P. (2013). Leaf area index (LAI) estimation in boreal
mixedwood forest of ontario, Canada using light detection and ranging (LiDAR) and
worldView-2 imagery. Remote Sens. 5, 5040–5063. doi: 10.3390/rs5105040

Potithep, S., Nagai, S., Nasahara, K. N., Muraoka, H., and Suzuki, R. (2013). Two
separate periods of the LAI-VIs relationships using in situ measurements in a
deciduous broadleaf forest. Agric. For. Meteorol. 169, 148–155. doi: 10.1016/
j.agrformet.2012.09.003

Qu, Y. H., Han, W. C., and Ma, M. G. (2015). Retrieval of a temporal high-resolution
leaf area index (LAI) by combining MODIS LAI and ASTER reflectance data. Remote
Sens. 7, 195–210. doi: 10.3390/rs70100195

Silvan-Cardenas, J. L., and Wang, L. (2010). Retrieval of subpixel Tamarix canopy
cover from Landsat data along the Forgotten River using linear and nonlinear
spectral mixture models. Remote Sens. Environ. 114, 1777–1790. doi: 10.1016/
j.rse.2010.04.003

Smith, A. M. S., Falkowski, M. J., Hudak, A. T., Evans, J. S., Robinson, A. P., and
Steele, C. M. (2009). A cross-comparison of field, spectral, and lidar estimates of forest
canopy cover. Can. J. Remote Sens. 35, 447–459. doi: 10.5589/m09-038

Sun, Y. H., Qin, Q. M., Ren, H. Z., and Zhang, Y. (2022). Decameter cropland LAI/
FPAR estimation from sentinel-2 imagery using google earth engine. IEEE Trans.
Geosci. Remote Sens. 60, 4400614. doi: 10.1109/TGRS.2021.3052254

Tang, H., Dubayah, R., Brolly, M., Ganguly, S., and Zhang, G. (2014). Large-scale
retrieval of leaf area index and vertical foliage profile from the spaceborne waveform
lidar (GLAS/ICESat). Remote Sens. Environ. 154, 8–18. doi: 10.1016/j.rse.2014.08.007

Tang, H., Dubayah, R., Swatantran, A., Hofton, M., Sheldon, S., Clark, D. B., et al.
(2012). Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar
at La Selva, Costa Rica. Remote Sens. Environ. 124, 242–250. doi: 10.1016/
j.rse.2012.05.005

Thomas, V., Noland, T., Treitz, P., and Mccaughey, J. H. (2011). Leaf area and
clumping indices for a boreal mixed-wood forest: lidar, hyperspectral, and Landsat
models. Int. J. Remote Sens. 32, 8271–8297. doi: 10.1080/01431161.2010.533211

Tseng, Y. H., Lin, L. P., and Wang, C. K. (2016). Mapping CHM and LAI for
heterogeneous forests using airborne full-waveform liDAR data. Terrestrial
Atmospheric Oceanic Sci. 27, 537–548. doi: 10.3319/TAO.2016.01.29.04(ISRS)

Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S., and Briggs, J. M. (1999).
Relationships between leaf area index and Landsat TM spectral vegetation indices
Frontiers in Plant Science 16
across three temperate zone sites. Remote Sens. Environ. 70, 52–68. doi: 10.1016/S0034-
4257(99)00057-7

Verrelst, J., Camps-Valls, G., Munoz-Mari, J., Rivera, J. P., Veroustraete, F., Clevers,
J., et al. (2015). Optical remote sensing and the retrieval of terrestrial vegetation bio-
geophysical properties - A review. Isprs J. Photogrammetry Remote Sens. 108, 273–290.
doi: 10.1016/j.isprsjprs.2015.05.005

Verrelst, J., Malenovsky, Z., van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.
P., Lewis, P., et al. (2019). Quantifying vegetation biophysical variables from imaging
spectroscopy data: A review on retrieval methods. Surveys Geophys. 40, 589–629. doi:
10.1007/s10712-018-9478-y

Wagner, W., Ullrich, A., Ducic, V., Melzer, T., and Studnicka, N. (2006). Gaussian
decomposition and calibration of a novel small-footprint full-waveform digitising airborne
laser scanner. Isprs J. Photogrammetry Remote Sens. 60, 100–112. doi: 10.1016/
j.isprsjprs.2005.12.001

Wang, Y., and Fang, H. L. (2020). Estimation of LAI with the liDAR technology: A
review. Remote Sens. 12 (20), 3457. doi: 10.3390/rs12203457

Wang, Y., Fang, H. L., Zhang, Y. H., Li, S. J., Pang, Y., Ma, T., et al. (2023). Retrieval and
validation of vertical LAI profile derived from airborne and spaceborne LiDAR data at a
deciduous needleleaf forest site. Giscience Remote Sens. 60 (1), 2214987. doi: 10.1080/
15481603.2023.2214987

Weiss, M., Jacob, F., and Duveiller, G. (2020). Remote sensing for agricultural
applications: A meta-review. Remote Sens. Environ. 236, 111402. doi: 10.1016/
j.rse.2019.111402

Xu, J., Quackenbush, L. J., Volk, T. A., and Im, J. (2020). Forest and crop leaf area
index estimation using remote sensing: research trends and future directions. Remote
Sens. 12 (18), 2934. doi: 10.3390/rs12182934

Xu, L., Shi, S., Gong, W., Shi, Z. X., Qu, F. F., Tang, X. T., et al. (2022). Improving leaf
chlorophyll content estimation through constrained PROSAIL model from airborne
hyperspectral and LiDAR data. Int. J. Appl. Earth Observation Geoinformation 115,
103128. doi: 10.1016/j.jag.2022.103128

Yang, W. Z., Tan, B., Huang, D., Rautiainen, M., Shabanov, N. V., Wang, Y., et al.
(2006). MODIS leaf area index products: From validation to algorithm improvement.
IEEE Trans. Geosci. Remote Sens. 44, 1885–1898. doi: 10.1109/TGRS.2006.871215

Yang, X. B., Wang, C., Pan, F. F., Nie, S., Xi, X. H., and Luo, S. Z. (2019). Retrieving leaf
area index in discontinuous forest using ICESat/GLAS full-waveform data based on gap
fraction model. Isprs J. Photogrammetry Remote Sens. 148, 54–62. doi: 10.1016/
j.isprsjprs.2018.12.010

Yang, G. J., Zhao, C. J., Liu, Q., Huang, W. J., and Wang, J. H. (2011). Inversion of a
radiative transfer model for estimating forest LAI from multisource and multiangular
optical remote sensing data. IEEE Trans. Geosci. Remote Sens. 49, 988–1000. doi:
10.1109/TGRS.2010.2071416

Zhang, F., Hassanzadeh, A., Kikkert, J., Pethybridge, S. J., and Van Aardt, J. (2022).
Evaluation of leaf area index (LAI) of broadacre crops using UAS-based liDAR point
clouds and multispectral imagery. IEEE J. Selected Topics Appl. Earth Observations
Remote Sens. 15, 4027–4044. doi: 10.1109/JSTARS.2022.3172491

Zhang, Z. J., Xie, H., Tong, X. H., Zhang, H. W., Liu, Y., and Li, B. B. (2020).
Denoising for satellite laser altimetry full-waveform data based on EMD-Hurst
analysis. Int. J. Digital Earth 13, 1212–1229. doi: 10.1080/17538947.2019.1698665

Zhang, Y., Yang, Y. Z., Zhang, Q. W., Duan, R. Q., Liu, J. Q., Qin, Y. C., et al. (2023).
Toward multi-stage phenotyping of soybean with multimodal UAV sensor data: A
comparison of machine learning approaches for leaf area index estimation. Remote
Sens. 15 (1), 7. doi: 10.3390/rs15010007

Zhao, F., Yang, X. Y., Schull, M. A., Roman-Colon, M. O., Yao, T., Wang, Z. S., et al.
(2011). Measuring effective leaf area index, foliage profile, and stand height in New
England forest stands using a full-waveform ground-based lidar. Remote Sens. Environ.
115, 2954–2964. doi: 10.1016/j.rse.2010.08.030

Zheng, G., and Moskal, L. M. (2009). Retrieving leaf area index (LAI) using remote
sensing: theories, methods and sensors. Sensors 9, 2719–2745. doi: 10.3390/s90402719

Zhou, G. Q., Deng, R. H., Zhou, X., Long, S. H., Li, W. H., Lin, G. C., et al. (2022).
Gaussian inflection point selection for liDAR hidden echo signal decomposition. IEEE
Geosci. Remote Sens. Lett. 19, 1–5. doi: 10.1109/LGRS.2021.3107438

Zhou, G. Q., Long, S. H., Xu, J. S., Zhou, X., Song, B., Deng, R. H., et al. (2021).
Comparison analysis of five waveform decomposition algorithms for the airborne
liDAR echo signal. IEEE J. Selected Topics Appl. Earth Observations Remote Sens. 14,
7869–7880. doi: 10.1109/JSTARS.2021.3096197

Zhou, X. J., Wang, P. X., Tansey, K., Zhang, S. Y., Li, H. M., and Tian, H. R. (2020).
Reconstruction of time series leaf area index for improving wheat yield estimates at field
scales by fusion of Sentinel-2,-3 and MODIS imagery. Comput. Electron. Agric. 177,
105692. doi: 10.1016/j.compag.2020.105692
frontiersin.org

https://doi.org/10.3390/rs10121942
https://doi.org/10.3390/rs12061000
https://doi.org/10.1016/j.rse.2006.04.019
https://doi.org/10.1109/36.649788
https://doi.org/10.1016/j.isprsjprs.2016.07.001
https://doi.org/10.1016/j.isprsjprs.2016.07.001
https://doi.org/10.1109/36.752217
https://doi.org/10.1109/36.951085
https://doi.org/10.1029/2009JG000936
https://doi.org/10.6073/pasta/912d4da0d326da63d82e93de68ca5ad4
https://doi.org/10.1016/j.rse.2007.02.039
https://doi.org/10.3390/rs5105040
https://doi.org/10.1016/j.agrformet.2012.09.003
https://doi.org/10.1016/j.agrformet.2012.09.003
https://doi.org/10.3390/rs70100195
https://doi.org/10.1016/j.rse.2010.04.003
https://doi.org/10.1016/j.rse.2010.04.003
https://doi.org/10.5589/m09-038
https://doi.org/10.1109/TGRS.2021.3052254
https://doi.org/10.1016/j.rse.2014.08.007
https://doi.org/10.1016/j.rse.2012.05.005
https://doi.org/10.1016/j.rse.2012.05.005
https://doi.org/10.1080/01431161.2010.533211
https://doi.org/10.3319/TAO.2016.01.29.04(ISRS)
https://doi.org/10.1016/S0034-4257(99)00057-7
https://doi.org/10.1016/S0034-4257(99)00057-7
https://doi.org/10.1016/j.isprsjprs.2015.05.005
https://doi.org/10.1007/s10712-018-9478-y
https://doi.org/10.1016/j.isprsjprs.2005.12.001
https://doi.org/10.1016/j.isprsjprs.2005.12.001
https://doi.org/10.3390/rs12203457
https://doi.org/10.1080/15481603.2023.2214987
https://doi.org/10.1080/15481603.2023.2214987
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.3390/rs12182934
https://doi.org/10.1016/j.jag.2022.103128
https://doi.org/10.1109/TGRS.2006.871215
https://doi.org/10.1016/j.isprsjprs.2018.12.010
https://doi.org/10.1016/j.isprsjprs.2018.12.010
https://doi.org/10.1109/TGRS.2010.2071416
https://doi.org/10.1109/JSTARS.2022.3172491
https://doi.org/10.1080/17538947.2019.1698665
https://doi.org/10.3390/rs15010007
https://doi.org/10.1016/j.rse.2010.08.030
https://doi.org/10.3390/s90402719
https://doi.org/10.1109/LGRS.2021.3107438
https://doi.org/10.1109/JSTARS.2021.3096197
https://doi.org/10.1016/j.compag.2020.105692
https://doi.org/10.3389/fpls.2023.1237988
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	LAI estimation based on physical model combining airborne LiDAR waveform and Sentinel-2 imagery
	1 Introduction
	2 Study area and data
	2.1 LVIS airborne LiDAR data
	2.2 Sentinel-2 multispectral images
	2.3 Ground based LAI in Harvard Forest

	3 Methods
	3.1 A fusion strategy proposal based on GORT model deconstruction
	3.2 Optimization of waveform decomposition method for accurate waveform energy parameters extraction
	3.3 Optimization of model parameter &rho;v/&rho;g for large scale forest by gridding study area

	4 Result and discussion
	4.1 Waveform energy parameters based on optimized waveform decomposition method
	4.2 The gridded &rho;v/&rho;g result
	4.3 Comparison of LAI inversion results based on different data and inversion methods
	4.4 Limitations

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


