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Faculty of Automatic Control and Computers, National University of Science and Technology
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Orchard monitoring is a vital direction of scientific research and practical

application for increasing fruit production in ecological conditions. Recently,

due to the development of technology and the decrease in equipment cost, the

use of unmanned aerial vehicles and artificial intelligence algorithms for image

acquisition and processing has achieved tremendous progress in orchards

monitoring. This paper highlights the new research trends in orchard

monitoring, emphasizing neural networks, unmanned aerial vehicles (UAVs),

and various concrete applications. For this purpose, papers on complex topics

obtained by combining keywords from the field addressed were selected and

analyzed. In particular, the review considered papers on the interval 2017-2022

on the use of neural networks (as an important exponent of artificial intelligence

in image processing and understanding) and UAVs in orchard monitoring and

production evaluation applications. Due to their complexity, the characteristics

of UAV trajectories and flights in the orchard area were highlighted. The structure

and implementations of the latest neural network systems used in such

applications, the databases, the software, and the obtained performances are

systematically analyzed. To recommend some suggestions for researchers and

end users, the use of the new concepts and their implementations were surveyed

in concrete applications, such as a) identification and segmentation of orchards,

trees, and crowns; b) detection of tree diseases, harmful insects, and pests; c)

evaluation of fruit production, and d) evaluation of development conditions. To

show the necessity of this review, in the end, a comparison is made with review

articles with a related theme.

KEYWORDS
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1 Introduction

The monitoring of modern orchards based on the acquisition and

continuous processing of data has become a necessity for obtaining the

highest possible production of healthy fruits. Within the data

processing field, image processing is of particular interest for orchard

monitoring because it efficiently solves several essential aspects like

orchard mapping, tree segmentation, production (fruit) evaluation,

disease detection, the need for water or special solutions, pest detection,

etc. Both RGB (red-green-blue) and multispectral images are used to

evaluate the parameters characterizing the orchard problems. They

provide a significant volume of information used for efficient

monitoring. The correct acquisition of images is necessary so that

the regions of interest are of good quality. Various vectors have been

used for image acquisition, such as human operators with cameras or

smartphones, fixed cameras, cameras on land vehicles, aerial vehicles

(autonomous or not), and satellites (Lin et al., 2021). Collecting image

data in a complex 3D space, such as an orchard, is a relatively recent

challenge made possible by the recent development of new

technologies. Consequently, due to both the technological

improvements and the economic aspects promoted by large-scale

production, many agriculture-related problems have been augmented

with the integration of artificial intelligence techniques and remote

sensing systems. Although satellites and UAVs (Unmanned Aerial

Vehicles) complement each other in the task of inspecting different

terrestrial areas, in the case of orchard monitoring, UAVs offer clear

advantages such as ultra-resolution, cost-effective operation, increased

flexibility for individual tree inspection, and resilience against weather

patterns such as cloudy (Alvarez-Vanhard et al., 2021). Not least, for

the monitoring of crops in precision agriculture, collaboration with

wireless ground sensor networks is of particular importance (Popescu

et al., 2020). On the other hand, in complex applications related to

orchard monitoring, UAVs have the advantage to take images from

either amedium distance (10m -100m) through an appropriate design

of the trajectories - such as in the case of orchard or tree segmentation

(Adamo et al., 2021; Akca and Polat, 2022) or to determine the water

stress index (Zhang C. et al., 2021) or from a smaller distance (tens of

cm) - such as the case of detecting harmful insects (Aota et al., 2021;

Ichim et al., 2022) or fruits (Wang S. et al., 2022). The UAVs compared

to terrestrial robots is also a more flexible and less expensive solution.

The automatic picking of fruits is an exception. In the future, the use of

complex multirobot systems that combine the actions of UAVs,

ground robots, and manipulators (Sulistijono et al., 2020; Ju et al.,

2022) can lead to an increased degree of automation in modern

orchards. However, research papers related to the application of

artificial intelligence and the use of drones (UAVs) in the

monitoring of orchards are relatively few compared to the

monitoring of flat, field crops. This is a consequence of considering

the 3D space in orchard applications.

It should not be forgotten that an essential condition for the

effective use of UAVs is flights performed beyond the visual range of

the operators. Due to the strong increase in the number of operational

UAVs, it has become necessary to analyze the conditions for making

safe flights in shared airspace. In this sense, working meetings are

increasingly taking place at the level of the European Union to update

the relevant flight regulations. For the safe operation of many drones,
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the “U-space” concept was introduced into European legislation

(Barrado et al., 2020) to manage UAS (unmanned aerial systems)

traffic. It refers to the framework of regulations, technologies, and

procedures required to enable safe and efficient drone operations in

low-altitude airspace. With the integration of drones into the airspace

system, U-space provides a framework for ensuring safety, security, and

efficiency in their operation. The continued development and

implementation of U-space regulations and technologies are essential

to realizing the full potential of drones and their applications in the

future. The term refers to a collection of digitized and automated

functions and processes aimed at ensuring safe, efficient, and equitable

access to airspace for the growing number of civilian drone operators.

This is essential for enabling the many benefits of drone technology,

such as improved delivery services, monitoring and inspection of

agricultural crops, and support for emergency services. Not least, by

requiring pilots to obtain a license and submit a flight plan, U-space

regulations help to mitigate the risks associated with drone operations

and promote the responsible and safe use of this technology.

Efficient monitoring in precision agriculture requires precise

mapping of agricultural crops and, implicitly, orchards. That is why

the detection and location of orchards and trees in the orchard with

the help of aerial robots and neural networks have undergone a

spectacular evolution in recent years (Osco et al., 2020; Zhang et al.,

2018; Osco et al., 2021). In precision agriculture, terrestrial robots

and UAVs were used for instance segmentation and fine detection

of crops, trees, and weed plants (Champ et al., 2020; Chen et al.,

2019; Khan et al., 2020a). It can be stated that drones and neural

networks are essential ingredients in precise and intelligent

agriculture. As per (Jensen et al., 2021), pesticide usage is 30% of

the total cost in citrus and 42% in olive orchards. The pesticide

reduction is discussed in (Özyurt et al., 2022) where UAVs are used

to assess areas in need of spraying in a hazelnut. The actual

application of pesticides is not straightforward: multi-rotor UAVs

are severely restricted in the maximum payload weight. Time is also

a factor. (Zortea et al., 2018) show that a month of manual labeling

in the field is replaced by a week of manually labeling images

obtained from a UAV flight (which may be further reduced to less

than a day when automatizing the labeling procedure). Noteworthy,

no single algorithm works for any type of orchard/forest (Larsen

et al., 2011).

Monitoring of orchards through automated methods based on

image processing and artificial intelligence leads to increased

productivity while reducing expenses. Application of deep learning

for the delineation of visible cadastral boundaries of parcels in rural

scenes from UAV imagery can be used with smaller effort for

delineation compared to manual delineation (Crommelinck et al.,

2019). This means adjusting data processing systems to various

conditions, types, or sizes of orchards. Thus, recently, machine

learning methods, intelligent classifiers, and, especially, convolutional

neural networks (CNN) have been used for the detection, classification,

and segmentation of regions of interest (RoI) from images acquired in

the orchard for various applications. As a trend, Deep Convolutional

Neural Networks (DCNNs) are increasingly used in object detection

(Xiao et al., 2020), a particularly important aspect in orchard

management (e.g., detection of fruits, diseases, insects, etc.). Deep

neural networks and transfer learning were used for food crop
frontiersin.org
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identification from UAV images (Chew et al., 2020). In the review

paper (Alzubaidi et al., 2021), the main components of DCNN used for

object detection are detailed, emphasizing the advantage offered by

these networks to automatically detect the main features used without

human intervention. Specifically, in fruit detection problems, several

recent works have been making use of Deep Learning (DL) methods

applied to images acquired at different height levels (Biffi et al., 2021).

The measurement of size, growth, and mortality of individual

trees is of utmost importance for orchard or forest monitoring. To

this end, the authors (Hu and Li, 2020) proposed a point cloud

segmentation method for single trees. They used UAV tilt

photography and a simple neural network (NN) for data

processing feature extraction and classification tasks with an

accuracy of about 90%. A method to detect, geolocate, and

identify tree species by UAV flight and NN processing of

acquired hyperspectral images is presented by (Miyoshi et al.,

2020). UAVs are also used as a cheap and reliable solution for

measuring the height of crops (Xie et al., 2021), including orchard

trees. In this case, additional spatial information such as the digital

terrain model and the ground truth of the height is required. In such

cases, it becomes especially important to correct the positioning

errors of global navigation satellite systems (GNSS) by different

methods. To this end, UAVs are often equipped with a real-time

kinematic positioning (RTK) module.

The early detection of tree disease in orchards can significantly

improve the control of these diseases and avoid the spread of

insects, viruses, or fungi. For example, vine disease detection by

automatic methods leads to increase efficiency and productivity of

vineyard crops in smart farming, simultaneously with the reduction

of pesticides. Therefore, the detection of vine diseases in UAV

images using neural networks has been widely addressed recently

(Kerkech et al., 2018; Kerkech et al., 2020).

A difficulty that can be encountered in orchard monitoring is the

dense tree crowns. This can often cause GPS (Global Positioning

System) signal attenuation when the UAV or a terrestrial robot is

traveling in an orchard. A method to overcome this drawback is

proposed by (Kim et al., 2020) using a CNN to classify patches in the

front image in path, tree, or background. For this purpose, the image

is traversed successively with sliding investigation windows, and a

path score map is generated through the CNN classification results.

Broadly speaking, an orchard monitoring system based on the use

of UAVs and NNs has the structure of Figure 1. It has two main paths,

system learning and system operating. In the first phase, the UAV

acquires the images for the dataset (DS) needed for the learning and

validation phases to establish the parameters and weights NN(L).

Sometimes the dataset can be a public one. The images need a

preprocessing set of operations by IPp (Image Preprocessing

module). After learning, validation, and final configuration of

structure NN(C), it is implemented in the operating configuration

NN(O) on a terrestrial operating station or even on the UAV. The

system output is a decision or/and a new image (D/I). In orchard

monitoring, the respective applications and images are very different

and therefore the choice of UAV trajectories to obtain the most

relevant data (images) and especially the choice of NNs used for the

analysis of the regions of interest constitute real challenges. Still, newer

is the integration of the monitoring of agricultural crops, including
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orchards, into IoT (Internet of Things). Thus, if real-time processing of

monitoring data is required, as in the case of pest detection, a solution

presented by (Bhoi et al., 2021) is a UAV assisted by IoT, where images

of pests are sent for processing to the Imagga cloud (https://

imaga.com), to retrieve the pest information.

The current paper focuses on the importance of UAVs and image

processing through artificial intelligence techniques (in particular,

CNN) for orchard monitoring from various points of view such as

flowering, evolution, diseases, harmful insects, fruit ripening, and

picking. Thus, the paper focuses on the new trends in the use of

UAVs and image processing based on NNs for efficient monitoring of

orchards in precision agriculture with ecological considerations. Apart

from the Introduction, the paper contains five sections. Section 2,

entitled Survey Methodology, presents the methodology for

investigating papers in the field from 2017-2022. Section 3, named

UAVs and Cameras Used for Image Acquisition in Orchard

Monitoring, presents the UAVs and video/photo cameras used in

the analyzed papers, the characteristics of UAV trajectories in orchard

monitoring, and develops the aspects related to the design and tracking

of UAV trajectories in the orchard. Section 4, Neural Networks Used

for Orchard Monitoring, refers to the presentation of the neural

networks used, datasets, software, performances, and the new

implementation trends based on the fusion of decisions or the

combination of several neural networks. Section 5, Applications, is

dedicated to the most frequent orchard monitoring applications

through the prism of new technologies. In Section 6, Discussions,

some observations are made regarding the global aspects of research in

the field from the last three years and comparisons with review papers

based on the same keywords. The last section is the Conclusions which

highlights the important aspects of the paper. All development chapters

are accompanied by graphs or synthetic tables. Since there are many

notions and definitions that are repeated or are put in tables, in order

not to fill unnecessary space and to make it easier to understand, a list

with abbreviations is provided as Annex 1.

2 Survey methodology

For the systematic review paper, 872 papers were analyzed from

different databases such as the Web of Science (311), Scopus (292),

and IEEE Xplore (269). Finally, we selected 197 papers (173

research papers and 24 review-type papers) for this review. The

eligibility criteria for paper selection were recent publications, new

trends in orchard monitoring on different aspects, the impact of

contributions, the involvement of UAVs, and the use of NNs in the

processing of images acquired in orchards. As the impact, the

citations can be a relative criterion because, in general for older

papers, the citations are higher than for newer ones. The high rank

of publications refers to Category Quartile Q1, Q2, and the Journal

Impact Factor in Web of Science 2021. More than 68% of the total

references meet this criterion. Most of the papers included in this

study are from journals with an impact factor greater than 2.

Among the analyzed articles, 167 are from journals and 30 are

from conferences. Focusing on a relatively recent period (2017 –

2022), the most representative papers covering the ROI detection,

segmentation, and classification in orchard images, using state-of-

the-art NNs and UAVs, were investigated. Thus, 184 references
frontiersin.org
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between 2017 - 2022, representing 93.40% of the total, were selected,

and focusing on 2019 – 2022, as a recent period, 84.69% of

references were analyzed. In terms of new trends in using NNs

for UAV image analysis, the following directions can be mentioned:

a) improvement of a CNN with other networks included in its

structure, most often adapted for orchard images, b) systems made

up of several CNNs (that can be considered as elements of collective

intelligence), and c) systems using CNN combined with other

classifiers. This important aspect is detailed in Section 4.

For the systematic review and meta-analysis, we used a PRISMA

(Preferred Reporting Items for Systematic Reviews andMeta-Analyses)

(http://www.prisma-statement.org/) flow diagram (Figure 2). As can be

seen from the diagram, from the total of 892 identified papers, we

selected 197 papers according to the criteria mentioned in Figure 2. For

the paper search strategy, we investigated similar papers in the field.

The comparisons and the highlighting of the degree of novelty towards

them are underlined in Section 6, Discussions. Most of the analyzed
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articles were selected from journals (Figure 2) such as Remote Sensing

(RS), Computers and Electronics in Agriculture (CEA), Frontiers in

Plant Science (FPS), Sensors (S), and IEEE Access (Access).

Although concerns about the orchard, UAVs or NNs used

separately are older and the respective fields of study are well-

established, the combination of these topics in orchard monitoring

is relatively recent. As we considered the new trends in this

direction, Figure 3 is presented our search in Web of Science

(blue), Scopus (red), and IEEE Xplore (green) databases (DBs)

between 2017 - 2022 considering the following topics: UAV control,

UAV trajectory, U-space, agriculture, orchard, NNs, image

processing, diseases, insects, and fruit production. It should be

noted that to save space in Figure 3, the notation “uav”means UAV,

UAS, or drone. The search was split between combinations of

keywords using the “AND” connector: (A) neural networks AND

image processing, (B) agriculture AND image processing, (C)

orchard AND image processing, (D) orchard AND neural

networks, (E) orchard AND uav, (F) orchard AND neural

networks AND uav, (G) uav AND control AND neural networks,

(H) uav AND trajectory AND neural networks, (I) uav AND U-

space, (J) agriculture AND uav AND image processing, (K) orchard

AND uav AND image processing, (L) agriculture AND uav AND

neural networks, (M) orchard AND diseases, (N) orchard AND

insects, and (O) orchard AND fruit production. The year is labeled

on the x-axis and the number of publications identified according to

the search in the database is labeled on the y-axis. It can be observed

that the increase in research is higher in most of the cases involving

NNs and/or UAVs, with an exception in 2022 because of the

indexing latency. Furthermore, it should be noted that while we

have strived for a fair comparison between Web of Science, Scopus,

and IEEE Xplore, they do have different ways to handle queries,

such as those we constructed, for obtaining the results from

Figure 3. Because IEEE Xplore is not a paper database focused on

agriculture the number of papers is much smaller compared to

Scopus andWeb of Science when the topic of agriculture or orchard

appears in searches so that they can be neglected. Also, there is a big

difference between the number of papers related to the use of NN

and/or UAV in orchards compared to agriculture in general. This

can be attributed to the difficulties of flying inside the orchards, the

consideration of images in depth (tree crowns), and partially

covered objects. In general, we see a rapid increase in papers
FIGURE 2

The number (left) and the percentage (right) of papers that are analyzed from journals: Remote Sensing (RS), Computers and Electronics in
Agriculture (CEA), Frontiers in Plant Science (FPS), Sensors (S) and IEEE Access (Access).
FIGURE 1

Structure of the orchard monitoring system composed of UAVs and
neural networks. UAV – unmanned aerial vehicle (drone), DS – data
set, IPp – image preprocessing module, NN(L) neural network
learning (parameters and weights), NN(C) – final NN configuration
(after validation), NN(O) – neural network implemented for
operating phase.
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from 2017 to 2022, especially when it comes to NNs and UAVs in

orchard monitoring. On the other hand, due to the appearance in

2018 of the legislation regarding U-space, no articles on this topic

were published until that year. Likewise, papers considered by us to

be important and containing the orchard-UAV-neural network

triplet did not appear earlier than 2019.
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3 UAVs and cameras used for image
acquisition in orchard monitoring

UASs including UAVs tend to be the preferred platform for

modern orchard monitoring (Zhang C. et al., 2019). UAV is a

generic byword for unmanned fixed-wing devices or more usually
A B C

D E F

G H I

J K L

M N O

FIGURE 3

Web of Science-blue, Scopus – red, and IEEE Xplore – green; (A) neural networks AND image processing, (B) agriculture AND image processing, (C) orchard
AND image processing, (D) orchard AND networks, (E) orchard AND uav, (F) orchard AND neural networks AND uav, (G) auv AND control AND neural
networks, (H) uav AND trajectory AND neural networks, (I) uav AND U-space, (J) agriculture AND uav AND image processing, (K) orchard AND uav AND
image processing, (L) agriculture AND uav AND neural networks, (M) orchard AND diseases, (N) orchard AND insects, and (O) orchard AND fruit production.
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multi-rotor copters (multicopters). The latter are often quadcopters

(with four motors, the minimum number to ensure simultaneous

position and yaw angle tracking, hexacopters (six motors), and

octocopters (eight motors with redundancy and increased stability).

The drawback for the latter is that they are generally more expensive

and require expert handling (due to their larger size and increased

velocity any improper use may result in property damage and

even accidents).

Each platform comes with its own list of , usually

complementary, shortcomings. For example, fixed-wing UAVs

have significantly more endurance (flight distance) and,

sometimes, payload capacity but lack flexibility because they

require a minimum speed to avoid a stall and operate at higher

heights. They have traditionally been used for photogrammetry,

monitoring, spraying, and data acquisition from large areas (Pederi

and Cheporniuk, 2015). On the other hand, multicopters have

limited battery life (often in the range of 20 - 30 minutes) but can

hover in place and may get quite close to the objects of interest (tens

of centimeters, at least when safety measures are deactivated). For

these reasons, and due to their comparatively low cost, multicopters

are the main tool in small and medium-precision agriculture. A

comprehensive classification of multicopters cannot be carried out,

but they are mostly divided by their number of motors and whether

they are commercial (mainly DJI or Parrot variants) or custom-

made for a particular research/application project. Currently, the

drones most used for crop monitoring, in particular orchards, are

medium or small-sized (adequate for image or sensor data

acquisition applications). Larger drones are used for spraying,

picking, or planting and are not as widespread yet. Lastly, electric

multi-rotor drones are the most popular for orchard monitoring

applications as the distances traveled are relatively small, and

modern batteries have enough autonomy for this kind of

application. For a brief enumeration: popular DJI quadcopter

variants are Phantom 3 (Horton et al., 2017; Bouroubi et al.,

2018; Apolo-Apolo et al., 2020b; Cheng et al., 2020; Fang et al.,

2020; Garcıá-Murillo et al., 2020; Barbosa et al., 2021; Menshchikov

et al., 2021), Mavic 2 Pro (Barmpoutis et al., 2019; Dong et al., 2020;

Nguyen et al., 2021), and Inspire 2 (Häni, 2020) for Mavic Pro 3,

and (Mu et al., 2018). The authors in (Zortea et al., 2018) use a

GYRO-500X4 quadcopter, and (Torres-Sánchez et al., 2018) use a

microdrone MD4-1000. Hexacopters such as the Tarot 960 are used

by (Nevalainen et al., 2017). For larger payload capacity and

increased stability, octocopters have been used in orchard

applications (Abdulridha et al., 2019; Ampatzidis et al., 2019;

Horstrand et al., 2019; Deng et al., 2020). Arguably, quadcopter

models are the most used in orchard monitoring but hexacopters,

even if larger and more expensive, are becoming increasingly

popular due to propeller redundancy which leads to better

stabilization in nominal functioning and increased reliability

under hardware loss. A synthetic description of the kinematic and

dynamic models of multicopters is given by (Ju et al., 2022).

Most commercial UAVs have GPS modules that they use as the

go-to positioning system for localization in outdoor settings. The

specific difficulties for GPS mainly manifest in cities or other areas

with challenging vertical features (the “canyon effect”, where not

enough satellites are simultaneously visible for robust localization).
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In relatively smooth (i.e., of almost constant height) settings such as

orchards, GPS in conjunction with sense and avoidance sensors

exhibits acceptable performance, with position errors up to 1 m

(Nevalainen et al., 2017). A straightforward improvement is the

addition of an RTK module (for those drones which support it).

This correction mechanism reduces the errors to 2 cm in planimetry

and 3 cm in altimetry (Torres-Sánchez et al., 2018). Noteworthy,

RTK modules have mostly deprecated the use of physical targets

used for GPS correction (visible elements such as AeroPoints

(Johansen et al., 2018), whose position is estimated accurately

with a GPS module and is later used as a reference in the images

taken by the drone. Examples of UAVs like Phantom 4

(quadcopter) with RTK flighting inside the orchard and fixed-

wing UAV flighting over the orchard are given in Figure 4. The

research papers that investigate orchard monitoring based on UAVs

with different cameras are presented in the synthetic Table 1.

We observe a large variety of cameras and related applications.

Although UAVs can be equipped with payloads containing various

types of image or video sensors (RGB cameras, multispectral,

hyperspectral, thermal, SAR), in orchard monitoring applications

the most used are RGB and multispectral (Table 1). Many

applications in crop monitoring use small UAVs with included

video/photo cameras, without the possibility of attaching other

cameras. In the case of larger UAVs, there is the possibility of

using different cameras, depending on the requirements. Even if the

number and type of UAVs are relatively limited, there is a great

variation in the types and numbers of payloads with thermal

(Mesas-Carrascosa et al., 2018; Pádua et al., 2020), multispectral

(Horton et al., 2017), video (Torres-Sánchez et al., 2018) cameras, or

even spectrometers (Ocean Optics (Nevalainen et al., 2017).

Relatively recently, cameras with integrated machine learning

features have started to appear in UAV applications due to

reductions in cost, energy requirements, and weight.
3.1 Characteristics of UAV trajectories in
orchard monitoring

For orchard monitoring, the UAV trajectory can be a challenge,

because in many applications it can be a 3D trajectory, above and

inside the orchard. For a programmed, automatic flight, the lateral

distance from the crown of the trees correlated with the protection

devices of the UAV creates difficulties in establishing and following

the trajectory. Regardless of the trajectory specifics, some

parameters are important. Among the most popular are total

trajectory time, ground velocity, and flight altitude. As mentioned

in (Torres-Sánchez et al., 2018) run times may be significant for

terrestrial platforms with respect to UAV limitations. They give the

example of an almond orchard where 6.2 km was covered in 1.5

hours (with multiple passes). In general, the UAV velocity is higher

compared to ground-based vehicles. (Cheng et al., 2020) gives 5 m/

sec for the UAV flight whereas (Dong et al., 2020) runs the UAV at

3 m/sec, and (Mu et al., 2018) consider a speed of 2.5 m/sec.

Altitude is also a factor and it may vary significantly, depending on

mission specifics: (Dong et al., 2020) mentions 50 m, (Mesas-

Carrascosa et al., 2018) 120 m, and (Mu et al., 2018) 30 m. These
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TABLE 1 UAVs with cameras used.

UAV/Type Camera/Type References

▪DJI Mavic 2 Pro/
quadcopter (DJI
Corporation)

▪ Included: Hasselblad L1D-20c, 20MP/RGB (Barmpoutis et al., 2019; Dong et al., 2020; Nguyen et al., 2021)

▪DJI Mavic 3 (DJI
Corporation)

▪ Included (Häni, 2020)

▪Phantom 3
Professional/
quadcopter (DJI
Corporation)

▪ Included: RGB, Multispectral 5 channels, 12 MP (Horton et al., 2017; Bouroubi et al., 2018; Apolo-Apolo et al., 2020b; Cheng et al.,
2020; Fang et al., 2020; Garcıá-Murillo et al., 2020; Barbosa et al., 2021; Menshchikov
et al., 2021)

▪Phantom 4, 4 PRO, 4
RTK/
Quadcopter (DJI
Corporation)

▪Included: RGB, Multispectral 5 channels, 12 MP (Lobo Torres et al., 2020; Fuentes-Pacheco et al., 2019; Ampatzidis et al., 2020; Apolo-
Apolo et al., 2020a; Gallardo-Salazar and Pompa-Garcıá, 2020; Kalantar et al., 2020;
Schiefer et al., 2020; Yang, M.-D. et al., 2020; Nguyen et al., 2021)

▪DJI Matrice 100/
quadcopter (DJI
Corporation)

▪Different: Logitech C310 webcam, MicaSense
RedEdge-M/multispectral

(Hulens et al., 2017; La Rosa et al., 2020; Sarabia et al., 2020)

▪DJI Matrice 210/
quadcopter/possible
RTK (DJI
Corporation)

▪ Different: Two cameras/RGB -48 MP (Sony Alpha
7) and multispectral 4 channels (Parrot Sequoia)

(Ampatzidis et al., 2020; Jurado et al., 2020)

▪4HSE-EVO/
quadcopter
(ITALDRON)

▪ MicaSense RedEdge-M/multispectral (Adamo et al., 2021)

▪DJI Inspire 1/
Quadcopter (DJI
Corporation)

▪Included: RGB (Hu and Li, 2020)

▪DJI Inspire 2/
Quadcopter (DJI
Corporation)

▪Included: RGB (Mu et al., 2018)

▪DJI Matrice 600/
hexacopter/possible
RTK (DJI
Corporation)

▪ Different: Zenmuse, Specim FX10, added/
Multispectral 5 channels, Resonon Pika L 2.4
hyperspectral, MicaSense RedEdge-M/multispectral

(Abdulridha et al., 2019; Ampatzidis et al., 2019; Horstrand et al., 2019; Deng et al.,
2020)

▪OktoXL 6S12/
octocopter
(Mikrokopter)

▪Alpha 7R, Sony/RGB (Schiefer et al., 2020)

▪eBee Sense Fly/fixed
wing (MikroKopter
GmbH)

▪Different: Parrot SEQUOIA, Multispectral 4
channels, senseFly S.O.D.A.

(Duarte et al., 2020; Schoofs et al., 2020)

▪Trimble UX5 fixed
wing
(Trimble.Applanix)

▪Different: RGB and multiple bands (Adhikari et al., 2021)
F
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FIGURE 4

(A) Phantom 4 (quadcopter) RTK-flight inside the orchard, (B) Fixing the RTK module to the ground, (C) Phantom 4 RTK-flight over the orchard, and
(D) Fixed-wing.
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altitude values are for top-down observations (photogrammetry

missions or disease/humidity monitoring). Flying close to the

treetops or even in between tree rows obviously reduces the flight

height to 1 m - 5 m. In this context, noteworthy elements which

characterize an orchard are row inter and intra-distance. These

depend on the type of tree and even on the country. (Cheng et al.,

2020) reports 4 m between trees and 5 m between rows in the case of

cherry trees and 3 m and 4 m respectively for apple trees. (Dong

et al., 2020) mentions spacings of 4 m and 1.5 m (apples) and 4.5 m

and 2 m (pears).

Beyond economic or availability factors, various mission

specifics may force a particular choice of UAVs. Small/convoluted

domains may require aggressive maneuvering which, for fixed-wing

UAVs, is very difficult. On the other hand, large fields may lead to

battery depletion. This is a major issue since typically a battery takes

significantly more time to charge than to discharge. A typical

solution is swapping the battery frequently for increased flight

duration (a stop where the battery is quickly changed with a full

one and the flight is then resumed). These considerations directly

influence the choice of trajectory and mission parameters.

Another aspect is the flexibility of the trajectory. The more

common approach is to pre-compute the trajectory, couple it with

an autonomous sense-and-avoidance system, and then passively

track the experiment (the supervisor intervenes only when urgency

stop commands are required). Note that typical sense and

avoidance mechanisms impose a hard limit of 1 m - 2 m between

the drone and possible obstacles. A simple solution can be to adapt

the avoidance mechanism and make sure at the supervision level

that the drone trajectories accurately avoid the obstacles (tree

branches) v ia embedded cameras or RTK-correc ted

GPS localization.

Not least, and especially for small and medium-sized drones,

the presence of wind is a major factor. Thus, flights are often

scheduled in periods when the wind is at a minimum. Less

common, but still present is the case where flights are determined

by the mission particularities. For example, some harmful insects

(HH) have a daily cycle which means that they are active (and hence

visible) only in the early morning and in periods of reproduction

(Leskey and Nielsen, 2018).

While the more interesting missions are those closer to the

ground, the most common are still the photogrammetry missions.

While conceptually simple, the output of such as mission may be

significantly affected by various flight parameters. Beyond those

related to resolution (fly height, camera specifications) and mosaic/

3D reconstruction (front and sideways overlapping for consecutive

images), flight direction, solar irradiation, camera inclination, and

whether the pictures are taken time or position-wise, are also

relevant (Tu et al., 2020). Thus, most orchard applications reduce

to a coverage problem. Beyond the technicalities imposed by the

particularities of the problem (Mokrane et al., 2019) enumerate the

generic properties that the resulted trajectory must verify: i) cover

all points of interest; ii) avoid overlapping routes; iii) avoid

obstacles; iv) as much as possible, use simple primitives to

construct the trajectory (straight lines and/or arcs of circles).

Most users do not have the knowledge or the desire to design

from zero a trajectory generator. There are various local or cloud-
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based applications that permit interaction with a drone. We may

classify these apps depending on the level to which they interact/

supersede the original architecture of the drone. Many of them

reduce to providing an ergonomic interface that allows defining

various simple missions like following waypoints, covering an area

with straight parallel lines, etc. It is more challenging to intervene in

the actual control scheme and provide direct control actions. For

example, in (Horton et al., 2017) the cloud based DroneDeploy is

used to construct a flight plan, by interfacing with both GoogleMaps

and the drone. Extremely common is the Pixhawk+Ardupilot

autopilot controller. This implements all low-level control actions

leaving to operator only the task of providing the list of waypoints.

Pix4dmapper was used in (Mesas-Carrascosa et al., 2018; Pádua

et al., 2020) to triangulate and mosaic the images. (Jensen et al.,

2021) usesMoveIt for3Dmotionplanningand theoctomap_mapping

package for 3D occupancy grid mapping. ODM (Open Drone Map -

https://github.com/OpenDroneMap), in itsmultiple ports, is an open-

source effort that aims to cover the entire workflow of image post-

processing for photogrammetry applications.

As stated in the introductory section, due to the increase in the

number of drones and flight areas, it is necessary to establish and

update relevant flight regulations for UAVs. In Europe, the U-space

concept has been formalized through the European Union’s U-

space Regulation, which was adopted in 2019 and came into effect in

2021. The regulation provides requirements for the design,

implementation, and operation of U-space services, including

registration and identification of drones, communication

protocols, and geo-fencing. The unmanned aircraft system traffic

management (UTM) concept is also being developed in other parts

of the world (United States), with a range of different approaches

being taken. It is safe to say that, in one form or another, a

framework of rules and regulations has already taken shape and

will govern human-UAV interactions in the future.
3.2 Trajectory design

For most orchard-related missions, the drone does a top-down

analysis where the camera is oriented downwards to take pictures

while the drone flies in a plane parallel with the horizontal one and

at an altitude that is both safe and balances coverage and image

resolution. (Ronchetti et al., 2020) provides a list of common

altitude values. (Johansen et al., 2018) carries an interesting

analysis of tree detection (center position and canopy delineation)

in a lychee orchard by changing the height at which the pictures are

taken. This is done to find a balance between coverage speed and

precision of the estimates. Worth mentioning is that

photogrammetry applications usually take photos at a constant

sampling time (as a proxy for equal distances between coordinates).

Thus, it is important to maintain a constant ground velocity along

the flight path. This must be a design requirement at the trajectory

generation step and must also be enforced by feedback laws due to

the presence of various disturbances. The goal of such missions is

often along the lines of photogrammetry in the sense that partially

overlapped images are merged (offline, in a computationally

intensive effort) into a large-scale map from which various
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features of interest are extracted. For example, (Torres-Sánchez

et al., 2018) estimate the shape of the tree. Crown volume

estimation is carried out by (Torres-Sánchez et al., 2015).

Noteworthy, in the latter, the authors mention a root mean

square error of 0.39 m for tree height estimation. This may be

interpreted as a safety factor for tree-level flights.

One of the few results which explicitly mentions flying at tree

level is (Jensen et al., 2021) which implements a three-step run: first,

a map of the orchard is created by flying over; second, rows and

trees are identified from the acquired images; third, the drone tracks

a trajectory between trees. The caveat is that the algorithm was only

tested in simulation (within the ROS/Gazebo framework).

From papers that illustrate actual experiments various practical

interactions among the UAV components also emerge. For

example, (Mesas-Carrascosa et al., 2018) carries out a

photogrammetry path planning (straight parallel lines) with

emphasis on flight duration due to the need of calibrating the

thermal sensors (there is drifting proportional to the duration of the

flight). (Mesas-Carrascosa et al., 2018) also proposes to avoid

the pre-calibration step by doing it post-flight over the images

themselves and by carrying an in-flight drift correction for

microbolometer thermal sensors.

Of course, the most important element for rotary drones is

battery life. Their increased flexibility comes at the price of

significantly less autonomy than in the case of fixed-wing UAVs.

Hence, energy efficiency is paramount in trajectory design and

influences mission planning at all stages. This may mean proposing

very simple trajectories: straight lines as in (Mesas-Carrascosa et al.,

2018) or a grid pattern as in (Mu et al., 2018). Usually, the UAV

dynamics are ignored when assessing battery consumption (Furchì

et al., 2022). Still, the drone behavior and type of trajectories

employed can have a disproportionate effect on battery life.

(Pradeep et al., 2018) provides a first principles approach to

quantify consumption for the climb, cruise, and descent phases

(with application to a DJI Phantom 4 quadcopter).

From a dynamics viewpoint “trajectory” means that both

position and attitude must be specified at each moment of time

during the flight. Except for laboratory/experimental setups, this

is hidden by the embedded control software of the drone. Rather,

the end-user simply gives a list of waypoints from which the

drone’s control mechanism designs a suitable trajectory.

Choosing the waypoints that define a path is quite challenging,

depending on the mission complexity. In such cases, often

heuristic and graph-based methods are employed. For example,

(Ochoa and Guo, 2019) combine a genetic algorithm (to

determine way-point locations) with the Dijkstra algorithm (for

path construction).

Many times, there are multiple flights carried during the same

mission. Often, the first flight is for sensor calibration, an update of

position information, and an update of the environment’s map

(new features of interest, changes in positioning, etc.). Only in the

subsequent step, the actual flight (the one where data is gathered) is

done. Thus, a typical workflow is as the one from (Horstrand

et al., 2019):
Fron
i. initial flight to assess the environment,
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ii. planning step on the flight management system (choose

waypoints, area of interest, etc.),

iii.

start the way-point tracking and supervise the UAV during its

flight, with the possibility to update path/sending “turn to

base” commands.
In the case of modern orchards, for UAV navigation inside the

orchard, among the rows of trees, the orchard can be modeled as an

aisle graph (Sorbelli et al., 2022) so that the images are collected as

efficiently as possible. In this case, it is about collecting images to

detect some harmful insects on trees. Most if not all graph-based

methods are based on variations of the Traveling Salesman Problem

(TSP). (Furchì et al., 2022) uses a Steiner TSP implementation

where only a subset of the nodes must be visited. The paper is also

noteworthy for considering battery usage and integrating it as a

weight for the graph edges.

In general, formulating decision problems (graph-based or

otherwise) for efficient orchard travel leads to a difficult

optimization problem. Authors (Furchì et al., 2022) provided a

mixed-integer formulation that makes use of binary variables to

characterize decisions in the problem (which node is next, which

path is followed from a given list, etc.). Such methods are prone to

numerical issues and quickly become impractical for real-time

implementations. The usual approach is then to simplify the

problem and solve it to a sub-optimal solution. In this case, the

computation time reduction is significant and the loss in

performance is negligible. The heuristic methods employed are

usually based on evolutionary procedures or greedy algorithms.
3.3 Trajectory tracking

Most agricultural UAV applications give the trajectory as a list

of waypoints with associated actions. For example, the API

(programming interface) of DJI drones allows by default to give a

list of up to 100 waypoints and to associate up to 15 actions for each

of them (camera focus, take an image, start/stop the video, etc.). The

actual trajectory (path and input actions) is computed onboard the

UAV by the autopilot. At this level, further restrictions may be

considered (from the sensor and avoidance module, limitations on

control actuation, etc.) which will affect the path’s shape. Lower-

level interactions are usually relegated to experimental drones used

in research laboratories (Parrot Mambo or Crazyflie nano-drone,

NXP HoverGames for mid-sized drones, etc.).

Any path-tracking algorithm is as good as the quality of

information that it receives (Li, J.-M. et al., 2021). Usually, GPS

(possibly corrected by an RTK module) information is employed.

Albeit ubiquitous in recent years, GPS may be replaced or

supplanted by other approaches. (Emmi et al., 2021) fusions

information from 2D Lidar and RGB cameras to identify key

locations and working areas which are next integrated into a

semantic layer where the various features of interest have certain

types (lane, alley, etc.) among which the UAV transitions. The

authors in (Stefas et al., 2016) present a vision-based approach for

UAV navigation within an orchard. Both the monocular and
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binocular cases are analyzed. For the former, additional information

about the structure of the orchard rows is used and for the latter, a

depth-perception algorithm is implemented. In (Hulens et al., 2017)

the vision-based approach also makes use of the orchard

characteristics: the feasible path is determined by first detecting

the center and end (the vanishing point) of the current corridor.
4 Neural networks used for
orchard monitoring

The use of artificial intelligence and especially NNs for image

processing in various fields of agriculture has led to a significant

improvement in performance in tasks of detection, segmentation,

and classification of regions or objects of interest. Thus, from the

investigated researched papers, an improvement in orchard

monitoring performances can be noted by NNs in the processing

of orchard images. From Figure 3 it can see that the number of

research papers that study the use of NN in orchard monitoring

increased in the interval 2017-2022. Most of the NNs in the

analyzed papers in this study used RGB images and few

multispectral images as in (Kerkech et al., 2020).
4.1 Series of neural networks and their
representants for image processing in
orchard monitoring

Because orchard monitoring involves high-level image

processing functions in various conditions, the NNs used in

orchard monitoring for image processing were very diverse. Most

often, the classification can be used for a special segmentation based

on pixel classification named semantic segmentation. The name of

the used NNs is explained in the list of abbreviations (Annex 1). The

NNs for object detection, classification, and segmentation functions

(including semantic segmentation) used in the investigated

references are presented in Table 2. In some applications, the

NNs from popular series, having small structural changes, got the

names of respective applications like VddNet - Vine Disease

Detection Network (Kerkech et al., 2020) and MangoYOLO

(Koirala et al., 2019a)

The most used NNs were those from series R-CNN (Region-

Based CNN) (Girshick et al., 2014), YOLO (You Only Look Once)

(Redmon et al., 2016), U-Net (Ronneberger et al., 2015), ResNet

(Residual Neural Network) (He et al., 2016), and SegNet (Semantic

Segmentation Network) (Badrinarayanan et al., 2017). The basic

structures of these important series are given in Figure 5. Among

them, the YOLO-type NNs had the greatest growth trend. Details

regarding the architectures and layers of the most used NNs in

image processing for object detection, classification, and

segmentation are given by (Alzubaidi et al., 2021; Bhatt et al.,

2021). An interesting review (Nawaz et al., 2022) presents the

detection of objects in multimedia using NNs, considering single-

stage detection and two-stage detection algorithms. The advantages

and disadvantages related to precision, complexity, and speed of

operation, in various applications such as object detection, multi-
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object detection, and real-time object detection, were highlighted.

The analyzed networks (proposed until 2020) were those from the

YOLO, SSD, and RetinaNet series, for the single-stage algorithm,

and R-CNN for the two-stage algorithm. Representatives from these

series can also be found in the references analyzed in this paper.

R-CNN which is based on a two-stage algorithm for object

detection has two important representatives: Faster R-CNN

(Ronneberger et al., 2015) and Mask R-CNN (He et al., 2017)

which share significant commonalities. Faster R-CNN provides two

pieces of information for each candidate object, the classification

(class label) and the bounding box (regression). Mask R-CNN

extends Faster R-CNN by providing three pieces of information

at the output: the class (C), the bounding box (B), and the

segmentation mask (M) for each selected region of interest. For

the latter, a branch (pixel-to-pixel alignment) is added in parallel in

the Faster R-CNN structure. Since this branch has reduced

additional computational effort, the network remains quite fast.

Both Faster R-CNN and YOLO are detection networks with

object detection accuracy between 63.4% and 70% (Diwan et al.,

2022). The YOLO series including several variants (like YOLO v1,

v2, v3, v4, v5, v6, v7, v8, YOLOX, etc.) are networks in one stage,

and for this reason, they are much faster than Fast R-CNN or Faster

R-CNN which are detectors in two stages. Object detection in this

case is seen as a regression problem and not a classification one. The

areas of interest (objects) are identified, and their positioning is

established by a bounding box associated with the probability of

belonging to a class.

Faster R-CNN (Figure 5A) is a two-stage object detection

algorithm providing the bounding box and classification. It can

be successfully used for fruit detection in the natural environment

in difficult conditions and positions (leaf occlusion, fruit occlusion,

fruits in shadow, and different light exposure). A challenge in fruit

detection is the great number of fruits (sometimes overlapping) in

an input image. Also, it can be used for the detection of diseases and

insect pests on fruits.

Mask R-CNN (Figure 5B) is like Faster R-CNN and adds to the

output a binary mask for segmentation of the detected object. It gets

the region where the fruit is located. It can detect and segment fruits

in the natural environment (apples, pears, citrus, logan fruit

bunches, etc.) in difficult conditions and positions. It was used for

the identification and segmentation of trees in orchards from aerial

imagery (orthophoto maps).

YOLO is a single-stage object detection algorithm providing the

bounding box and classification. It is composed of four sections –

input, backbone, neck, and prediction – which allow the detection

and localization of objects of different sizes (including small objects)

in orchards, like fruits, flower clusters, and insects. It can detect and

identify fruits in the natural environment (apples, pears, citrus,

logan fruit bunches, etc.) in difficult conditions and positions

(covered by leaves, fruits in shadow, fruits at different distances

from the camera, and fruit cluster) with precise box location and

high accuracy. The various variants of YOLO networks consider a

compromise between speed, accuracy, and simplicity. Many of them

can be implemented directly on the UAV, for real-time applications

simultaneously with video acquisition. The structure of the well-

known YOLO v5 is presented in Figure 5C.
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TABLE 2 NNs used in orchard monitoring (C, classification; D, Detection; S, segmentation or semantic segmentation).

NN
series

Representatives/con-
figuration

Function References

▪CNN ▪CNN simple ▪C (Kestur et al., 2019; (Kim et al., 2020; Li, Y. et al., 2020; (Csillik et al., 2018; Zortea et al., 2018; Lei
et al., 2022)

▪Multi-layer perceptron ▪D (Nevalainen et al., 2017; Fernandez-Gallego et al., 2018)

▪Sandglass bottleneck ▪C (Chen, T et al., 2021)

FCN ▪S (Marmanis et al., 2016; Osco et al., 2021)

▪CaffeNet ▪C (Bouroubi et al., 2018)

▪DaSNet ▪DaSNet-A, DaSNet-B, DaSNet-
C, DaSNet-v2

▪D, S (Kang and Chen, 2019; Kang and Chen, 2020a)

▪DeepLab ▪DeepLab-ResNet ▪D, S (Dias et al., 2018)

▪Deep-LabV3 + ▪S (Osco et al., 2021; Li, D. et al., 2022; Zhang X. et al., 2021)

▪DensNet ▪DensNet 121 ▪D, C (Nguyen et al., 2021; Peng et al., 2023)

▪Encoder -
Decoder

▪CED-Net ▪D (Kerkech et al., 2020)

▪Spatial Pyramid- oriented
Encoder-Decoder Cascade CNN

▪S (Yuan and Choi, 2021)

Staked Autoencoder ▪D (Deng et al., 2020)

▪VddNet with three
autoencoders
(Vine Disease Detection
Network)

▪D (Kerkech et al., 2020)

▪FCRN ▪FCRN ▪D (La Rosa et al., 2020)

▪GoogLeNet ▪ Inception modules ▪C (Breslla et al., 2020)

▪HRNet ▪HRNet ▪D, C, S (Biffi et al., 2021)

▪Inception ▪Inception v3 ▪C (Fang et al., 2020; Hansen et al., 2020; Zhang, H. et al., 2019)

▪LeNet ▪LeNet5 ▪C (Kerkech et al., 2018; Kerkech et al., 2020)

▪LedNet ▪LedNet ▪S (Kang and Chen, 2020b)

▪RBF ▪RBF/RBF+KNN ▪D (Fernandez-Gallego et al., 2018; Abdulridha et al., 2019)

▪R-CNN ▪R-CNN ▪D (Zhang et al., 2018; Biffi et al., 2021)

▪Faster R-CNN ▪D (Ren et al., 2017; Apolo-Apolo et al., 2020a; Apolo-Apolo et al., 2020b; Biffi et al., 2021; Barmpoutis
et al., 2019; Cunha et al., 2021; Khan et al., 2021 Deng et al., 2022; Hu et al., 2022)

▪Mask R-CNN ▪D, S (He et al., 2017; Barmpoutis et al., 2019; Jia et al., 2020; Machefer et al., 2020; Santos et al., 2020;
Iqbal et al., 2021; Zhang, W. et al., 2022)

▪Libra R-CNN ▪D (Biffi et al., 2021)

▪Cascade R-CNN ▪D (Biffi et al., 2021)

▪ResNet ▪ResNet 18 ▪C (Zhang et al., 2021; Zhang, X. et al., 2019)

▪ResNet 50 ▪C (Fang et al., 2020; Park et al., 2020; Nguyen et al., 2021)

▪RetinaNet ▪RetinaNet ▪D (Culman et al., 2020)

▪SegNet ▪SegNet ▪S (Fuentes-Pacheco et al., 2019; Ochoa and Guo, 2019; Majeed et al., 2020; Menshchikov et al., 2021;
Osco et al., 2021)

▪SqeezeNet ▪SqeezeNet ▪C (Park et al., 2020; Nguyen et al., 2021)

▪SSD ▪SSD ▪D (Aota et al., 2021)

▪SSD with FSAF module ▪D (Biffi et al., 2021)

▪UNet ▪Simple UNet ▪D, S (Oliveira et al., 2019; Lin and Guo, 2020; Menshchikov et al., 2021; Osco et al., 2021)

(Continued)
F
rontiers in Plan
t Science
 frontiersin.org11

https://doi.org/10.3389/fpls.2023.1237695
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Popescu et al. 10.3389/fpls.2023.1237695
U-Net (Ronneberger et al., 2015) series is especially important in

image segmentation. Although U-Net networks have good

segmentation accuracy, they can be trained with relatively few

images. In a classic way, the network architecture is made up of

two paths (subnets), the first one is contraction type (encoder) and

the second one is expansion type (decoder). At each level of the two

paths, there are concatenations (skip connections) between the up-

sampling of the feature map and the corresponding down-sampling

of the feature map. In the new improved versions of the network,

various NNs are placed on the encoder as blocks instead of the

original ones. Examples of such improved U-Net are given by

(Bhatnagar et al., 2020), having ResNet 50 as a backbone, and (Liu

et al., 2020), having SE-ResNeXt 50 as a backbone. The basic U-net

architecture is presented in Figure 5D. Variants of U-Net were used

in important applications like the segmentation of trees in the

orchard and collecting orchard environment information from

UAV images, segmentation of plantation cover area, segmentation

of diseased plants and pests, and mapping of the tree species.

ResNet, the winner of the ILSVRC 2015 competition (He et al.,

2016), introduced the elements of shortcut connections, within layers

providing multi-layer connectivity. As a result, it has a lower

computational complexity. Depending on the number of layers

ResNet has more representatives: ResNet 18, ResNet 34, ResNet 50,

ResNet 101, ResNet 110, ResNet 152, ResNet 164, and ResNet 1202.

The most used type in the investigated papers was ResNet50

containing 49 convolutional layers and one FC layer (Alzubaidi

et al., 2021). For example, the ResNet network from Figure 5E

(Ichim and Popescu, 2020) was used to detect flooded zones in an

area with vegetation (crops), the meaning of the notations (to save

space) being the following: A and B— skip connections, repetitive
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modules, FC—fully connected layer, F—flood type patch, V—

vegetation type patch, and n—number of module repetition). The

image was partitioned into patches according to a specific algorithm

and each patch (of small size) was classified/segmented as being flood

or vegetation. This decomposition into patches can also be used to

detect small objects (e.g., insects) compared to the whole image.

The SegNet network (Figure 5F) introduced in 2015

(Badrinarayanan et al., 2017) is like an encoder-decoder structure

that, in the final stage, has a pixel-wise classification layer. Each

layer in the encoder has a corresponding layer in the decoder.

Finally, the multi-class soft-max classifier provides for each pixel a

probability of belonging to a class, being thus possible a semantic

segmentation of the regions of interest (RoIs). It was used in

applications like tree localization and classification from aerial

imagery, estimation of trees density (large-scale orchard

monitoring), segmentation of trunks, branches, and trellis wires

(orchard of trees on trellis wires).

As we mentioned, when the databases were unbalanced or the

images collected from the orchards were insufficient, some authors

used data augmentation techniques such as translations, rotations,

transposition, rescaling, reflections, or changing the intensities on

color channels. Usually, techniques for image preprocessing, size

reduction, or cropping smaller windows were also used before

entering the NNs.

In many applications, it has been proven that deep CNNs

(DCNNs) can learn the invariant representations of images (as in

the case of supervised learning) and can achieve performance at the

level of human observers or even better (Khan et al., 2020b). They

can also extract useful representations for unlabeled images

(unsupervised learning). More recently, they can also be learned
TABLE 2 Continued

NN
series

Representatives/con-
figuration

Function References

▪UNet with SE-ResNeXt-50 as
encoder

▪S (Liu et al., 2021; Shang et al., 2021)/

▪UNet with VGG-16 encoder ▪D, C, S (Fawakherji et al., 2019; Kattenborn et al., 2019)

▪VGG ▪VGG16 ▪C (Park et al., 2020; Nguyen et al., 2021)

▪VGG19 ▪C (Fang et al., 2020; Miyoshi et al., 2020)

▪Xception ▪Xception ▪C (Fang et al., 2020)

▪YOLO ▪YOLOv2/improved ▪D (Santos et al., 2020)

▪YOLOv3/improved ▪D (Ampatzidis et al., 2019; Li, J.M. et al., 2021; Liu and Wang, 2020; Santos et al., 2020; Chen, C.J.
et al., 2021),

▪YOLOv3/Tiny ▪D (Chen, C.J. et al., 2021)

▪YOLOv4 ▪D (He et al., 2020; Li D. et al., 2021; Lin et al., 2022; Popescu et al., 2022b)

▪YOLOv5 ▪D (Li, D. et al., 2022; Lyu et al., 2022)

▪YOLO BP ▪D (Zheng et al., 2021)

▪YOLOF-snake/ResNet101 as
backbone

▪D, S (Jia et al., 2022)

▪YOLOX ▪D (Zhang, Y. et al., 2022)

▪YOLOP ▪D (Sun et al., 2023)
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effectively through the reinforcement learning method

(Arulkumaran et al., 2017) and federated learning (Deng et al.,

2022). For example, in the review paper (Wang C. et al., 2022) the

authors analyzed the CNN use throughout the fresh fruit

production chain and evaluation: flowering, growth, and picking

(using ground or aerial platforms). Another important aspect is the

fact that modern NNs are pre-trained, for example on the ImageNet

(Deng et al., 2009) and PASCAL VOC (Everingham et al., 2015)

databases, making the transition to the desired concrete application

much easier and faster, with fewer training images.
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The use of NNs involves three distinct phases: training,

validation, and testing. The images from the available data set

(including those obtained by augmentation) must be randomly

divided between these three phases. The proportion is 70% -

training, 20% - validation, and 10% - testing. The validation

phase is used in some works to establish network confidence

levels for collective intelligence (Popescu et al., 2022a) or decision

fusion systems (Ichim and Popescu, 2020). Sometimes the testing

phase is abandoned and then the proportion is 80% - training and

20% - validation.
A B

C
D

E

F

FIGURE 5

(A) Faster R-CNN, (B) Mask R-CNN (B-box bounding, C-class, M-mask), (C) YOLO v5 (Popescu et al., 2022), (D) U-Net architecture, (E) ResNet
(Ichim and Popescu, 2020), (F) Segnet.
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4.2 Software used

Different software libraries and modules (most of them free) are

used for image processing in successive tasks like obtaining

orthomosaic, georeferenced maps, 3D models, machine learning,

image annotation, implementing deep neural networks, etc. To

obtain useful information for tree canopy extraction and

segmentation, the images acquired by UAVs must be processed with

various software, for example, Agisoft Photoscan (https://

www.agisoft.com/) to generate geo-referenced ortho-images (Kerkech

et al., 2020; Adhikari et al., 2021). To implement the NN models the

most used software and platforms were TensorFlow (https://

www.tensorflow.org/), PyTorch (https://pytorch.org), and Keras

(https://keras.io/). An important step in the learning and testing

phases is image annotation. There is different software as image

annotator like YOLOLabel for the YOLO series (Iqbal et al., 2021;

Yuan and Choi, 2021) and VGG Image Annotator (Biffi et al., 2021).
4.3 Datasets

The databases used in the analyzed papers are divided into two

groups: a) databases for learning/validating/testing NNs for the

detection/classification/segmentation of objects of interest from the

images acquired in the orchard and b) databases for configuring flights

of photogrammetry or inside the orchards to collect data (images).

A pertinent presentation of public image databases for use in

precision agriculture is made in (Lu and Young, 2020) which contains

34 such databases. Of these, 11 refer to orchards: DeepFruits, Orchard

fruit, Date fruit, KFuji RGB-DS, MangoNet, MangoYOLO, WSU

apple, Fuji-SfM, LFuji-air, MinneApple, and Apple Trees. They are

created manually or by ground vehicles. Most are based on RGB

images. Many times, augmentation, annotation, and sharing

operations can be performed on the images from the databases

when used in NNs. The augmentation operations, often necessary

in the learning stage to establish the most correct parameters and

weights, are not used in the validation or testing stages. To obtain

correct training of NN sometimes the data set must carefully filter

because it can contain errors. For example, the IP 102 dataset (Wu

et al., 2019), with more than 75,000 images for pest detection, was

filtered to obtain better results. The filtered dataset, HQIP102,

containing 47,393 images of 102 pest classes on eight crops was

used (Peng et al., 2023) to train and test NN for pest detection.

To be sure that the trained NNs will learn the main

characteristics of the objects to be detected or classified and will

be more robust in a natural environment such as the orchard, many

researchers have performed data augmentation starting from the

original data. For example, 15 different augmentation methods are

mentioned in (Lei et al., 2022), such as Gaussian noise, impulse

noise, out-of-focus blur, motion blur, zoom blur, elastic

transformation, rotation transformation, random erase, random

crop, random flip, fog, brighten, contrast, color dithering, and

pixelated. To obtain good results on NN training, the classes in

the dataset need to be balanced and annotated. In the case of data

imbalance, the authors (Peng et al., 2023) proposed an efficient data

augmentation based on a dynamic method that depends on the
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initial number of elements in each class. In addition to these classic

augmentation operations, synthetic augmentation operations using

NNs for generating new images such as GAN are also used lately

(Lu and Young, 2020).

The applications studied through this manuscript often require

large datasets for the training/validation of NNs. Unfortunately,

these resources are not always well-defined or are restricted. There

are also some exceptions such as (Torres-Sánchez et al., 2018) which

list several point cloud collections.

The advantages of automatic analysis and labeling from UAV

images are particularly important (Zortea et al., 2018): one day for

automatic image labeling compared to one month for manual

labeling in the field with a GPS locator and one week for manual

labeling of images obtained from a UAV flight. To label manually,

efficient software assisting tools were developed like labelImg used

for annotation in the MangoYOLO dataset and VIA (VGG Image

Annotator) used for annotation in the MinneApple dataset. Most

datasets are created for image processing, classification, and

segmentation inside the orchard with machine learning tools, but

there are also datasets for photogrammetry applications,

for example, the ODMdata page (https://github.com/

OpenDroneMap/ODMdata) which contains a large collection of

various data sets with open access (orchards, forest areas,

parks, etc.).

It is worth mentioning that most identified databases deal with

photogrammetry applications or, at most, with production

estimation (fruit counting). In other words, there are no UAV

collections that provide close-up images (to identify visually small

bugs or morphology changes at the leaf level). In most papers, own

data sets, specific to the application, were used, but there are also

papers that were limited to public databases (Table 3).
4.4 Statistic performance indicators

Considering the results obtained from the experiments, the

analyzed papers used the following elements that make up the

confusion matrix (error matrix): true positive cases (TP), true

negative (TN), false positive (FP), and false-negative (FN). Based

on them, a series of statistical quality indicators were calculated for

the assessment of detection, classification, or segmentation

operations: Specificity (SPE), Sensitivity (SEN), Precision (PRE),

Accuracy (ACC), Dice coefficient (F1 score) (DSC or F1), and

Jaccard index (Table 4). If the application refers to several classes,

many authors prefer to provide average values for DSC and ACC in

all classes.

In addition to these indicators, Intersection over Union or

Jaccard index (IoU) was used to assess detection and

segmentation. Mean Average Precision (mAP) is a statistical

indicator used to evaluate the performance of NN for object

detection. It is calculated as an average over the number of classes

n of APi entities that represented the average detection accuracy for

class i (Table 4). The mAP is calculated for different IoU thresholds.

In the case of evaluating the correctness of the detection and

counting of several objects in the image (for example, in the case

of instance segmentation), some papers used Capturing Rate (CR),
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Detection Rate (DR), and Statistical Rate (SR) calculated based on

the actual number of objects, the number of objects in the image

and the number of objects detected by the computing system in the

same image. Another indicator worth mentioning is the Coefficient

of determination (R- squared), calculated from the sum of squares

of residuals (SSE) and the total sum of squares (SST).

Also, learning time and operating time are considered. These

time indicators strongly depend on the networks, the hardware used

(CPU, GPU, computer cluster, etc.), the resolution, and the number

of images.
4.5 New trends in the implementation of
neural networks for orchard monitoring

The novelties of the recent papers in the analyzed field refer to

the combination of several networks into decision systems to obtain

better performances than the component networks, including a
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CNN as the backbone in other CNN (network in a network), the

improvement (adaptation) of some networks for the respective

application - hence the name of the network, and the

improvement of well-established high-performance networks. The

new trends in the use of NNs in orchard monitoring follow the

general line regarding either the improvement of existing networks

by optimizing resources and improving performance or by

combining several NNs in network ensemble models. In this case,

it can be noted either the decision of the global system through the

majority vote of the decisions of the individual networks or through

the weighted summation of the detection (or classification)

probabilities offered by each component network of the ensemble.

The weight of a network is assigned proportionally to its

performance. To select the best NNs relative to an application,

some papers present comparisons regarding the values of the

performance indicators of several top NNs. Thus in (Torres-

Sanchez et al., 2020) SegNet, U-Net, FC-DenseNet, DeepLabv+

Xception, and DeepLabv3+ MobileNetV2 are compared regarding
TABLE 3 Public datasets used.

Dataset
name

Characteristics Year Number of
images

Link References

COCO-Stuff Contains pixel-level annotations of classes
such as grass, leaves, tree, and flowers

2017 123,287 images,
886,284 instances

https://cocodataset.org/#download (Caesar et al., 2018;
Dias et al., 2018)

AppleA,
AppleB,

Datasets containing apples, peaches, and
pears

2018 207 images https://data.nal.usda.gov/dataset (Dias et al., 2018;
Dias et al., 2018)

MinneApple Benchmark dataset for apple detection,
segmentation, and counting in the orchard

2019 1,000 images with
40,000 annotated
objects

https://rsn.umn.edu/downloads (Häni, 2020)

IP102 Contains 102 pest classes on eight crops. 2019 more than 75,000
images

https://www.kaggle.com/datasets/
rtlmhjbn/ip02-dataset

(Wu et al., 2019),
(Peng et al., 2023)

Mango
YOLO

Image dataset acquired with a farm terrestrial
vehicle for train, testing, and validation

2019 1730 images https://figshare.com/articles/dataset/
MangoYOLO_data_set/13450661/2

(Koirala et al.,
2019a)

Mendeley Data
(dataset added)

Image dataset acquired from a UAV over an
experimental site; added to Mendeley

2020 314 images https://data.mendeley.com (Encinas-Lara et al.,
2020)

Pistachio
Dataset

Pistachio orchard with two different nadir
angles

2021 248 images https://doi.org/10.5281/
zenodo.7271542

(Vélez et al., 2022)
TABLE 4 Statistic performance indicators used in the review.

Indicator Formula Indicator Formula

▪Specificity SPE =
TN

TN + FP

▪Sensitivity
(Recall) SEN =

TP
TP + FN

▪Precision PRE =
TP

TP + FP
▪Accuracy ACC =

TP + TN
TP + TN + FP + FN

▪Dice coefficient
(F1-score
or simple F)

DSC =
2 · TP

2 · TP + FP + FN

▪Jaccard index
(In confusion matrices) J =

TP
TP + FN + FP

▪Intersection over Union or
Jaccard index J(A,B) = IoU =

jA ∩ Bj
jA ∪ Bj

▪Mean Average Precision mAP =
1
no

n

i=1

APi

▪Coefficient of determination
(R- squared) R2 = 1 −

SSE
SST

▪Capturing rate (CR) CR =
captured   objects
real   objects

▪Detection rate (DR) DR =
detected   objects  
captured   objects  

▪Statistical
rate (SR) SR =

detected   objects
real   objects
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tree segmentation from UAV images. The obtained performances

by (Zhang and Zhang, 2023) were ACC: 88.9 – 96.7%, F1-score: 87

– 96.1%, and IoU: 77.1 – 92.5%. These networks can be combined

into ensemble systems for better detection (Deng et al., 2021;

Popescu et al., 2022a).

For areas with several orchards and different conditions, for

unitary management regarding several diseases and insect pests, the

authors (Deng et al., 2022) proposed a federated learning method of

NNs from several sources (obviously, several UAVs). In this way, if

an orchard has unbalanced or insufficient data for a disease/pest,

then the data is compensated from the other orchards, resulting in

better learning. For example, the improved Faster R-CNNmodel by

(Deng et al., 2022) can recognize fruit diseases and insect pests

under occlusion.

The popular networks were modified to improve their

performances. In (Zhang and Zhang, 2023) an improved U-Net,

namely MU-Net was implemented to segment the plant diseased

leaf. A residual block (Resblock) and a residual path (Respath) were

introduced into U-Net to overcome gradient problems and,

respectively, to improve the feature information between the two

paths of U-Net. For better performances on pest classification,

DensNet 121 was improved (Peng et al., 2023) in three directions:

input information feature, channel attention technique, and

adaptive activation function. Each improvement creates a

modified DensNet 121 model. The three models are combined

into an ensemble and the final decision is based on the sum of the

normalized confidence values for each pest category on these

three NNs.

By simultaneously considering RGB and NIR images, more

precise information can be obtained about the health of plants,

including orchards or vineyards. For example, in (Kerkech et al.,

2020) multimodal images (visible and infrared) are used for disease

detection in grapevine crops. Patches of 360 × 480 pixels were

cropped and analyzed from the original images (4608 × 3456

pixels). Two channels are selected green and NIR and the regions

of interest are segmented on both channels. For the dataset, semi-

automatic labeling was used in two steps: LeNet 5 and manual

correction. Four classes are considered: shadow, ground, healthy,

and symptomatic vine. Two SegNet models were evaluated and

tested for segmentation in RGB and NIR channels. The

symptomatic cases are interpreted considering the fusion by

intersection and union of segmentations obtained by the two

networks. The recommendation is to consider a system with

more NNs.

Some common NNs were adapted for a specific application and

got the name of the application: Vine Disease Detection Network

(VddNet) (Kerkech et al., 2020), YOLO designed for mango fruit

detection (MangoYOLO) (Koirala et al., 2021), network to detect

the invasion degree of Solanum rostratum Dunal (DeepSolanum-

Net) (Wang et al., 2021).

A synthesis of the new trends of UAVs and NNs in the orchard

monitoring context between 2020 and 2022 is done in Table 5. The

trend of most used NNs as number of appearances in research papers

between 2019–2022 were represented in Figure 6A. The symbol *

marks the fact that at the time of writing the article, the Web of
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Science indexing for the year 2022 has not finished. An average of the

main performance indicators is represented by the graph in

Figure 6B. It can see that both ACC and F1 have an increasing

trend, which means obtaining better-performing solutions.
5 Applications

In recent years, more and more tasks related to the monitoring

of orchards in large areas are solved by the intelligent processing of

data, and especially of images, collected with the help of drones.

Most applications related to the use of UAVs and NNs in orchard

monitoring refer to orchard mapping, pest and harmful insect

detection, fruit detection, yield estimation, and orchard condition.

In an automatic inspection of the orchard, for the desired

application, the appropriate trajectory of the UAV must be

specified and designed, according to Section 3. A major element

in orchard surveillance is identifying regions or objects of interest.

This may be at the macro level (orchard, tree lines, boundaries),

medium level (corona shape estimation, tree center, and height

identification), or micro level (counting fruits, pest detection, or

insect detection). As expected, there is a large variety of approaches

and tools to solve such problems. For example, (Torres-Sánchez

et al., 2018) discusses canopy area, tree height, and crown volume.

Noteworthy, the crown shape may vary even for the same type of

tree (as remarked by (Mu et al., 2018) for peach orchards).

Common geometric shapes considered for the crown shape are

the cone, hemisphere, and ovoid (Torres-Sánchez et al., 2018). The

precision of the estimation varies and strongly depends on the flight

characteristics and camera performance (Gallardo-Salazar and

Pompa-Garcıá, 2020).

As was mentioned in Section 4, there are cases where the

networks take the name of the specific application. For example,

the authors (Kestur et al., 2019) proposed a deep convolutional

neural network architecture for mango detection using semantic

segmentation named MangoNet. Also, the authors (Koirala et al.,

2021) call the network YOLO used MangoYOLO, and (Sun et al.,

2023) named YOLOP the modified YOLO v5 for pear fruit

detection. The authors (Kerkech et al., 2020) proposed a deep

convolutional neural network architecture for vine disease

detection named VddNet with a parallel architecture based on the

VGG encoder.

In the case of orchard monitoring using UAVs and NNs, there

are several essential applications such as the detection and

segmentation of orchards and individual trees, the detection of tree

diseases, the detection of harmful insects, the identification of fruits

and the evaluation of production, or the development of the orchard.
5.1 Orchard and tree segmentation

Themapping and segmentation of the orchards as well as the trees

inside was the subject of many research articles from the analyzed

period. Crop tree detection, location, and counting are estimated by

(Sarabia et al., 2020; Dyson et al. 2019; Lobo Torres et al., 2020;
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TABLE 5 A summary of new trends for the orchard-UAV-NN triplet.

Model Novelty Characteristics, Pros, and Cons NN used and function Performance
indicators

References

▪Combining two different
CNNs

▪Semantic segmentation of vegetation.
▪Pros: Good results in a wetland mapping
application.
▪Cons: Slower training process.

▪SegNet with VGG16
▪SegNet with ResNet50
▪UNet with VGG16
▪UNet with ResNet50

▪ACC = 91% for SegNet
with ResNet50
▪Time for NN training: 700
min

(Bhatnagar
et al., 2020)

▪Fusing the outputs of two
CNN, one for RGB and the
other for NIR images

▪Two camera sensors for RGB and NIR.
Disease detection in vine crops using
segmentation
▪Pros: Fusion by intersection is better than
classes detected in the visible or infrared
range:
▪Cons: Reduced performances on
segmentation due to the small training set
and too few NNs in the system, long runtime

▪Two SegNet (RGB and NIR)
▪Two LeNet5 (RGB and NIR) for
pre-labeling

▪Leaf-level average ACC:
82.20% - fusion AND;
90.23% - fusion OR;
▪Grapevine-level average
ACC: 88.14% - fusion
AND; 95.02% - fusion OR;

(Kerkech et al.,
2020)

▪Net with a specific name for
the application:
DeepSolanum-

▪Segmentation of UAV images to detect the
invasion degree of “Solanum rostratum
Dunal”
▪Pros: Reduced training time and complexity
▪Cons: Performances must be improved

▪DeepSolanum-Net based on U-
Net

▪Precision = 89.95%
▪Recall = 90.3%
▪IoU = 82.76%
▪F1-score = 89.85%

(Wang et al.,
2021)

▪Different CNN combined in
a system for orchard
monitoring
▪Net with a specific name:
MangoYOLO

▪Detect and count the fruits within images.
Input: tree image. Output: total fruits per tree
▪Pros: Good performance for fruit counting in
one season.
▪Cons: It is not a robust model in different
seasons.

▪Multi Layered Perceptron (MLP),
▪MangoYOLO model,
▪Xception_count model with a
regression block,
▪Xception_classification model

▪Best R2 = 94% (Koirala et al.,
2021)

▪Including a CNN as a
backbone in other CNN

▪Detection and semantic segmentation of
coconut trees
▪Pros: Good ACC
▪Cons: Need to classify and locate different
kinds of trees.

▪Mask R-CNN with ResNet 101 as
a backbone

▪mAP = 91%
▪ACC (classification) = 97%

(Iqbal et al.,
2021)

▪Dual network-based system
to eliminate successively
some FN and FP errors

▪Detecting and classifying harmful insects in
orchards (HH)
▪ Pros: Good performance to detect insects in
the foreground.
▪ Cons: Need to detect insects in a distant
plane.

▪YOLOv.4 with DarkNet combined
with EfficientNet B3

▪ACC = 95%
▪F1-score = 92%

(Popescu et al.,
2022b)

▪Combining NN YOLOv5s,
DeepLabv3+ MobileNetv2

▪Detecting and segmentation of the logan
fruit branch for logan harvesting using RGB-
D camera
▪Pros: Reduced operating time and good ACC
semantic segmentation
▪Cons: Limitations of object detection and
segmentation in environmental interference
conditions

▪Improved YOLOv5s for detection
and DeepLabv3+ MobileNetv2 for
semantic segmentation

▪ACC = 85.50% (fruit
branch detection)
▪ACC = 94.52% (fruit
branch semantic
segmentation)

(Li, D. et al.,
2022)

▪Faster R-CNN improved
with the Feature Pyramid
Networks (FPN)

▪Count the number of pecans in an orchard
▪Pros: Good mAP to identify pecans
▪Cons: Influence of lighting on fruit
recognition and detection.

▪Faster R-CNN and FPN ▪mAP = 95.932% (Hu et al.,
2022)

▪Federated learning (FL) and
improved Faster R-CNN.

▪Multiple pest detection
▪Pros: Can detect multiple pests in a short
time.
▪Cons: ACC must be improved

▪Faster RCNN with ResNet 101
and with FL

▪mAP = 89.34%
▪ACC = 90.27%
▪Detection time = 0.05 s

(Deng et al.,
2022)

▪Combining three improved
DensNet 121

▪Pest detection from an augmented big
dataset
▪Pros: Detecting pests on various agricultural
crops
▪Cons: Performances must be improved

▪Improved three DensNet 121 and
combined them into a decision
fusion system

▪ACC = 75.28% (Peng et al.,
2023)
F
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Modica et al., 2020) based on UAV flight multispectral cameras, and

morphological image processing techniques. Using U-Net and

RGB images, the authors (Schiefer et al., 2020) perform tree

species segmentation.

There are multiple ways to identify individual trees (canopy

segmentation) in an orchard/forested area. These vary with the

particularities of the specific trees and range in complexity from

simple box partitioning like in (Horton et al., 2017) to handling

irregular shapes and intermingled branches as in (Cheng et al.,

2020) tested for cherry and apple trees orchards. Classically, the

Hough transform for feature extraction has been often used but

with relatively weak performance. Better performance was observed

when using a Gaussian Mixture Model (Cheng et al., 2020). A

similar approach is followed in (Dong et al., 2020), again for

irregular crown shapes but this time applied to apple and pear

trees. Crown segmentation is sometimes only an intermediary step

for detecting the row lines and then, tree centers along each of these

lines. (Zortea et al., 2018) implements such a mechanism for citrus

orchards, a high-density case. Simply comparing the digital surface

and terrain models (DSM and DTM) may also be used, as in

(Gallardo-Salazar and Pompa-Garcıá, 2020) to geolocate trees and

delineate their crowns.

The tree detection and classification procedure apply not only to

curated environments (such as orchards) but also to natural growths

which are more irregular in both tree size and placement like large

boreal forest areas (Nevalainen et al., 2017). Another exception is (Tu

et al., 2020) where high-resolution images were acquired fromUAVs in

a more complex context (areas with urban vegetation). The application

is the semantic segmentation of trees of a specified species (Dipteryx

alata - cumbaru class) using state-of-the-art networks. The NNs

investigated were SegNet, U-Net, FC-DenseNet, and two DeepLabv3

+ implementations (Xception and MobileNetV2) all with the same

learning rates and optimizer for the learning phase. Moreover, a fully

connected CRF (conditional random field) approach is proposed as a

postprocessing step of the individual output NN decision. The results

of using CRF were statistical performance improvement (ACC: 0.2% -

1.7%, F1-score: 0.2% - 1.9%, and IoU: 0.4% - 3%) and a decrease in

computational efficiency (34.5 s for inference time). Regarding the

performances of the studied networks, the best ACC, F1-score, and IoU
Frontiers in Plant Science 18
(96.7%, 96.1%, and 92.5%) were obtained for FC-DenseNet and the

lowest for DeepLabv3+Xception (88.9%, 87.1%, and 77.1%). Also, the

best results for inference time were for FC-DenseNet (1.14 s) and

the lowest for DeepLabv3+Xception (4.44 s).

It should be mentioned that some sources of error are

systematic. For example, using a point cloud to estimate tree

height naturally will provide less reliable height estimates if the

tree shape narrows toward the top, which means that fewer points

in the cloud are available for the 3D reconstruction (Gallardo-

Salazar and Pompa-Garcıá, 2020). Even for simple photogrammetry

applications, there are many features that may be considered.

Beyond the standard segment length, segment intra-distance, and

turn radius (the latter relevant only for fixed-wing UAVs) we may

also consider height variation from segment to segment. E.g., in

(Duarte et al., 2020) the segments follow the curvature of the

terrain, leading to pictures taken along a surface that maintains a

mostly constant height from the hilly ground beneath the camera.

(Hulens et al., 2017) aims to detect through image processing the

start and end points of an orchard row while traveling within it.

To obtain useful information for tree canopy extraction and

segmentation, the images acquired by UAVs must be processed

with various software (for example, Agisoft Photoscan) to generate

geo-referenced ortho-images (Apolo-Apolo et al., 2020a; Adhikari

et al., 2021). For example, in Figure 7 from a small, studied area the

segmentation and elevation map is created using the photo

capture points.

In most cases, the articles considered the detection and

segmentation of some trees of a certain species, such as citrus

(Csillik et al., 2018), palms (Culman et al., 2020), coconut (Iqbal

et al., 2021), fig plant (Fuentes-Pacheco et al., 2019), etc., but the

recommended solutions can also be applied to other types of

orchards. In this case, the NNs system must be relearned with a

new set of data (images) and the performances may be slightly

different. Authors (Garcıá-Murillo et al., 2020) proposed the

Cumulative Summation of Extended Maxima transform

(SEMAX) methodology for the automatic individual detection of

citrus and avocado trees.

A synthetic presentation of orchard and tree mapping and

segmentation application is given in Table 6.
A B

FIGURE 6

The most used NNs in orchards (A) and main performance indicators (B).
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5.2 Monitoring the evolution and condition
of the orchard

Most of cases, the conditions and evolution of an orchard are

evaluated from multispectral images, as can be seen in Table 6. But,

since NNs are implemented for RGB images (three color channels),
Frontiers in Plant Science 19
for multispectral images less of these networks were used. There are

exceptions presented in Table 6. For example, in (Cunha et al.,

2021) the vigor and health of peach trees are evaluated using

vegetable indexes like NDVI (normalized difference vegetation

index), GNDVI (green NDVI), NDRE (normalized difference red

edge index), and REGNDVI (red-edge GNDVI) calculated from
A

D E F G H

I J K L

B C

FIGURE 7

(A) Creating the elevation map: studied area, (B) Photo capture points, (C) Elevation map, (D) image from UAV containing HH in orchard, distant plan
(4 m), (E, F) HH detected from D using image crops, (G, H) HH nymph at 0.6 m with manual acquisition, (I) Image with green apples in orchard,
(J) Marked green apples, (K) Image with red apples in orchard, (L) Marked red apples.
TABLE 6 Orchard and tree segmentation. Monitoring the evolution and condition of the orchard.

Purpose (orchard task) Resources Performance References

Orchard and tree segmentation

▪Detection of Citrus Trees based on a UAV flight and
image processing in two steps: detection and classification

▪UAV; multispectral camera; Simple CNN for detection; Simple
Linear Iterative Clustering algorithm (SLIC) for classification.

▪ACC=96.24%, (Csillik et al.,
2018)

▪Individual palms detection from high-resolution remote
sensing images

▪UAV; RGB camera; RetinaNet ▪mAP=86.1% (Culman et al.,
2020)

▪ Fig plant segmentation ▪UAV; RGB camera; encoder-decoder DCNN, inspired by SegNet
architecture

▪ACC=93.85% (Fuentes-
Pacheco et al.,
2019)

▪Tree detection and position ▪UAV; hyperspectral camera; different CNNs ▪F1 = 95.9%, (Miyoshi et al.,
2020)

▪Branch detection of apple trees ▪UAV; RGB camera; Pseudo-Color Images and Depth, R-CNN ▪REC=92%,
▪ACC=86%

(Zhang et al.,
2018)

▪Detection and segmentation of trunk/branch, apples, and
leaves

▪Terrestrial platform; RGB-D camera; ResNet-18 ▪ACC= 94.5%-
94.8%

(Zhang, X.
et al., 2019)

(Continued)
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multispectral images. Other research is focused on the detection of

spraying areas (Khan et al., 2021) and concentrations of various

chemical substances like Nitrogen, Phosphorus, and Potassium

(Noguera et al., 2021) in the leaves. The summary of the orchard

evolution monitoring is in Table 6.
5.3 Detection of pests and tree diseases
in orchards

Pest detection using UAV is an important application of orchard

monitoring because pests cause significant loss of crop production

(Castrignanò et al., 2021). A recent review of the impact of climate

change (IPPC Secretariat et al., 2021) on plant pests showed that pests

have expanded to new areas. FAO estimates that every year the losses

caused by pests are up to 40% of global crop production. Therefore,

pests and disease detection and their spread prediction in real-time

are needed for efficient and non-polluting interventions. Detecting

the pests and diseases of trees in orchards as early as possible can limit
Frontiers in Plant Science 20
their spread. Manual observation is timely loss and inefficient

(Roosjen et al., 2020). Using UAVs and artificial intelligence in pest

detection and evaluation, important progress can be observed (Peng

et al., 2023). The low-altitude flight of UAVs is more effective than the

ground diagnosis which is time-consuming and laborious on large

area monitoring (Lan et al., 2020).

In organic orchards, it is particularly important to detect and

monitor insects, especially harmful ones. For this, there are several

ways such as direct visual inspection of farmers, land platforms, or

drones. The last option is the most efficient because it can cover a

relatively important area in a short time. In (Sorbelli et al., 2022), a

method of sweeping individual trees from an orchard for the

detection and evaluation of harmful insects (Halyomorpha Halys

(HH)) is described. Four NNs were compared (Ichim et al., 2022) to

highlight the best-performing network in HH detection. For this

experiment, the result was DenseNet201. Note that HH or other

harmful insects are at least an order of magnitude smaller than

fruits like apples or pears, hence the problem of accurately detecting

and counting them is even more challenging. The partial occlusion
TABLE 6 Continued

Purpose (orchard task) Resources Performance References

▪Identify the tree trunks and branches for a harvesting
system

▪RGB camera; Deeplab v3+ with backbone: ResNet-18, VGG-16,
and VGG-19

▪Per-class accuracy
(PcA) =97%

(Zhang X. et al.,
2021)

▪Semantic segmentation of citrus trees in a dense orchard ▪UAV; multispectral camera; FCN, U-Net, SegNet, DDCN, Deep-
LabV3 +

▪ACC= 94.88%-
95.96%

(Osco et al.,
2021)

▪Detection and classification of individual tree ▪UAV; RGB camera; AlexNet, SqueezeNet, VGG 16; ResNet 50,
DenseNet 121

▪ACC = 97.6%
-99.5%

(Nguyen et al.,
2021)

▪Dection and semantic segmentation of coconut trees ▪UAV; RGB camera; Mask R-CNN with ResNet101 as backbone ▪mAP=91% (Iqbal et al.,
2021)

▪Segmentation of planting rows of orange trees ▪UAV; RGB camera; Pipeline of two encoder-decoder networks
(DetED – for detection and CorrED – for correction

▪ACC = 94% -
99.5%,

(Rosa et al.,
2020)

Monitoring the evolution and condition of the orchard

▪Evaluating the phenotypic characteristics of orange trees
with influences on plant growth

▪UAV; multispectral camera; YOLO v3 ▪PRE=99.9% (Ampatzidis
et al., 2020)

▪Evaluating the vigor and health of trees in a peach
orchard using multispectral images

▪UAV; multispectral camera; Faster R-CNN ▪NA (Cunha et al.,
2021)

▪Recognition of spraying areas in the orchard. ▪UAV; RGB camera; improved Faster R-CNN ▪ACC=87.77% -
88.57%

(Khan et al.,
2021)

▪Determination of the NDVI in a pomegranate orchard ▪UAV; Deep Stochastic Configuration Networks (DeepSCNs),
regression model

▪R2 = 99.5% (Niu et al.,
2020)

▪Nitrogen concentration in an apple orchard ▪UAV; hyperspectral camera; backpropagation neural network
(BPNN)

▪R2 = 77% (Li, W. et al.,
2022)

▪Nitrogen, Phosphorus, and Potassium foliar content
retrieval in olive trees

▪UAV; multispectral camera; ANN R2 = 63% - 95% (Noguera et al.,
2021)

▪Monitoring citrus orchards ▪UAV; RGB camera; FCRN-MTL ▪PRE=95% (La Rosa et al.,
2020)

▪Multispecies fruit flower (apple, peach, and pear)
detection by semantic segmentation

▪Datasets publicly available; RGB camera; residual convolutional
neural

▪F1 = 74.2%- 86% (Dias et al.,
2018)

▪ Estimating olive tree’s biovolume ▪UAV; multispectral camera; Mask R-CNN based on ResNet50 ▪F1 = 95%-98% (Safonova et al.,
2021)

▪Evaluating the temperature in an apple orchard for frost
protection

▪UAV; RGB camera; thermal camera; YOLOv4 ▪mAP= 66.08%-
71.57%

(Yuan and
Choi, 2021)
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is challenging and the estimation of the abundance of these insects

is a difficult problem. In Figure 7 some examples of HH at different

stages of evolution and other insects in images taken on different

conditions confirm the difficulty of real detection of insects in trees

from UAV. As can be seen, the image from UAV at a safe distance

(in automatic surveillance) contains insects hard to be distinguished

and the recommended action is to split the images in crops and then

detect the insects with NN. If the insects are in the first plan or in

the public dataset the task detection is easier (Xing et al., 2019).

A synthetic presentation of tree disease and pest detection is

given in Table 7.
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5.4 Prediction and evaluation of
orchard production

As specified by (Wang C. et al., 2022; Koirala et al., 2019b) the

evaluation of fruit production is an important activity both from the

social and economic points of view. The authors used a combined

YOLO5 and FlowNet2 scheme to improve apple detection in an

orchard for accurate yield estimation. They claim a good performance

and a framerate of 20 frames/second even for partially occluded targets

and under varying illumination conditions. This is in contrast with

typical applications where the analysis is carried out offline.
TABLE 7 Detection of pests and tree diseases. Prediction and evaluation of orchard production .

Purpose (orchard task) Resources and discussions Performance References

Detection of pests and tree diseases

Infected or diseased trees detection ▪UAV; Faster R-CNN and Mask R-CNN approaches and
fusing their outputs

▪SEN=81.67% (Barmpoutis et al.,
2019)

Detection of the citrus bacterial canker in disease
development stages on Sugar Belle leaves and immature
fruit

▪UAV; hyperspectral camera; the neural network Radial Basis
Function (RBF) and the K-nearest neighbor (KNN)

▪ACC= 94%-100% (Abdulridha et al.,
2019)

Identification of fruit tree pests (Tessaratoma papillosa) ▪UAV; RGB camera; Tiny-YOLOv3 ▪mAP= 38.12%-
95.33%

(Chen, C.J. et al.,
2021)

Detection of the degree of HLB (huanglongbing)
infection on large-scale orchard citrus trees

▪UAV; multispectral camera; stacked autoencoder (SAE) neural
network

▪ACC= 99.72% (Deng et al., 2020)

▪UAV; multispectral camera; autoencoder ▪ACC=97.28%, (Lan et al., 2020)

Detection of diseases in vineyards ▪UAV; multispectral camera; LeNet-5, SegNet – single or
combination

▪ACC=78.72%-
95.02

(Kerkech et al.,
2020)

▪UAV; RGB camera; LeNet-5 ▪ACC=95.8% (Kerkech et al.,
2018)

▪UAV; RGB camera; CaffeNet ▪NA (Bouroubi et al.,
2018)

▪UAV; multispectral camera; VddNet ▪ACC=93.72 (Kerkech et al.,
2020)

Detection of the presence and behavior of the nematode
pest in coffee crops

▪UAV; RGB camera; U-Net and PSPNet ▪F1 = 69% (Oliveira et al.,
2019)

Detection of black rot on grape leaves ▪UAV; RGB camera; YOLOv3 with SPP module ▪PRE=94.05%,
SEN=93.26%

(Zhu et al., 2021)

Sick tree detection ▪UAV; RGB camera; different CNNs: Alexnet, Squeezenet,
VGG 16; Resnet 50, Densenet 121

▪ACC=97.6%
-99.5%

(Nguyen et al.,
2021)

Bug detection (Halyomorpha Halys) in an orchard ▪UAV; RGB camera; processing (NN) ▪NA (Sorbelli et al.,
2022), (Ichim et al.,
2022)

Insect detection, invasive species (Anolis carolinensis) ▪UAV, RGB camera; SSD-based model of DCNN ▪PRE=70% (Aota et al., 2021)

Invasion degree of “Solanum rostratum Dunal”
detection

▪UAV; RGB camera; DeepSolanum-Net based on U-Net ▪F1 = 89.85% (Wang et al., 2021)

Prediction and evaluation of orchard production

▪Method for semantic segmentation and instance
segmentation of bayberry fruit.

▪Terrestrial platform; RGB camera; Multi-module
convolutional neural network

▪AP = 75.5%
-91.3%

(Lei et al., 2022)

▪Accurate monitoring of fruit quantity in apple orchards ▪UAV inside orchard; RGB camera; YOLO v5s ▪AP = 90.39% (Wang S. et al.,
2022)

▪Yield estimates in apple orchards. Detecting apples on
individual trees.

▪UAV; RGB camera; R-CNN ▪R2 = 80% - 86% (Apolo-Apolo et al.,
2020a)

(Continued)
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The standard, encountered in virtually all aerial systems older

than 5-10 years, is to gather the raw data and, at most, do some

preliminary preprocessing before sending it to a ground station for

further analysis. This has the obvious benefit of minimizing the

hardware complexity and energy requirements for the drone but

makes impractical “live” implementations where the mission must

be updated on-the-fly from the gathered information. Recent

applications, due to significant hardware resources, have started

to handle increasing parts of the workflow onto the drone. While

the effort is by no means trivial, dedicated software such as Jetson

Nano, Google Coral, and the like permit image processing directly

onto the drone. This means that decisions may be taken in a fully

local manner (without interaction with the ground). Even a

supervisor (human or software agent) still must be in the loop (as

is the case for most commercial applications), there still is the

benefit of reduced bandwidth allocation (since more steps of the

image processing are done on the platform, it means that only

relevant information is exchanged with the ground).

On the other hand, for position correction, collision avoidance,

and even target counting (Wang S. et al., 2022), optical flow

methods which compare consecutive frames to detect changes are

used. This has the advantage of improving performance but comes

usually with a reduction in resolution (since video frames have,

unavoidably, less resolution than static images).

The great majority of drone trajectories are out of a plane

(images/videos are taken top-down while the drone is flying over

the treetops). Still, there are some results such as in (Wang S. et al.,

2022) where the drone travels mid-row, through the orchard’s rows.

Using artificial intelligence methods to process the images

acquired by autonomous terrestrial or aerial platforms, the

conditions for picking fruits that have reached maturity in the

optimal period can be improved. This approach leads to increased

economic efficiency for orchards (Lei et al., 2022). Fruit estimation

is challenging and the number of fruits on a tree cannot be

measured exactly due to occlusions (Zhang X. et al., 2019).
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Because of the similarity between the fruit and the leaf, the

detection of green citrus fruits or green apples (Figure 7) is quite

difficult. The authors (Zheng et al., 2021) proposed a modification

of the YOLO neural network modules (starting from YOLO v4),

called YOLO BP which detects the respective fruits with higher

precision than YOLO v4. If the fruits are a color different from the

leaves or are not obturated the detection task is easier (Figure 7).

NIR is used especially for highlighting the leaves and the production

of almonds in a tree. For example, in (Tang et al., 2023) aerial multi-

spectral images (near-infrared, red edge, red, and green) are

processed by a CNN to estimate the almond production in an

orchard with a coefficient of determination, R2 = 96%. It is specified

that the sun-shadow effect can decrease system performance.

A synthetic presentation of fruit production evaluation is given

in Table 7.
6 Discussion

The use of UAVs and NNs for image processing in orchard

monitoring is a relatively new method open to both research and

end-user implementation. This was possible due to the

development of new technologies in recent years and the decrease

in the prices of the necessary equipment. Unfortunately, most of the

current UAV applications are relatively simple from the viewpoint

of trajectory generation (straight lines or successive set points to be

reached). Still, continuous advances in hardware capabilities and

the expected expansion of mission complexity mean that more

complex scenarios will be defined and tackled. Continuous

reduction in size, cost, and dimensions means that various sensor

mechanisms (Lidar for example) may now be mounted onboard.

Not least, improvements in embedded image processing (software

and hardware modules such as Jetson Nano or Google Coral) mean

that image-based positioning is now increasingly used. Henceforth,

we expect that algorithms initially tailored for ground vehicles will
TABLE 7 Continued

Purpose (orchard task) Resources and discussions Performance References

▪Detection, counting, and estimation of the size of citrus
fruits on individual trees

▪UAV; RGB camera; Faster R-CNN ▪F1 = 89% (Apolo-Apolo et al.,
2020b)

▪Detection and location of longan fruits ▪UAV; RGB camera; MobileNet backbone used to improve
YOLOv4

▪mAP = 54.22
-89.73%

(Li D. et al., 2021)

▪Holly fruits detection and counting ▪UAV; RGB camera; YOLOX ▪DR >99% (Zhang Y. et al.,
2022)

▪Canopy extraction. Detect mango and predict the
number on the tree

▪Terrestrial platform; RGB camera; Mango YOLO, Xception,
Random Forest

▪R2 = 98% (Koirala et al., 2021)

▪Detect apple fruit in the orchard ▪Manual images; RGB camera; comparing RetinaNet, Libra-
RCNN, Cascade-RCNN, Faster-RCNN, FSAF, HRNet, and
ATSS

▪Maximum AP =
94.6%

(Biffi et al., 2021)

▪Longan harvesting UAVs. Branch detection and fruit
branch semantic segmentation.

▪UAV; RGB-D camera; YOLOv5s – for detection, and
improved DeepLabv3+ (MobileNet v2) for semantic
segmentation

▪ACC = 85.50% –

94.52%
(Li D. et al., 2022)

▪Grape detection, instance segmentation ▪RGB camera; Mask R-CNN with ResNet 101 as the backbone ▪F1 = 91% (Santos et al., 2020)

▪Pear (fruit) detection ▪RGB camera; YOLO-P F1 = 96.1% (Sun et al., 2023)
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be adapted in the next few years to aerial systems. For example, a

great many algorithms exist for in-lane orchard navigation for

ground autonomous systems (small-sized tractors, (Emmi et al.,

2021)) and it should be possible to adapt them with minimal

modifications. Although it is preferable to other methods such as

terrestrial platforms or human operators, automatic UAV flight and

establishing the trajectory inside the orchard for the acquisition of

images is sometimes a real challenge due to several aspects such as:

a) keeping a safe distance from tree branches, b) obtaining a

continuous 3D surface (similar to orthomosaic) from which to

cut out the images to be analyzed, c) detecting, segmenting and

classifying small (insects, some fruits, diseases) and/or partially

covered objects, d) large differences in brightness, e) background

difficulty, etc. All this, including the characteristics of public

databases (if they are used) leads to different performances for the

same type of application.

It can be noted that, in general, the performances obtained

depend both on the networks used and on the quality of the

acquired data set. Many times, the division of high-resolution

acquired images into sub-images (patches) and their analysis by

the proposed NNs give better results than the processing of large
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images through the resizing required by the networks. This solution

can be useful when trying to detect small objects in trees (such as

insects). The performance of networks or systems made of multiple

networks leans either on meeting the needs of precision or on

meeting the needs fast processing, or on the compromise between

these two. Anyway, for a large-scale application, on various farms, a

solution that saves resources or a remote processing solution via the

Internet is preferable. Another recommendation is to use, in

situations where NIR images provide relevant information, to

combine NNs for RGB with NNs for NIR in a global

decision system.

There are several review articles with the topic of some common

parts with this article, but none that include the triplet orchard,

UAV, and NNs. Their descriptions and the novelty introduced in

our paper are presented in Table 8.
7 Conclusions

This review covers a critical gap in modern orchard monitoring

considering the essential contribution of both UAV and NNs as
TABLE 8 Recent review/survey papers on similar topics.

Paper Description Period Ref. Our differences (improvement or novelty)

(Kamilaris
and
Prenafeta-
Boldú,
2018)

▪Using CNNs in agriculture.
▪Comparing NN with other techniques in agricultural
applications, high precision, and accuracy are obtained.

1995-
2018

62 ▪Focused on orchard monitoring from different points of view
(applications). Focused on new trends in NN usage. Graphs on the
evolution of UAV and NN use in the last period. Description of
using UAVs for image acquisition. More references. New period.

(Koirala et
al., 2019b)

▪Using DL for fruit detection and
yield estimation.
▪Comparing the statistical performances of CNN methods.

1991-
2019

83 ▪Focused on orchard monitoring from different points of view.
Focused on new trends in NN usage. Graphs on the evolution of
UAV and NN use in the last period. Description of using UAVs
for image acquisition. More references. New period.

(Barbedo,
2019)

▪Using UAVs and image acquisition and processing to
monitor and assess the plant stresses.

2003-
2018

169 ▪Focused on orchard monitoring from different points of view
(applications). Focused on new trends in NN usage. Graphs on the
evolution of UAV and NN use in the last period. More references.
New period.

(Ma et al.,
2019)

▪Using deep NNs in general remote sensing applications. 1991-
2018

148 ▪Focused on orchard monitoring from different points of view.
Focused on new trends in NN usage. Graphs on the evolution of
UAV and NN use in the last period. Description of using UAVs
for image acquisition. More references. New period.

(Iost Filho
et al.,
2020)

▪Using multi-copters in pest management to identify harmful
areas and to accurately spray pesticides. Sensing and
actuation UAVs are investigated in agricultural systems

1986-
2019

320 ▪Focused on orchard monitoring from different points of view
(applications). Focused on detailed descriptions of NN used and
new trends. Graphs on the evolution of UAV and NN use in the
last period. New period.

(Lu and
Young,
2020)

▪Analyzing and establishing the main characteristics of 34
public image DSs for computer vision tasks in precision
agriculture: 15 on weed control, 10 on fruit detection, and 9
for other applications.

2009-
2020

98 ▪Focused on orchard monitoring from different points of view
(applications). Focused on new trends in NN usage. Description of
using UAVs for image acquisition. Graphs on the evolution of
UAV and NN use in the last period. More references. New period.

(Naranjo-
Torres
et al.,
2020)

▪Using CNN for fruit recognition. Presentation of
fundamentals, tools, and examples of CNNs for fruit sorting
and quality control.

1998-
2020

104 ▪Focused on orchard monitoring from different points of view.
Focused on new trends in NN usage. Description of using UAVs
for image acquisition. Graphs on the evolution of UAV and NN
use in the last period. More references. New period.

(Zhang
et al.,
2020)

▪Using DL for dense scenes analysis in agriculture. Analyzing
the challenges in dense agricultural scenes. Presentation of
architectures of DL algorithms and CNNs used in dense
agricultural scenes

1988-
2019

122 ▪Focused on orchard monitoring from different points of view
(applications). Focused on new trends in NN usage. Graphs on the
evolution of UAV and NN use in the last period. Description of
using UAVs for image acquisition. More references. New period.
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exponents of new technologies. As can be seen both from the

analysis of research articles and review articles, only in recent years

have these hardware/software resources been involved and analyzed

in research in the field. Both the advantages offered by the two

components (UAV and NN) of the analyzed orchard monitoring

systems were highlighted as well as the challenges due to the

difficulties encountered in real orchards, related to the UAV flight

inside the orchards among the trees and the detection of small

objects such as fruits or insects inside the crowns. The newest

technologies used in modern orchards were analyzed in support of

increasing production, increasing fruit quality, and eliminating

pests and diseases through environmentally friendly means.

Special emphasis was placed on the new trends in the

development of the main analyzed vectors, namely NNs, and

UAVs. The final discussion regarding the comparison with other

review articles highlights the article’s contributions regarding

improvements and new approaches. We hope the paper will help

the researchers and producers of modern systems for orchard

monitoring in the context of Agriculture 4.0. As previously stated

in the paper, a limitation of the approach is the relatively small

number of existing research articles in the complex topic of orchard

monitoring-UAV-neural networks (it is a new field, in full

expansion). As a future direction, we will follow the ever-growing

evolution in this field, based on the fusion of information from

terrestrial and aerial robots, for the most efficient monitoring of

orchards using artificial intelligence techniques.
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TABLE 8 Continued

Paper Description Period Ref. Our differences (improvement or novelty)

(Dhaka
et al.,
2021)

▪Using DCNN for prediction of plant diseases from leaf
images.

1989-
2021

124 ▪Focused on orchard monitoring from different points of view
(applications). Description of using UAVs for image acquisition.
Graphs on the evolution of UAV and NN use. More references.

(Li L. et
al., 2021)

▪Using DL for plant leaf disease detection and classification 2006-
2020

113 ▪Focused on orchard monitoring from different points of view
(applications). Description of using UAVs for image acquisition.
Graphs on the evolution of UAV and NN use. More references.

(Liu and
Wang,
2021)

▪Using DL for plant diseases and pest detection, considering
three functions of NN: classification, detection, and
segmentation.

2006-
2021

108 ▪Focused on orchard monitoring from different points of view
(applications). Description of using UAVs for image acquisition.
Graphs on the evolution of UAV and NN use. More references.

(Olson
and
Anderson,
2021)

▪Presentation of UAVs, image sensors, image acquisition,
image processing, and their applications in agriculture

1973-
2021

154 ▪Focused on orchard monitoring from different points of view
(applications). Focused on new trends in NN usage. Description of
using UAVs for image acquisition. Graphs on the evolution of
UAV and NN use in the last period. More references.

(Zhang C.
et al.,
2021)

▪Presentation of orchard management with small UAVs 1978-
2019

147 ▪Focused on new trends in NN usage for image processing for
orchard monitoring. Graphs on the evolution of NN use in the last
period. More references. New period.

(de Castro
et al.,
2021)

▪Using UAVs for vegetation monitoring considering diverse
agricultural and forestry scenarios such as vegetation indices,
technological goals, and applications.

2004-
2021

48 ▪Focused on orchard monitoring from different points of view
(applications). Focused on detailed descriptions of NN used and
new trends. Graphs on the evolution of UAV and NN use. More
references.

(Wang C.
et al.,
2022)

▪Detecting the phases of fruit evolution from flower, growth,
ripening, picking, and classification, based on the analysis of
images captured by terrestrial or aerial robots. NNs with one
or two stages, built for object detection were considered.

1986-
2022

201 ▪Focused on orchard monitoring from different points of view
(applications). More NNs. Focused on new trends in NN usage.
Description of using UAVs for image acquisition. Graphs on the
evolution of UAV and NN use in the last period. More
applications
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Apolo-Apolo, O. E., Pérez-Ruiz, M., Martıńez-Guanter, J., and Valente, J. A. (2020a).
Cloud-based environment for generating yield estimation maps from apple orchards
using UAV imagery and a deep learning technique. Front. Plant Sci. 11. doi: 10.3389/
fpls.2020.01086

Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). Deep
reinforcement learning: a brief survey. IEEE Signal Process. Magazine. 34 (6), 26–38.
doi: 10.1109/MSP.2017.2743240

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). Segnet: a deep convolutional
encoder decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach.
Intell. 39 (12), 2481–2495. doi: 10.1109/TPAMI.2016.2644615

Barbedo, J. G. A. (2019). A review on the use of Unmanned Aerial Vehicles and
imaging sensors for monitoring and assessing plant stresses. Drones 3 (2), 1–27, 40.
doi: 10.3390/drones3020040
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Valenzuela, A. (2020). A review of convolutional neural network applied to fruit image
processing. Appl. Sci. 10 (10), 3443. doi: 10.3390/app10103443

Nawaz, S. A., Li, J., Bhatti, U. A., Shoukat, M. U., and Ahmad, R. M. (2022). AI-based
object detection latest trends in remote sensing, multimedia and agriculture
applications. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1041514

Nevalainen, O., Honkavaara, E., Tuominen, S., Viljanen, N., Hakala, T., Yu, X., et al.
(2017). Individual tree detection and classification with UAV-based photogrammetric
point clouds and hyperspectral imaging. Remote Sens. 9 (3), 185. doi: 10.3390/
rs9030185

Nguyen, H. T., Lopez Caceres, M. L., Moritake, K., Kentsch, S., Shu, H., and Diez, Y.
(2021). Individual sick fir tree (Abies mariesii) identification in insect infested forests by
means of UAV images and deep learning. Remote Sens. 13, 260. doi: 10.3390/rs13020260

Niu, H., Wang, D., and Chen, Y. (2020). Estimating crop coefficients using linear and
deep stochastic configuration networks models and UAV-based normalized difference
vegetation index (NDVI). Proc. Int. Conf. Unmanned. Aircraft. Syst. (ICUAS)., 1485–
1490. doi: 10.1109/ICUAS48674.2020.9213888

Noguera, M., Aquino, A., Ponce, J. M., Cordeiro, A., Silvestre, J., Arias-Calderón, R.,
et al. (2021). Nutritional status assessment of olive crops by means of the analysis and
modelling of multispectral images taken with UAVs. Biosyst. Eng. 211, 1–18.
doi: 10.1016/j.biosystemseng.2021.08.035

Ochoa, K. S., and Guo, Z. (2019). A framework for the management of agricultural
resources with automated aerial imagery detection. Comput. Electron. Agric. 162, 53–
69. doi: 10.1016/j.compag.2019.03.028

Oliveira, A. J., Assis, G. A., Faria, E. R., Souza, J. R., Vivaldini, K. C. T., Guizilini, V.,
et al. (2019). “Analysis of nematodes in coffee crops at different altitudes using aerial
images,” in Proc. 27th European Signal Processing Conference (EUSIPCO). 1–5.
doi: 10.23919/EUSIPCO.2019.8902734

Olson, D., and Anderson, J. (2021). Review on unmanned aerial vehicles, remote
sensors, imagery processing, and their applications in agriculture. Agron. J. 113, 1–22.
doi: 10.1002/agj2.20595
frontiersin.org

https://doi.org/10.3390/electronics9101602
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.3906/elk-2004-4
https://doi.org/10.1016/j.compag.2020.105620
https://doi.org/10.3390/agronomy11020347
https://hdl.handle.net/10018/1261224
https://doi.org/10.1016/j.compag.2019.04.017
https://doi.org/10.1016/j.compag.2020.105234
https://doi.org/10.1016/j.compag.2020.105234
https://doi.org/10.1109/LAGIRS48042.2020.9165654
https://doi.org/10.1080/01431161.2010.507790
https://doi.org/10.1080/01431161.2010.507790
https://doi.org/10.1016/j.asoc.2022.108556
https://doi.org/10.1016/j.asoc.2022.108556
https://doi.org/10.1146/annurev-ento-020117-043226
https://doi.org/10.1146/annurev-ento-020117-043226
https://doi.org/10.1109/TCST.2020.3012619
https://doi.org/10.1109/ACCESS.2020.3020359
https://doi.org/10.1109/ACCESS.2020.3020359
https://doi.org/10.1016/j.compag.2021.106465
https://doi.org/10.1016/j.compag.2022.107191
https://doi.org/10.1016/j.compag.2022.107191
https://doi.org/10.1109/ACCESS.2021.3069646
https://doi.org/10.1109/ACCESS.2021.3069646
https://doi.org/10.3390/s22093503
https://doi.org/10.3389/fpls.2020.534853
https://doi.org/10.3390/rs13091740
https://doi.org/10.3389/fpls.2022.966639
https://doi.org/10.1109/LGRS.2020.2972313
https://doi.org/10.3389/fpls.2020.00898
https://doi.org/10.3389/fpls.2020.00898
https://doi.org/10.1186/s13007-021-00722-9
https://doi.org/10.3390/s20020563
https://doi.org/10.1016/j.compag.2020.105760
https://doi.org/10.1016/j.compag.2020.105760
https://doi.org/10.3390/s22020576
https://doi.org/10.1016/j.isprsjprs.2019.04.015
https://doi.org/10.3390/rs12183015
https://doi.org/10.1016/j.compag.2020.105277
https://doi.org/10.5194/isprs-annals-III-3-473-2016
https://doi.org/10.5194/isprs-annals-III-3-473-2016
https://doi.org/10.1109/TC.2021.3059819
https://doi.org/10.3390/rs10040615
https://doi.org/10.3390/rs12081294
https://doi.org/10.1016/j.compag.2020.105500
https://doi.org/10.1109/ICAAID.2019.8934989
https://doi.org/10.1109/ICAAID.2019.8934989
https://doi.org/10.1038/s41438-018-0097-z
https://doi.org/10.3390/app10103443
https://doi.org/10.3389/fpls.2022.1041514
https://doi.org/10.3390/rs9030185
https://doi.org/10.3390/rs9030185
https://doi.org/10.3390/rs13020260
https://doi.org/10.1109/ICUAS48674.2020.9213888
https://doi.org/10.1016/j.biosystemseng.2021.08.035
https://doi.org/10.1016/j.compag.2019.03.028
https://doi.org/10.23919/EUSIPCO.2019.8902734
https://doi.org/10.1002/agj2.20595
https://doi.org/10.3389/fpls.2023.1237695
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Popescu et al. 10.3389/fpls.2023.1237695
Osco, L., dos Santos de Arruda, M., Junior, J. M., da Silva, N. B., Ramos, A. P.,
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AKAZE Accelerated-KAZE

ACC Accuracy

AI Artificial Intelligence

AP Average Precision

ATSS Adaptive Training Sample Selection

CRF Conditional Random Field

CNN Convolutional Neural Network

CPU Central Processing Unit

CR Capturing rate

DASNet Dual Attentive fully convolutional Siamese Network

DB Database

DCNN Deep Convolutional Neural Network

DDCN Dynamic Dilated Convolution Network

DeepSCN Deep Stochastic Configuration Network

DL Deep Learning

DR Detection Rate

DS Dataset

DSC Dice Coefficient

DSM Digital Surface Model

DTM Digital Terrain Model

F1 Dice Coefficient (F1 Measure)

FCN Fully Convolutional Network

FCRN Fully Convolutional Regression Network

FCRN-MTL Fully Convolutional Regression Network Multi-Task Learning

FN False Negative

FP False Positive

FPN Feature Pyramid Networks

FSAF Feature Selective Anchor-Free

GDAL Geospatial Data Abstraction Library

GIS Geographic Information System

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPU Graphics Processing Unit

HRNet High Resolution Network

IoT Internet of Things

IoU Intersection-Over-Union

KNN K-Nearest Neighbor

mAP Mean Average Precision
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ML Machine Learning

NDVI Normalized Difference Vegetation Index

NIR Near-infrared

NN Artificial Neural Network

ODM Open Drone Map

PRE Precision

PSPNet Pyramid Scene Parsing Network

RBF Radial Basis Function

R-CNN Region-Based CNN

ResNet Residual Neural Network

RGB Red-Green-Blue (images)

RTK Real-Time Kinematic Positioning

RoI Region of Interest

ROS Robot Operating System

SAE System Architecture Evolution

SAR Synthetic-aperture radar

SegNet Semantic Segmentation Network

SEN Sensitivity

SPE Specificity

SPP Spatial Pyramid Pooling

SR Statistical Rate

SSD Single Shot MultiBox Detector

TN True Negative

TP True Positive

TSP Traveling Salesman Problem

UAV Unmanned Aerial Vehicle

UAS Unmanned Aerial System

VGG Visual Geometry Group

WOS Web of Science

YOLO You Only Look Once
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