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Phytohormones play vital roles in stress modulation and enhancing the growth of

plants. They interact with one another to produce programmed signaling

responses by regulating gene expression. Environmental stress, including

drought stress, hampers food and energy security. Drought is abiotic stress

that negatively affects the productivity of the crops. Abscisic acid (ABA) acts as a

prime controller during an acute transient response that leads to stomatal

closure. Under long-term stress conditions, ABA interacts with other

hormones, such as jasmonic acid (JA), gibberellins (GAs), salicylic acid (SA), and

brassinosteroids (BRs), to promote stomatal closure by regulating genetic

expression. Regarding antagonistic approaches, cytokinins (CK) and auxins

(IAA) regulate stomatal opening. Exogenous application of phytohormone

enhances drought stress tolerance in soybean. Thus, phytohormone-

producing microbes have received considerable attention from researchers

owing to their ability to enhance drought-stress tolerance and regulate

biological processes in plants. The present study was conducted to summarize

the role of phytohormones (exogenous and endogenous) and their

corresponding microbes in drought stress tolerance in model plant soybean. A

total of n=137 relevant studies were collected and reviewed using different

research databases.
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GRAPHICAL ABSTRACT

A schematic representation of the phytohormone modulates drought stress tolerance where (A) represents the endogamous phytohormone modu-
lation, (B) represents the activation of phytohormones via application of the microorganism (C) represents the exogenous application of phytohor-
mones regulates the drought stress tolerance.
1 Introduction

Environmental stress negatively affects plant productivity by up

to 70%. Various ecological stresses, including biotic and abiotic

stresses, hinder plant development (Mittler, 2006; Choudhury et al.,

2017). The agricultural industry is under double pressure. One is

environmental stress, and the other is population growth. It is

predicted that the global population will reach 10 billion by 2050.

Furthermore, by 2050, agricultural crops will have lost up to 30% of

their production. In addition, the heat index will reach 52 degrees

Celsius. Among abiotic stresses, drought stress poses an alarming

risk to agronomical yield, minimizing plant yield and productivity.

Moreover, it is a multidimensional stress that arrests plant biomass

and energy at molecular and sub-molecular levels. Changes in the

climate and landscape temperature, increasing population, and

shortage of rain in a particular period enhance the intensity of

drought stress (Hasanuzzaman et al., 2013; Shaffique et al., 2022a).

One of the main abiotic stresses that has a negative impact on crop

growth and production is water deficiency. These modifications are

mostly linked to changed metabolic processes, such as reduced or

absent photosynthetic pigment production, ion uptake and

translocation, glucose biosynthesis, food metabolism, and growth

promoter synthesis. The generation of reactive oxygen species

(ROS) in response to plant stress is directly correlated with these

modifications to metabolic processes and the creation of

photosynthetic pigments. Reductions in fresh and dry biomass are

a frequent detrimental outcome of water stress on crop plants
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(Batool et al., 2022; Madouh and Quoreshi, 2023). Strong

relationships exist between the mechanisms of dry matter

partitioning and temporal biomass distribution and plant

productivity under drought stress. Numerous biochemical

mechanisms, such as the fluidity of plasma membranes, the

production of osmolytes, lipid peroxidation, the generation of

(ROS), the rigidity of cellular membranes, and the activation of

various enzymes involved in the oxidative defense system, are all

triggered by drought stress. In the past, the production of ROS in

different crop species has caused serious harm to proteins, lipid

peroxidation (LPO), and other cellular components (Ajithkumar

and Panneerselvam, 2014). The lipid membrane and protein were

catastrophically affected by drought stress-induced ROS

production. The majority of ROS are created during

photosynthesis by enzymatic or non-enzymatic mechanisms,

including the superoxide radical (O-2), hydrogen peroxide

(H2O2), singlet oxygen (1O2), and hydroxyl radical (OH-).

Additionally, they are produced by partial oxidation or reduction

in the mitochondrial electron transport system components (Impa

et al., 2012). The control of ROS homeostasis involves a number of

cellular events that plants use to withstand oxidative stress. As

byproducts of several metabolic processes in diverse cellular

compartments like chloroplast, mitochondria, and peroxisomes,

plants continuously produce a variety of free radicals. Their

efficient scavenging by enzymatic and non-enzymatic cascades

typically counter balances the formation of ROS in plant cells.

ROS have partially reduced forms of ambient oxygen. Because ROS
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can harm various biomolecules, including DNA, proteins, and

lipids, it can result in oxidative injury, which inhibits plant

growth and development. In response to the free radicals

oxidation stress increases. However, plant cells reprogram the

cellular event via activation of the phytohormones and

antioxidant (Figure 1) to mitigate the stress up to a certain limit

after that cell shows symptoms of drought stress such as the burning

of the leaf, necrosis, fewer pods, lower weight pods, reduced

productivity, lower yield crops, inhibit germination, reduced

water potential and closure of the stomata to prevent the loss of

water etc., (Xiong et al., 2020). As shown in Figure 2.

In 1970, scientists discovered certain chemicals that can

optimize plant growth from seed germination to plant

development, which were subsequently termed chemical

messengers or phytohormones. The concentrat ion of

phytohormones required to optimize plant growth is low (10–6 to

10–5 mol/L), thereby making it difficult to study these

phytohormones (Tarakhovskaya et al., 2007; Su et al., 2017). After

1970, research involving phytohormones and their interactions and

implications in plant physiology progressed. All phytohormones

exhibit distinctive features, nature, and location (Lu and Xu, 2015;

Pozo et al., 2015). Their roles have been extensively elucidated not

only in plant growth and development but also in stress mitigation

(Khan et al., 2012; Egamberdieva et al., 2017). Phytohormones are

natural organic s molecules that coordinate with one another to

regulate complex signaling pathways and ensure optimal

functioning of cellular plant activities (Javid et al., 2011; Fenn and

Giovannoni, 2021). Phytohormones exhibit diverse characteristics;

for example, ethylene is an alkene, abscisic acid (ABA) is a

sesquiterpenoid, gibberellins (GAs) are tetracyclic diterpenoid,
Frontiers in Plant Science 03
jasmonic acid (JA) is a derivative of linoleic acid, and

brassinosteroids (BRs) are steroids (Kefeli et al., 2003; Altmann

et al., 2020). Endogenous plant hormones are important in the

response to drought, in addition to supporting signaling pathways.

Plants’ responses to osmotic adjustment under stress are heavily

mediated by phytohormones. Small signaling molecules known as

phytohormones have a substantial impact on nearly every aspect of

plant development (Sati et al., 2023; Shaffique et al., 2023b).

Furthermore, it is generally understood that a single hormone can

influence a wide range of cellular and developmental processes or

that numerous hormones can regulate a single function at the same

time. Plants are protected and controlled by phytohormones against

biotic and abiotic stressors. As a result, the use of phytohormones

seeks to broaden agricultural stress research in the future (Singh and

Roychoudhury, 2023).

Exogenous phytohormone treatment is a more promising

technique for dealing with the negative impacts of drought on

sustainable agriculture production. Because of their multi-

functionality against abiotic stressors, phytohormones are gaining

popularity among plant researchers (Ozturk and Unal, 2023; Swain

et al., 2023). However, their use in legume crops (Soybean) is still

limited. As a result, the current work expands the use of

phytohormones on model plant soybean under drought stress.

Deep insights into the physiological, biochemical, and molecular

basis of soybean adaptation to drought were also investigated.

Several studies have shown that microbes produce small amounts

of phytohormones that enhance plant growth and stress tolerance in

several plant species. Numerous studies have documented the

usefulness of phytohormone-producing microorganisms in

reducing abiotic stress in plants (Shaffique et al., 2022a; Shaffique
FIGURE 1

A holistic view of the mechanism of oxidation stress and drought stress tolerance represents the plant’s cellular reprogramming via activation of the
phytohormones to modulate the drought stress.
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et al., 2023a). Table 1 lists some examples of phytohormone-

producing bacteria and their capacity to lessen abiotic stress.

Numerous studies have documented the beneficial benefits of

plant-associated bacteria and IAA generation on promoting plant

growth under abiotic stress situations. For example, the bacterial
Frontiers in Plant Science 04
isolate Enterobacter ludwigii SH-6 increased plant biomass and

improved drought stress tolerance in maize (Shaffique et al., 2022b).

Soybean constitutes an important legume crop that is a rich

source of nutrition. Owing to its nutritional value, soybean is in

high demand in developing countries. It is rich in protein, oils, and
FIGURE 2

An overview of drought stress and its symptoms. The figure represents the symptoms appearing on the soybean after drought stress.
TABLE 1 Phytohormone-producing bacteria and their action mechanism in drought-stress tolerance in soybean.

Country, Year, and Ref-
erence

Strain Phytohormones Mechanism of action
(MOA)

South Korea
2014
(Kang et al., 2014)

Pseudomonas putida H-2-3 ABA
GA

Modulating antioxidant defense
system

India
2019
(Vaishnav and Choudhary, 2019)

Pseudomonas simiae AU ABA Genetic expression
Overexpression of DREB,
PIP, and
TIP

South Korea
2019
(Bilal et al., 2020)

LHL10 and LHL06 ABA
GA

Over expression of gene DREB,
Modulating antioxidant defense
system
SOD
CAT
Glutathione,

Brazil
2019
(Bulegon et al., 2019)

Azospirillum brasilense CK ↑RWC
↑Grain yield
↑Gas exchange

2010
South Korea
(Khan et al., 2011)

LH02 ABA
GA
SA

Secondary metabolites↑

Iran
2015
(Zahedi and Abbasi, 2015)

Rhizobium japonicum, Azotobacter chroococcum and
Azospirillum brasilense

GA
ABA

Growth promotion
The ↑ and ↓ represents the increase and decrees of the specific response.
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fibers (Specht et al., 2014; Novikova et al., 2022; Razgonova et al.,

2022). The soybean (Glycine max) is a crop that is produced all over

the globe and is considered an essential ingredient in cuisine due to

the large amount of nutrients it contains. Even though there have

been considerable improvements in production, environmental

stress remains a persistent danger for the soybean crop. There has

not been enough research on the soybean, particularly about the

modulatory role of phytohormones modulation in the model plant

soybean. There is a significant gap in studies between

phytohormones and soybean. Environmental stresses, particularly

drought stress, considerably affect soybean production (Li et al.,

2019; Feng et al., 2020). Herein, we explored the research progress

made regarding the effect of phytohormones in mitigating drought

stress in soybean. The importance of phytohormones as plant

growth regulators have led to a new era of research focusing on

phytohormones producing biostimulants to enhance drought-stress

tolerance. We further highlighted that phytohormone-producing

microbes can mitigate drought stress. We searched the terms

“phytohormone, drought, and soybean” on the search engine and

downloaded and studied relevant articles for a comprehensive

review. There were certain inclusion and exclusion criteria

applied to the articles included in this review. All relevant data,

including the nature and action mechanism of the phytohormones

and gas chromatography–mass spectrometry (GCMS), liquid-

chromatography–mass spectrometry (LCMS), chromatographic

quantification of hormone analysis and hormonal role, and

exogenous application data, published until 2022 were included.

Non-English data and conference papers were excluded.
2 Review

Phytohormones govern all cellular functions in higher plants

and serve an important role in organizing various signal

transduction pathways during plant stress response. Their critical

function in promoting adaptability to ever-changing environments

through growth and differentiation, changes in the source/sink

ratio, and nutrient allocation has been well described (Paul et al.,

2023; Wani et al., 2023). Abiotic stressors activate signal

transduction cascades that are linked to baseline pathways

transduced by plant hormones. Aside from the five conventional

phytohormones auxins, cytokinins, gibberellins (GA), abscisic acid

(ABA), and ethylene (ET), newly found phytohormones include

salicylic acid (SA), brassinosteroids, jasmonate (JA), polyamines,

and strigolactone. Abscisic acid, salicylic acid, jasmonate, and

ethylene are well-known for their anti-inflammatory properties.

According to (Zheng et al., 2023), abscisic acid, salicylic acid,

jasmonate, and ethylene all contribute positively to plants’ ability

to withstand stress. For the control of plant defensive responses,

auxins, cytokinin, and gibberellins interact with ABA, ethylene,

salicylic acid, and jasmonate. The organization of various genes and

their regulators involved in stress relief is made possible by

hormonal cross-talk. Therefore, it is crucial to comprehend the

intricate relationship between cross-talk among phytohormones.

Cross-talk between jasmonate and salicylic acid exists, which can

interact either negatively or positively by assisting in the
Frontiers in Plant Science 05
development of specific defense responses. At various points

along the signaling pathways that result in the control of salicylic

acid and jasmonate (Ahmad et al . , 2023; Singh and

Roychoudhury, 2023)
2.1 Phytohormone abscisic acid triggers
drought stress tolerance

ABA is a sesquiterpenoid with the molecular formula C15H2O4.

It has various biological functions and is present in organisms

belonging to numerous kingdoms, such as mosses, algae, plants,

cyanobacteria, and mammals (Seo and Koshiba, 2002; Kuromori

et al., 2018). ABA constitutes an important growth regulator of

plant cells. In addition, an important phytohormone controls plant

productivity and stress tolerance (Muhammad Aslam et al., 2022).

ABA is sometimes referred to as the stress hormone. Reactive

oxygen species quickly rise when a plant is under stress,

amplifying oxidative stress (Murtaza et al., 2016).

Endogenous ABA levels rise immediately after oxidative stress.

ABA acts as a signaling molecule. The ABA involves the regulation

of stress-responsive genes, for example, dehydration-responsive

element-binding (DREB) proteins and basic leucine zipper (bZIP),

during drought stress to improve plant productivity via a stress

tolerance mechanism (Liang et al., 2011). A genome-wide

association study (GWAS) of soybean plants under stress revealed

that ABA either induces or suppresses more than half the genes.

The ABA-induced genes included regulatory proteins, transcription

factor (Tf), kinases, and phospholipase enzymes for signaling

pathways. The ABA-suppressed genes promoted plant growth by

regulating guard cells, stomatal conductance, root development,

and photosynthesis (Hirayama and Shinozaki, 2007; Yoshida et al.,

2014). Stomatal conductance via guard cell regulation is vital for

drought stress mitigation in plants. When plants are exposed to

drought stress, guard cells regulate osmosis by activating genes that

encode proteins to prevent dehydration in all the plant cells

(Raghavendra et al., 2010; Ma et al., 2018). Furthermore, ABA

intervenes in the high root length density under osmotic stress

conditions to reach water present at deeper levels. In addition, ABA

modulates root architecture in various ways, including lateral root

formation and adaptive morphological alterations, such as reduced

xylem diameter to promote the axial hydraulic conductivity of soil

under water scarcity stress (Danquah et al., 2014; Sakata

et al., 2014).

Six independent studies included herein involved the

application of ABA in soybean, and their findings confirmed that

exogenous ABA application improved drought stress tolerance in

the plant. Initially, independent studies were conducted in 2004 to

investigate the effects of exogenous ABA application on soybean

during the early reproductive stage. The results indicated that stress

exposure increased the ABA levels up to 1.5-fold and decreased the

plant’s photosynthetic activity. Exogenous ABA application

decreased the pod set owing to its direct effect on the metabolic

processes in the ovary; however, further studies regarding the

mechanism underlying this effect are warranted (Liu et al., 2004).

The second independent study indicated that exogenous ABA
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application rapidly overexpressed the GmRAV gene, which is

involved in several plant biological processes, including the

signaling pathway, to form a complex network in drought stress

tolerance (Zhao S.-P. et al., 2017). Exogenous ABA application also

improves plants’ relative water content (RWC) and root-to-shoot

ratio. For this study, two drought genotypes were selected: tolerant

and susceptible genotypes. A comparison of the genotypes revealed

that the drought-tolerant genotype was more likely to respond to

ABA than the drought-susceptible genotype (Xing et al., 2016).

Suinong 14 (Glycine max) was experimentally analyzed under

different drought conditions to evaluate the effectiveness of ABA

on drought-stress tolerance. Drought stress was induced naturally

by withholding water from 69.0 MPa to 35.0 MPa at the flowering

stage. Subsequently, 1.0–8.0 mg/L ABA was applied exogenously.

All secondary metabolites were screened and excluded. The results

indicated that up to 2.0 mg/L ABA enhanced soybean’s antioxidant

capability and drought tolerance (Ruan et al., 2012). This result was

further confirmed by another study with similar findings.

Furthermore, exogenous ABA application improved osmotic

adjustment and leaf water potential but not plant yield (He

et al., 2019).

Inoculating plants with plant growth–promoting rhizobacteria

(PGPR) mediates ABA production and drought-stress mitigation

by activating several relevant cascades. The proposed action

mechanism involves ABA-mediated osmotic adjustment

regulation and turgor pressure maintenance (Kour and Yadav,

2022).A scientific report by Kang et al. (2014) published in Korea

revealed that Pseudomonas putida H-2-3 mitigated drought stress

by endogenously producing ABA. Supposedly, ABA is a stress-

responsive hormone that is upregulated during stress, and it serves

as a signaling molecule to activate the antioxidant defense system in

soybean (Kang et al., 2014). In 2019, Vaishnav et al. reported that

the Pseudomonas simiae strain AU mitigated drought stress by

regulating the endogenous hormone, ultimately activating various

gene expressions, such as those of DREB and water transporter

genes, including PIP and TIP, which are involved in osmotic stress

regulation (Vaishnav and Choudhary, 2019). The results are given

in Table 1.
2.2 Jasmonic acid

JA, a chief plant growth regulator, modulates biological

processes in plants. It is a derivative of a-linoleic acid, and

jasmonate is an active derivative of JA. In response to abiotic

stresses, such as drought, heat, chilling and heavy metals, JA

enhances stress tolerance in plants. Furthermore, it promotes

plant growth (Muñoz-Espinoza et al., 2015; Ghorbel et al., 2021;

Kim et al., 2021). The primary features of JA that distinguish it from

other hormones include its involvement in fruit ripening, pollen

production, tendril coiling, and root hydraulic pressure (Ruan et al.,

2019; Wang et al., 2020). The complete genomic analysis of soybean

demonstrated that various JA-regulated genes confer stress

tolerance. The action mechanism of JA is similar to that of ABA,

as both hormones induce stomatal closure. Furthermore, various

studies have described that exogenous JA application induces
Frontiers in Plant Science 06
stomatal closure in soybean (Stintzi et al., 2001; Du et al., 2013;

Ghorbel et al., 2021; Wang et al., 2021).

Stress-induced endogenous phytohormone production is a

multifarious spectacle that involves several enzymatic pathways

(Kaur and Asthir, 2017). Free radical accumulation under

drought stress conditions converts unsaturated fatty acid into 12-

oxo-phytodienoic acid (12-OPDA) and deoxymethylated vegetable

dienic acid in peroxisomes. Furthermore, free radicals convert

endogenous JA into their corresponding molecules in

peroxisomes. Following the conversion, JA and its derivatives,

including MeJA, JA-Ile,12-hydroxyjasmonic acid, and cis-

jasmone, enter the cytoplasm to further confer free radicals (Koo

et al., 2009; Savchenko et al., 2014; Kim et al., 2017).12-OPDA is a

JA precursor, and various studies have confirmed that its

concentration is inversely proportional to the stomatal aperture

and stress tolerance of plants. Stress prevents the conversion of 12-

OPDA to jasmonate. This delayed conversion might be related to

ABA, which induces stress tolerance via stomatal closure (Hu et al.,

2009; Ali and Baek, 2020). The findings of several studies have

evidenced that exogenous JA application induces stomatal closure,

further enhancing the production of antioxidant molecules such as

dehydroascorbate acid reductase (DHAR), ascorbate, glutathione

reductase (GR), and monodehydroascorbate reductase (MDAR),

and consequently, plant stress tolerance. In addition, JA

accumulation in roots increases ABA concentration (de Ollas

et al., 2015). Therefore, ABA and JA function synergistically to

enhance plant stress tolerance (Dathe et al., 1981; Seo et al., 2001; de

Ollas et al., 2013).

A pot experiment was performed to elucidate the effectiveness

of methyl jasmonate on the stress tolerance of soybean. The

exogenous application of 50 µM methyl jasmonate inhibited leaf

gas exchange and plant growth and reduced chlorophyll content

under extreme drought stress (Anjum S. A.et al., 2011). Jasmonate is

involved in a natural molecular signaling pathway that regulates

plant progress under stress conditions. Furthermore, it enhances

ABA production to control plants’ stomatal conductance and water

status (Ghassemi-Golezani and Farhangi-Abriz, 2021). Conversely,

some studies have reported that exogenous JA application enhances

secondary metabolite production, inhibits trypsin, and induces

protective genes against plant environmental stresses (Anjum S.

et al., 2011). Another research report suggested that 50 µM methyl

jasmonate progresses drought-stress tolerance by minimizing lipid

peroxidation (LPO) and enhancing the free radicals scavenging

system (Hao L. et al., 2013).

In 2014, Kyungpook National University, a leading university in

Korea considered the hub of investigating plant microbial

interactions, informed that inoculating soybean with P. putida H-

2-3 enhances the levels of JA and downregulates those of ABA and

SA. The results indicated that P. putida H-2-3 reprograms

chlorophyll and improves hormonal regulation, thereby

mitigating drought stress in plants (Kang et al., 2014) In 2019,

entophytic fungi LHL10 and LHL06 were reported to synergistically

improve drought-stress tolerance by downregulating JA levels

synergistically, overexpressing the GmDREB gene, and

modulating the Intrinsic defense system by production of

antioxidant enzymes as shown in Table 1 (Bilal et al., 2020).
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2.3 Cytokinins

Like other hormones, cytokinins (CKs) are biologically involved

in the process of plant growth, development, and stress

acclimatization (Werner et al., 2001; Kieber and Schaller, 2014).

The chief distinguishing feature of CKs is that it promotes stress

acclimatization and adaptation alongside tolerance. Cytokinins play

numerous roles in plant growth and morphogenesis. They regulate

cell division and interact with auxins to control apical dominance,

lateral branching, and the root-shoot ratio in intact plants and tissue

culture. They slow leaf senescence and promote dark-grown

seedlings’ light-independent deetiolation response, including

greening. Plants naturally produce a number of cytokinins. They

have an adenine base and an isopentenyl side chain of five carbons.

Zeatin, specifically trans-zeatin, is the most abundant of them. The

concreted functions of isopentenyl transferase, CK oxidase, and CK

dehydrogenase maintain the CK hemostatic level in plant cells. Plants

are multicellular organisms with complex networks of interactions

among its hormones. Recently, it was established that plants exhibit a

sophisticated coping mechanism in response to stress involving the

CK signal transduction pathway (Ha et al., 2012; O’Brien and

Benková, 2013). CKs play a dual role in the stress signaling

pathway (Pospıśǐlová et al., 2000; Kakimoto, 2003); they serves as a

negative regulator by inducing the expressions of certain genes such

as CKX1, CKX2, CKX3, and CKX4, thereby acclimatizing the plant

during stress (Brugière et al., 2003; Niemann et al., 2018), and a

positive regulatory effect by increasing the CK levels and delaying

senescence in plants (Mok, 2019). When CKs (zeatin riboside) were

exogenously applied, they restored the germination potential in

Glycine max seeds (Gidrol et al., 1994; Gupta et al., 2000).The

inoculation of Azospirillum brasilense in soybean mitigates drought

stress by inducing the production of endogenous phytohormones, for

example CKs. The results indicated that CKs improve the RWC by

76.96%, gas exchange by up to 860.43%, and grain yield by 19%

(Bulegon et al., 2019).
2.4 Gibberellins

GAs are tetracyclic diterpenoid carboxylic acids essential for

plant biological functions and stress tolerance. The exact

mechanism underlying GA-mediated drought-stress tolerance

modulation remains unknown (Takahashi et al., 2012; Hedden

and Sponsel, 2015). However, reportedly, GAs exhibit a positive

effect on plants throughout their life cycle, promoting cell

elongation and division during the juvenile and adult stages

(Tanimoto, 2002; Yamaguchi, 2008). GA may also negatively

regulate plant stress tolerance by inhibiting its biosynthesis.

Furthermore, previous studies have reported that GA content was

reduced under water scarcity stress (Fleta-Soriano et al., 2015;

Omena-Garcia et al., 2019). Many studies have found that

gibberellins significantly improve plant drought tolerance (Iqbal

et al., 2022). Drought-responsive element-binding protein (DREB)

improves drought tolerance by lowering the expression of

gibberellin biosynthesis genes. Reduced GA levels in plants are

claimed to improve drought tolerance (Wang et al., 2017; Yang
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et al., 2021). An environmentally friendly plant growth regulator

used all around the world is mepiquat chloride (DPC). DPC is

frequently employed to regulate plant geometry in addition to

maintaining a balance between nutrition and reproductive

growth. The biosynthesis and signal transduction of other plant

hormones, such as zeatin and brassinolide, as well as the production

and signal transduction of GA were altered by DPC. Additionally,

DPC encouraged the formation of flavonoids, increasing drought

resistance (Wang et al., 2022).

Similar to other hormones, the exogenous application of GA

also recovers the physio-metabolic features of plants and enhances

their stress tolerance. Numerous studies have reported that the

application of GA hormones enhances plant productivity and

mitigates drought stress (Cohen et al., 2009).

In 2011, (Khan et al., 2011) described that the Inoculation of

LH02 in soybean improved its stress tolerance by inducing GA and

secondary metabolite production. In 2014, (Kang et al., 2014)

experimentally observed the effect of P. putida H-2-3 strain on

the drought-stress tolerance of soybean. The results revealed that

this microbial strain enhanced the GA levels by modulating the

antioxidant status and enhancing the plant’s stress tolerance by up

to 15%.In 2015, three-plant growth–promoting rhizobacteria,

namely Rhizobium japonicum, Azotobacter chroococcum, and A.

brasilense, were inoculated into the soybean plant. Drought stress

was induced naturally via water scarcity. The hormonal status and

physio-morphological features of the plant were studied. The results

showed that inoculation enhanced drought-stress tolerance by

modulating the levels of GAs and ABA (Zahedi and Abbasi,

2015). In 2019, (Bilal et al., 2020) reported that the entophytic

fungi LH10 and LH06 synergistically improved drought-stress

tolerance by producing up to 300 ng/g GAs. Moreover, the

application of these strains downregulated the DRE-binding Tf

and decreased ABA levels and oxidation stress in plants.
2.5 Salicylic acid

SA is an essential endogenous phytohormone that regulates

protein expression and contributes to the plant defense system.

Similar to the other hormones, including ABA and JA, SA is also

involved in plant stress tolerance. SA overexpression in response to

drought stress is due to two inducible genes, namely PR1 and PR2

(Hayat and Ahmad, 2007; Chen et al., 2009). Salicylic acid (SA) is a

key regulator of immunity and programmed cell death in plants.

According to early research, greater SA accumulation during

resistance gene-mediated defense responses is linked to the

initiation of the hypersensitive reaction. In lesion-mimic mutants,

SA was also discovered to accumulate to high levels, and in certain

cases, this accumulation is necessary for the phenotype of

spontaneous cell death. High amounts of SA have been

demonstrated to inhibit plant cell death during effector-triggered

immunity, indicating that SA has two roles in the regulation of cell

death. The drought stress-induced activation of such genes

produces a protective effect in plants. The levels of SA may

increase up to many folds in response to stress (Shah, 2003; Rao

et al., 2012); particularly, exposure to drought stress increases the
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SA levels and promotes stomatal closure by generating free radicals

(Ilyas et al., 2017; Noreen et al., 2017). However, the effect of SA on

drought-stress tolerance in plants remains debatable. Some

researchers have reported that SA positively regulates drought-

stress tolerance, whereas others have claimed the opposite, thereby

rendering its actual effect controversial (Janda et al., 2007; Khan

et al., 2015). A small concentration (0.5 mM) of SA induces drought

tolerance, whereas a higher concentration (2–3 mM) enhances

stress (Ben Ahmed et al., 2009; Zhao P. et al., 2017). SA

application causes ROS generation in the chloroplast, thereby

reducing stress tolerance via a cascade of events, including

antioxidant activation and hormonal modulation. Thus, SA is an

important hormone involved in plant stress tolerance. The findings

of various studies have evidenced that SA application enhances

stress tolerance (Khan et al., 2018).

When inoculated intoG.max, the Pseudomonas simiae strain AU

mitigates drought stress by producing phytohormones, particularly

SA, and upregulating the Tf of DREB, osmoprotactans, and water

transporter genes (Vaishnav and Choudhary, 2019).
2.6 Brassinosteroids

BRs are mainly plant steroids based phytohormones involved in

regulating plant physiological development. They regulate

photosynthesis, photo-morphogenesis, seed germination, fertility,

flowering, fruit ripening, grain filling, and leaf senescence (Krishna,

2003; Zhu et al., 2013). They also play an important role in stress

tolerance. 24-epibrasonolide EBR is a BR derivative. The action

mechanism of BR involves increasing the efficiency of light

consumption by the photosystem II (Divi and Krishna, 2009; Hao

J. et al., 2013).

Exogenous BR application improves plant photosynthetic

characteristics, RWC, and antioxidant enzyme production by

reducing hydrogen peroxide and monoaldehyde contents

(Shahbaz and Ashraf, 2007; Soares et al., 2020). However, to the

best of our knowledge, no studies have implicated microbial BR

production in enhancing drought-stress tolerance in soybean. Only

a few studies have suggested that BRs are emerging growth

regulators that can be used in sustainable agricultural practices.

However, although they exhibit a promising effect on plant growth,

the role of BRs in stress tolerance remains debatable (Nolan et al.,

2017; Alhaithloul and Soliman, 2021).
2.7 Auxins

Auxin, indole acetic acid (IAA), is an important plant hormone

that regulates several biological processes, from seed dormancy to

development. It plays a primitive role in stress mitigation. Drought

stress in plants induces a rapid overexpression of YUCCA (YUC)

(Woodward and Bartel, 2005; Zhao, 2010), which belongs to the

flavin monooxygenase protein family responsible for auxin

biosynthesis (Overvoorde et al., 2010; Sauer et al., 2013). The

overexpression of this gene family is attributed to apical

dormancy, which tall the stem like slender and increases plant
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drought tolerance. Auxins promote drought tolerance by

modulating root architecture (Zarea, 2019; Fadiji et al., 2022).

Furthermore, they function in synergy with ABA. Thus, the

overexpression of ABA-responsive genes causes ROS

accumulation and auxin activation (Van Ha et al., 2013; Wu and

Zhang, 2019; Li et al., 2022). Auxins are considered eco-friendly

biofertilizer and can be applied in sustainable agricultural practices.

Reportedly, auxins exhibit an ameliorative effect on plants that are

under stress conditions (Van Ha et al., 2013).

In 2019, (Bulegon et al., 2019) reported that A. brasilense

inoculation improved drought-stress tolerance in plants by

inducing the production of phytohormones, such as auxins,

which improved crop yield by up to 19%. In 2021, three bacterial

strains, namely AKAD A1-1, AKAD A1-2, and AKAD A1-16,

belonging to the Bacillus family, were reported to produce auxins.

Thus, inoculating these strains can mitigate drought stress in a

soybean variety via the modulation of phytohormones (Dubey

et al., 2021).
2.8 Ethylene

Ethylene (C2H4) is an important gaseous hormone implicated

in germination, flowering, fruit ripening, senescence, and stress

tolerance. It also plays a dual role in regulating stomatal

conductance (Arraes et al., 2015). Osmotic stress induces ROS

accumulation in plants, thereby activating ABA-induced stomatal

closure. When stress is over, ethylene inhibits the ABA-induced

stomatal closure (Sharp, 2002; Yan et al., 2016). Furthermore,

ethylene promotes stomatal closure via NADPH oxidase

accumulation (Husain et al., 2020). Under stress conditions, ROS

accumulation mediates NADPH oxidase production, which

promotes stomatal closure (Acharya and Assmann, 2009; Wahab

et al., 2022).

Beneficial microbes mitigate drought stress by modulating

certain plant hormones, such as ethylene, which is responsible for

the plant stress mitigation mechanism (Rehrig, 2010; Ma et al.,

2019). The downregulation of ethylene improves abiotic stress

tolerance in various plants (Kim et al., 2012; Chandra et al., 2018).
3 Conclusion and future prospective

Plants have evolved to develop sophisticatedmechanisms involving

phytohormones and phytohormone-producing microbes to combat

drought stress. The endogenous modulation, exogenous application of

phytohormones and phytohormone-producing microbes strengthens

the defense mechanism of plants, as shown in the graphical abstract.

Moreover, plants synthesize diverse signaling molecules in response to

drought stress. Furthermore, this review highlights that

phytohormone-producing microbes enhance drought-stress tolerance

in soybean, thereby providing a platform for introducing microbes that

can mitigate drought stress by inducing the production of

phytohormones and activating their molecular action mechanism.

Microbial mediation has led to considerable progress in plant

drought-stress tolerance. Although the relevant literature is
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encouraging in sustainable agronomy, future studies are warranted to

elucidate the fundamental mechanism underlying microbe-mediated

enhancement of drought-stress tolerance in plants. This review will

help scientists develop sustainable agriculture production via

phytohormones and their corresponding microbes. Strigolactones are

sparse in the scientific literature for soybean growth under drought

stress, thus scientists should pay more attention to and conduct more

research on strigolactone-generating microorganisms.
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Muñoz-Espinoza, V. A., López-Climent, M. F., Casaretto, J. A., and Gómez-Cadenas,
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