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A novel 3D insect detection and
monitoring system in plants
based on deep learning
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Yong Suk Chung2 and Thai Thanh Tuan2*

1Crop Foundation Division, National Institute of Crop Science, Rural Development Administration,
Jeollabuk-do, Republic of Korea, 2Department of Plant Resources and Environment, Jeju National
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Insects can have a significant impact on biodiversity, ecology, and the economy.

Certain insects, such as aphids, caterpillars, and beetles, feed on plant tissues,

including leaves, stems, and fruits. They can cause direct damage by chewing on

the plant parts, resulting in holes, defoliation, or stunted growth. This can weaken

the plant and affect its overall health and productivity. Therefore, the aim of this

research was to develop a model system that can identify insects and track their

behavior, movement, size, and habits. We successfully built a 3D monitoring

system that can track insects over time, facilitating the exploration of their habits

and interactions with plants and crops. This technique can assist researchers in

comprehending insect behavior and ecology, and it can be beneficial for further

research in these areas.
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1 Introduction

The issue of biological invasion of insects has become a significant focus in ecological

research in recent years. One critical aspect of studying invasive species is monitoring their

growth and development. Invasive insect herbivores cause an estimated global loss of at

least 70 billion USD annually, with countries like the USA and China experiencing the

highest costs and also serving as major sources of invasive pests (Bradshaw et al., 2016;

Paini et al., 2016). The economic impact of invasive insects is increasing due to factors like

globalization and climate change. Herbivorous stink bugs (Hemiptera: Pentatomidae) are a

prime example of this, with many species acting as agricultural pests in their native regions

and causing significant economic damage when they invade new areas. Stink bugs harm

crops by puncturing plant tissues, especially fruits and seeds, which can lead to reduced

yield and quality. Some species also transmit plant pathogens (Schaefer and Panizzi, 2000;

Paini et al., 2016; McPherson, 2018; Insectaeva et al., 2020).

In arable crops, major insect pests that cause significant economic impact are those that

can quickly infest large areas, including hemipterans, beetles, thrips, and flies. These pests

tend to cluster in certain areas of fields rather than being evenly distributed. To effectively
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1236154/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1236154/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1236154/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1236154&domain=pdf&date_stamp=2023-08-31
mailto:thaithanhtuan@jejunu.ac.kr
https://doi.org/10.3389/fpls.2023.1236154
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1236154
https://www.frontiersin.org/journals/plant-science


Choi et al. 10.3389/fpls.2023.1236154
address infestations, it is important to know the location and size of

the affected areas. However, because insects can rapidly spread

throughout a field during favorable weather conditions, quick

action is necessary (Li and Yang, 2020; Bieganowski et al., 2021).

Traditional methods of visually assessing field health along a dense

sampling grid are not practical due to the time and labor involved,

making it difficult to generate pest maps and precise spraying maps.

Additionally, identifying insects that are beneath the crop canopy or

on the undersides of leaves can be challenging. Insect nets,

commonly used in research, provide an option for capturing

insect from the crop to aid in identification and removal (Li and

Yang, 2020; Bieganowski et al., 2021).

To improve insect detection and monitoring, researchers are

working on developing tools for automated image analysis that can

recognize insects under various weather and illumination

conditions, as well as on different types of crops with varying leaf

colors and shapes. While progress has been made in this area,

artificial intelligence and machine learning advancements in image

analysis are expected to bring even greater success in creating

automated sensors for precise insect pest control in the future

(McCravy, 2018). Real-time analysis during the scanning process

can save time by automatically detecting insects, leading to efforts to

develop small systems that combine cameras and computers into

one intelligent sensor unit. These embedded systems are becoming

more affordable and faster, allowing for the use of large, deep-

learning models to recognize insect with greater accuracy. Various

techniques, including visual inspection, suction traps, and passive

methods, can be used to monitor both insect pests and beneficial.

Insect pest camera-based monitoring is a practical approach that

can be used in agriculture and forestry, complementing aerial and

field surveys for pests. Remote sensing, which uses images from

satellites or unmanned aerial vehicles such as drones, can also be

used to create infestation maps, along with traditional aerial and

field scouting methods. Camera traps for insect pests, combined

with remote sensing, can improve monitoring programs in forests

by allowing for early detection of harmful species and prediction of

outbreak risks based on monitoring data. These monitoring

improvements can also be applied to the monitoring of

quarantine pests (Ayres and Lombardero, 2018; Choi and Park,

2019; Zhang et al., 2019).

The main objective of insect pest monitoring within integrated

pest management programs in agriculture is to provide growers

with a useful decision-making tool. This is achieved through the

establishment of intervention thresholds to address insect pest

infestations at the most opportune time, optimizing control

strategies and minimizing grower inputs on that particular crop

(Dent, 2000). The data collected from monitoring can also be used

to develop prediction phenological models to forecast insect

population outbreaks, providing additional information to

improve control techniques and optimize insecticide usage. In

forestry, detecting and monitoring both native insect pests and

invasive species are critical in developing appropriate management

programs. Forest insect species can have a significant impact on the

biodiversity, ecology, and economy of the affected area, making

effective monitoring and control essential (Dent, 2000; Brockerhoff

et al., 2006).
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Various monitoring methods are available for determining the

extent of crop damage caused by insects within a field, including the

use of spectrometers, true-color cameras, multi- and hyperspectral

cameras, and stereo camera systems. Three-dimensional (3D)

information can be obtained from UAV camera flights using

structure from motion algorithms which is the process of

estimating the 3D structure of a scene from a set of 2D images.

This 3D information can provide the details about the shape and

movement of insect. Monitoring and sampling insects can provide

valuable insights into the behaviors of different species, as well as

their roles in pollinating crops. However, conventional methods of

insect monitoring are labor-intensive and time-consuming.
2 Materials and methods

There are insects on a plant that is enclosed in a box. Two

precisely aligned cameras in video recording devices are positioned

to observe consecutive frames of insect movements and record into

a data storage system. Insect detectors are employed to identify the

locations of the insect on each frame. With the information of the

system setup, such as position of the cameras and distance between

the cameras and plant, and the insect position in the frame, it is

possible to estimate the insects’ 3D location in world coordinates for

that particular frame. The 3D location is stored into a point cloud

file. Then, an open library mpl_toolkits.mplot3d (‘The mplot3d

toolkit.’, 2023) is used to visualize insects in 3D world coordinates.

Those insects’ 3D locations over frames of the videos are further

analyzed to obtain the moving speed and moving route of the

insects. This information is valuable for analyzing the habitat and

insect behavior patterns.
2.1 System specifications

Two cameras are used in this system to build a 3D

representation of the insects’ positions and movements. Figure 1

shows the setup of the system. We set the coordinate system at the

center of the planting pot. The positive direction of x-axis, y-axis,

and z-axis are shown in Figure 1B with orange arrows.

The two cameras are placed 200 mm far from the center of the

planting pot. The camera is strategically positioned to enable

comprehensive monitoring of the plant, as visually represented in

Figure 2. This intentional placement ensures that the plant is

optimally centered horizontally within the image frame, thereby

facilitating efficient and effective monitoring and observation. The

origin of coordinates is set at (X01 = 737, Y01 = 1,350) pixels in the

first camera (Cam 1) cropped image and (X02 = 722, Y02 = 1,364)

pixels in the second camera (Cam 2) cropped image. One example

of an insect appears in Figure 1A at the location (X1 = 730, Y1 =

1278) pixels with bounding box (W1 = 27, H1 = 35) pixels in the

Cam1 cropped image and (X2 = 745, Y2 = 1,283) pixels with

bounding box (W2 = 22, H2 = 39) pixels in the Cam2 cropped

image. W1, W2/H1, H2 are the width/height of the bounding boxes.

The width of the planting pot is 28 mm and the cameras are placed

at 86 mm height from the ground. Figure 3 shows the image of the
frontiersin.org
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camera that is used in this research, HW40 4K UHD Hansung

autofocus. Because the insects are small, we choose a camera with

high resolution for getting a clear video of the insects. These

cameras provide wide-angle cameras of 77°; thus, we can place

them near the plant and the insect.

One plant is placed in the center of the planting pot. Three

insects are kept on the plant for monitoring. We record videos from

the two cameras. These videos are extracted to get frame images that

are used for training the detector. We choose one video

(approximately 18 min long) for testing the system. We extract

the region of interest (ROI) from images from camera 1 and camera

2. The image from the first camera in Figure 2A was cropped by a

bounding box with the top left corner at (757,0) and the bottom

right corner at (1457,850). Then the cropped image is resized with

bilinear interpolation to the size (1400,1700) in ROI1, Figure 2C.

The image from the second camera in Figure 2B was cropped by a

bounding box with the top left at (1095,0) and the bottom right at

(2495,1700). The bounding box was used as a region of interest

(ROI2) with the same size as ROI1.

To ensure precise orientation determination, a deliberate

methodology is employed, involving the placement of two distinct

points, designated as P1 and P2 in Figure 1C, along a circular

trajectory. The fundamental requirement is that the angle formed

between the vectors OP1 and OP2 measures exactly 90°, where O
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denotes the center of the plant pot. Within the camera setup,

meticulous arrangements are made to ensure that P1 and O

appear at the same horizontal x-coordinate in camera 1, while P2

and O are positioned at the same horizontal x-coordinate in camera

2. This meticulous alignment guarantees consistent spatial

correspondence between the reference points and the center of

the plant pot, enabling accurate orientation measurements in

both cameras.

With this system setup, we calculate the 3D distances between

pixels viewed in the image planes of each camera. Camera 1

provides x-axis and z-axis information in world coordinate. By

measuring the planting pot and plant positions in both cameras as

drawn in Figure 2C, we can calculate the ratio (XRATIO,

ZRATIO1) to convert distances between pixels in an image plane

of camera 1 (x-axis, z-axis) to millimeters distance in world

coordinate. We manually measure the width of plant pot

(plant_pot_width) and choose the two corresponding points on

ROI1 to calculate XRATIO (Equation 1). The distance between

ground and the first leaf (ground_to_first_leaf) of the plant is

measured to get ZRATIO1 (Equation 2).

XRATIO =
plant _ pot _width

902 − 458j j =
28
444

= 0:063: (1)
B

C

A

FIGURE 1

Setup of the camera system. (A) Top view of the system. (B) Side view of the system. (C) The setup to line up the camera orientations precisely.
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ZRATIO1 =
ground _ to _ first _ leaf

1345 − 756j j =
63:1
589

= 0:107 (2)

Camera 2 provides y-axis and z-axis information of world

coordinate. Similar to processing with camera 1, we manually

measure the distance between two horizontal lines (dist_two_line)

on the plant pot and their corresponding points on the image plane

of camera 2. Then, YRATIO and ZRATIO2 to convert pixels in the

image plane of camera 2 to millimeters in world coordinate can be

calculated from Equations 3 and 4.

YRATIO =
plant _ pot _width

973 − 519j j =
28
454

= 0:0617 (3)
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ZRATIO2 =
dist _ two _ line
1644 − 1478j j =

18
166

= 0:1084 (4)

Although we start recording videos from camera 1 (video 1) and

from camera 2 (video 2) nearly the same time, the two videos are

not perfectly synchronized. Based on voice channel in the videos,

videos are cut into frames. Video 1 and video 2 have the same frame

rate (30 fps), the same frame size (1,700 × 1,400 pixels), and the

same starting time. The frames from each video are analyzed to

identify the images of any insect in each frame and ultimately

specify their 3D locations.
2.2 Deep learning-based insect detector

Recently, a state-of-the-art, real-time object detection algorithm

was developed by Wang et al. (2023), namely, You Only Look Once

version7 (YOLOv7) (Wang et al., 2023). The most recent YOLO

algorithm outperforms all earlier object detection algorithms and

YOLO variants in terms of accuracy and speed. YOLOv7 achieves

2% greater accuracy at a significantly faster inference speed (509%

faster) than the top Cascade-Mask R-CNN models. YOLO receives

a 2D image as an input and then predicts bounding boxes with class

probabilities for each object. The real-time object detection

accuracy is significantly increased by YOLOv7 without raising the

inference costs. YOLOv7 effectively outperforms other well-known
B

C D

A

FIGURE 2

System setup information. (A) Cropped region in the first camera. (B) Cropped region in the second camera. (C) Region of interest from camera 1
and some special points. (D) Region of interest from camera 2 and some special points.
FIGURE 3

The cameras used in this research.
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object detectors by reducing approximately 40% of the parameters

and 50% of the computation required for state-of-the-art, real-time

object detections. YOLOv7 uses far less expensive computational

hardware than other deep learning models. Without any pre-

learned weights, it can be trained significantly more quickly on

tiny datasets. A detail structure of YOLOv7 is presented by Zhu

et al. (2022) as Figure 4.

The YOLOv7 framework comprises three principal

components: the Backbone, the Head, and the Neck. The

Backbone’s primary role is to extract crucial image features and

relay them to the Head through the Neck. The Neck, in turn, gathers

the feature maps generated by the Backbone and constructs feature

pyramids. Lastly, the Head encompasses output layers responsible

for the final detections. It is noteworthy to mention that YOLOv7

shares similarities with Scaled YOLOv4, which is an extension of

YOLOv4, since both were authored by the same individuals.

However, the YOLOv7 paper introduces significant changes,

including Architectural Reforms, incorporating E-ELAN

(Extended Efficient Layer Aggregation Network) and Model

Scaling for Concatenation-based Models. Additionally, Trainable

BoF (Bag of Freebies) has been incorporated, enabling data-driven

alterations of the convolution process for re-labeling of signal

features based on minimization of the loss, which is the mean

squared error (MSE) of the differences between the bounding box

image pixels and the expected image pixels, “ground truth” (Wang

et al., 2023) for each image in a frame. Loss in the Backbone

component (Figure 4) is termed coarse loss, and loss in the Head

component is termed fine loss.

2.2.1 Dataset collection and labeling
To build a dataset for training YOLOv7, we develop a Python

script to characterize brown hopper crawling activities based on a

series of internet images containing multiple insects, examples of

which are shown in Figure 5A. After removing duplicate images

irrelevant to the brown planthopper, Nilaparvata lugens (Stål)

(Hemiptera: Delphacidae), we have a small-size dataset whose

images contain multiple insects and multiple plants. The size of

the bounding boxes for insects in those images varies, ranging from

12 × 15 pixels to 400 × 300 pixels. Following the acquisition of a

small dataset of brown hopper images from the internet, we
Frontiers in Plant Science 05
proceeded to establish a dedicated monitoring system for

observing brown hopper behavior on rice plants. This system

involved recording videos and capturing photos, and

representative sample images are illustrated in Figure 5C.

Concurrently, our monitoring system with dual cameras, as

depicted in Figure 1, continuously captured videos of brown

hoppers present on the rice plants featured in Figure 5B. We start

with taking a video with one plant and no insect, then adding one

insect after 2 h of taking the video. We capture the images from the

videos as Figures 5B, C. The mean dimensions of the bounding

boxes for insect amount to 12 × 17 pixels. Finally, we have a dataset

with 594 images of insect in total, and we divide this into a training

set and a testing set.

We use a labeling tool (‘Image annotation tool LabelImg’, 2023)

to annotate the dataset. We draw a bounding box for each insect in

each image. The bounding box must cover the entire insect and it

should not include any extraneous background. If two insects are

close together, try to avoid overlapping bounding boxes. Only create

one bounding box for each insect in the image. All insects in the

image should be labeled, especially those that are partially obscured.

2.2.2 Training
After constructing the dataset, we train the deep neural

network, YOLOv7, to detect individual brown planthoppers in

frames. We train this with bounding box regression loss, object

loss (insect loss), and classification loss. Bounding box regression

loss measures the difference between the predicted bounding boxes

and the ground truth bounding boxes for the insects in the image. It

is calculated using the MSE loss. Insect loss measures the confidence

of the model in predicting an insect in the image. It is calculated

using the binary cross entropy (BCE) loss. Classification loss

measures the difference between the predicted class probabilities

and the ground truth class probabilities. It is also calculated using

the BCE loss. The total loss used during training YOLOv7 is a

weighted sum of the above losses, where the weights are determined

empirically. Additionally, YOLO uses other techniques such as label

smoothing and focal loss for further improving the training process.

For training the insect detector, we use a computer with an

AMD Ryzen 7 5800x3D 8-core processor, RAM 32GB, and a

graphic card NDVIA GeForce RTX 4080. In machine learning, an
FIGURE 4

The structure of YOLOv7.
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“epoch” refers to a single pass or iteration through the entire

training dataset during the training process of the Yolov7. We

train the model in 200 epochs with learning rate 0.01 and gradually

decrease after warmup_epochs of 3. Figure 6 shows the training log

for YOLOv7 over 200 epochs. In Figure 6A, mean average precision

(mAP) is evaluated during the training while precision and recall

are presented in Figures 6B, C, respectively. The calculation of

precision and recall is as follows:

Precision =
True   positive

True   positive + False   positive
(5)

Recall =
True   positive

True   positive + False   negative
(6)
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where a true positive (TP) is the total number of correct positive

predictions, meaning the model predicted that a pixel labeled as

part of an insect image is correctly placed inside a bounding box. A

false positive (FP) is the total number of predictions that the model

predicts the pixel is inside the bounding box, but did not actually

occur. A false negative (FN) is the total number of predictions that

the model predicts the pixel is outside any bounding box, but

actually did occur.

Figure 6D showcases the gradual decrease of the learning rate

over the course of 200 epochs, with the final value reaching 0.00103.

Simultaneously, the mean average precision at an intersection over

union threshold of 0.5 (mAP_0.5) achieves a value of 0.3923,

precision attains 0.7122, and recall reaches 0.3574. Throughout

the training process, the box_loss and obj_loss on the training data
B

C

A

FIGURE 5

Images from our dataset. (A) Images that are downloaded from the internet contains brown hopper. Images that are captured for training. (B) From
left to right: Image of insects with multiple plants, image of three insects on a single plant, and image of 10 insects on a single plant. (C) Image of
multiple insects on multiple plants.
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consistently decrease, converging to 0.02661 and 0.01002,

respectively. On the other hand, the box_loss on the validation

data reaches 0.1568, while the obj_loss experiences a more rapid

reduction after 20 epochs (reaching 0.02397) before slightly

increasing to 0.03827 after 200 epochs.

2.2.3 Detect 2D location of insect from image
After the insect detector is trained using the collected dataset

through the above steps, for each frame in a video, we feed it into the

insect detector to get 2D location of insect on the image. Then, the

location is saved intoa text labelfile.As a result, corresponding toa frame

in a certain video, there is a corresponding label file. In this file, each

detected insect in the image frame will have a label with five segments,

including insect label (=0), center location (xcenter, ycenter) of the detected

bounding box, and (width, height) of the detected bounding box.
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2.3 3D insect location calculation using
2D locations

We run the trained insect detector on all recorded videos to get

the 2D insect locations in them. Figure 7 shows the flow diagram for

getting 2D insect location from the label file to calculate 3D insect

location and visualize the moving insect over frames in the two

corresponding videos.

At first, we load two synchronized videos of camera 1 and

camera 2 in the system and their list of insect locations inside each

frame of the videos. For each bounding box of the detected insect,

we resize the bounding box to the same size (HIST_W = 40,

HIST_H = 40) and then calculate the color histogram of it as

Equation 7. We use this as a matching feature for insect

reidentification over frames in the video.
B

C D

E F

A

GH

FIGURE 6

Training log for the insect detector with YOLOv7 over 200 epochs. (A) mAP_0.5, (B) precision of bounding box, (C) recall of bounding box, (D)
learning rate over 200 epochs, (E) box_loss during training 200 epochs, (F) obj_loss during training 200 epochs, (H) validation/box_loss over 200
epochs, and (G) validation/obj_loss over 200 epochs.
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hi =
ni
N

(7)

where hi is the normalized value of the ith bin in the histogram,

ni is the number of pixels with an intensity value equal to i, and N is

the total number of pixels in the bounding box.

Based on the system specification, the position of each insect in

3D coordinates can be calculated using the 2D location of the insect

on the two cameras. Figure 1 shows one insect and its location in

both cameras: camera 1 (X1 = 730, Y1 = 1278,W1 = 27,H1 = 35) and

camera 2 (X2 = 745, Y2 = 1283,W = 22,H2 = 39), where X1, Y1 is the

2D location of the insect in the frame image captured from camera

1, and W1, H1 are width and height of the bounding box that cover

the insect. Similarly, X2, Y2, W2, and H2 are bounding box

information from camera 2.

We can calculate the real 3D location (xreal, yreal, zreal) of insects

by applying Equations 8, 10, 12, and 14 to pixel values and then

converting them to millimeters using Equations 9, 11, 13, and 15.

For zreal, you can use camera 1(zreal1) or camera 2 (zread2) to

estimate.

yrealpixel = X02 − X2 = 722 − 745 = −23(pixel) (8)

yreal = yrealpixel*YRATIO = −23*0:0617 = −1:4191(mm) (9)

xrealpixel = X1 − X01 = 730 − 737 = −7(pixel) (10)

xreal = xrealpixel*XRATIO = −7*0:063 = −0:441(mm) (11)

zrealpixel1 = Y01 − Y1 = 1350 − 1278 = 72(pixel) (12)

zreal1 = zrealpixel1*ZRATIO1 = 72*0:108 = 8:667(mm) (13)

zrealpixel2 = Y02 − Y2 = 1364 − 1283 = 81(pixel) (14)

zreal2 = zrealpixel2*ZRATIO2 = 81*0:107 = 8:667(mm) (15)

As a result, from a list of videos from the two cameras, we

separate each video into frames. In two frames at the same time

from the two cameras, we use the insect detector to extract 2D
Frontiers in Plant Science 08
locations of insects. Ultimately, a 3D representation of the position

of each insect in the images is extracted from the 2D location

calculations. Now, the insect needs to be tracked over frame. We use

the relative distance between insect over the continuous frames and

color histograms to track and reidentify the insects in 3D.

2.3.1 Insect tracking and reidentification
In one frame t, there are some insects. Those insects are in the

same locations on the next frame t+1 or they move to other

locations or even disappear or partially disappear because of

occlusion by the plant. Because the time between two continuous

frames is small, approximately 1/30 s, the insect cannot move far

from its location on the previous frame. In Equation 16, the locati

on(insectst,i) is the location of the ith insect at frame t. The distan

ceframe(location 1, location 2)  is the distance between two points of

location 1 and location 2 in 3D coordinates. From one frame t, with

one insect i and its 3D real location location(insectst,i), we find the

nearest insect j among detected insects in the next continuous frame

t+1 as Equation 16. If the distance between the two insects is smaller

than thresholddistance (=2 mm in this paper) as in Equation 17, we

consider them as the same insect in two continuous frames. Because

of the small size of the insects, in some frames, the detector fails to

detect insects correctly. Thus, based on the histogram and distance

of the insects in different frames, we identify that the insects are

newly appearing ones or they are identical.

minj = argminj(distanceframe location(insectst,i), location(insectst+1,j)
� �

)

(16)

distanceframe location(insectst,i),   location(insectst+1,minj )
� �

< thresholddistance (17)

hisdiff (t, i) = diffhist(boundingbox(insectst,i), boundingbox(insectst+1,minj ))

(18)

With the resized bounding box “ boundingbox(insectst,i) “ of

detected insect i at frame t, the color histogram is calculated. The

diffhist(box1,   box2) is a function to calculate the difference between

the histogram of box 1 and box 2. Histogram intersection is used to

implement this function. This function calculates the area under the

smaller histogram (minimum of corresponding bins) when both

histograms are normalized to have the same sum (area under the

curve). It measures the overlapping portion between the two

histograms. Equation 18 is used for calculating the difference

between the two histograms of the two bounding boxes of two

given detected insects. For the ith insect in frame t, insectst+1,i is the

insect i in the next frame t + 1. We find the jth insectt+1,j in the next

frame of the frame t, which is the nearest to the insectt,i among

detected insect in frame t+1 and hisdiff (t, i)   is smaller than

thresholdhis. Then, we consider that insect i in frame t and insect

j in frame t+1 is the same insect. Then, we put the identified insect

location into a list of location of the insect to visualize it as

in Figure 8.

Furthermore, in some frames, the detector fails to detect the

insects in one camera because of partial occlusion of insects. As a
FIGURE 7

Flow diagram for calculation 3D insect location and visualization
from 2D locations.
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result, we fail to reidentify the insect between continuous frames.

Then, a heuristic-approximation algorithm is applied that includes

a “greedy” search component to enable a reidentification based on

comparing the histogram of the bounding box of the frame in which

an insect last appeared with histograms of the last appearing frame

of other insects. The best match is selected to handle the

reidentification process between non-adjacent frames.

Consequently, we disregard the frames situated between the first

and last frames, a characteristic that earns the method the

designation of “greedy”. Our approach is underpinned by the

observation that if one sequence contains insect i and another

sequence partially overlaps with the sequence of insect j, then insect

j is distinct from insect i. Leveraging this observation represents a

pragmatic technique, which justifies our approach as heuristic.

Furthermore, due to the presence of a noisy background, certain

frames erroneously identify the background as insects within a brief

duration. To mitigate this issue, we adopt a strategy to eliminate

falsely detected insects by employing a frame count mechanism to

assess the duration of insect appearance.
Frontiers in Plant Science 09
3 Results

3.1 Insect detection using YOLOv7

We feed frame by frame of the video to the insect detecting

model to predict the bounding boxes of the insect in each frame.

Figure 8A presents the detected bounding box on the validation

after training. In each bounding box, there is a label (“0” in our

case). Figure 8B presents the detected insect at the frame at the 25th,

42th, and 47th second in the testing video. There are three detected

insects in each image frame. While only one insect (the insect in the

middle) is moving up, the others keep the same location.
3.2 3D insect visualization

For each frame of the video, the mplot3d toolkit (‘The mplot3d

toolkit.’, 2023) is used to plot the sequence of the insect moving over

time. In Figure 9, on the left side, we show all the locations of the
B

A

FIGURE 8

Detected insects on image using YOLOv7. (A) Detected insect during training on validation set. (B) Detected insect on testing video of three insects
on a plant.
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insect over time. Different from the left side, on the right side of

Figure 8, we show three identified insects in three different colors.

The first insect is in dark pink color. It moved from the middle of

the plant up to near the second insect (in purple pink color) and

then moving down to the location of the third insect (in light pink

color). In the video, the second and the third insect did not

move much.
3.3 Statistical insect moving

Based on distances of the insect movement over time, we

calculate the distance of the insect over frames. This distance

gives information of the moving speed of the insect over frames.

We use Euclidian distance (||.||2) to calculate the distance between

the location of the ith insect in the frame f (location(insectsf+1,i))

with its location in the previous frame (location(insectsf ,i)). Taking

the sum over all frame of the video as Equation 19, we can get the

moving distance over the whole video (movingi).

movingi =onumF−1
f=1 ‖ location(insectsf+1,i)

− location(insectsf ,i) ‖2 (19)

Figure 10 displays the movement speeds of three detected

insects over a 15-min period. The first insect was moving

approximately 18 mm in the first minute, 5 mm in the fifth

minute, and 4mm in 12th minute in the recorded video, while

other insects did not move much during the recorded period.
4 Discussion

The field of agriculture is currently experiencing a digital

revolution, where there are a vast amount of data available at a

relatively low cost of collection and transmission. Farmers are now

faced with the challenge of analyzing “Big Data” using advanced
Frontiers in Plant Science 10
algorithms to make decisions based on the interpretation,

prediction, and inference of these data, potentially on a global

scale. This involves organizing, aggregating, and interpreting the

massive amount of available digital data to drive more informed

decisions (Fan et al., 2014; Weersink et al., 2018). In addition, the

implementation of computer vision science (Paul et al., 2020),

machine learning (Liakos et al., 2018), deep learning (Kamilaris

and Prenafeta-Boldú, 2018), and artificial intelligence (Jha et al.,

2019) can reduce the cost of human interventions and maximize

human output effectiveness.

Recent publications have highlighted practical applications of

the Internet of Things (IoT) in monitoring and managing insect

populations using camera-equipped traps. For example, crawling

insects like cockroaches (Blattodea), beetle pests that infest stored

food (Coleoptera), and ants (Hymenoptera: Formicidae) in urban

environments have been monitored using IoT-based traps, as well

as controlling the coffee berry borer (Hypothenemus hampei

Ferrari), a pest of coffee crops. These applications demonstrate

how IoT can be used to improve insect management by providing

real-time data and insights to farmers and other stakeholders

(Figueiredo et al., 2020; Preti et al., 2021).
BA

FIGURE 9

3D visualization of the insects. (A) No reidentification, (B) with reidentification.
FIGURE 10

Moving speed of insects over time in the sample video.
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The use of advanced technology in insect monitoring provides a

uniqueopportunity to leverage expertise in 3D technology, electronics,

informatics, and data analysis. By using two cameras, we were able to

monitor the behavior and movement of insect with high precision.

This camera-based system provides higher-quality images and videos

compared to other automated systems that rely on infrared sensors. As

a result, the insect can be checkedwith greater accuracy. This system is

not limited to pestmonitoring, but can also be used for early detection

and surveying, particularly for invasive species. This enables quick

responses to potential infestations and invasive species.

The use of camera-based monitoring can also aid in eradication

programs for invasive species. Image processing algorithms can be

employed to identify and automatically count insects, making

observation easier. Image processing and computer vision

techniques have been applied to automatically identify various

insect pests, including the diamondback moth (Plutella xylostella

L.), the Queensland fruit fly (Bactrocera tryoni Froggatt) (Liu et al.,

2009), and the rice insect (Leptocorisa chinensis Dallas) (Fukatsu

et al., 2012) (Fukatsu et al., 2012). For instance, Doitsidis et al.

(2017) developed a detection and recognition algorithm using

machine vision techniques to enable the automatic insect count of

B. oleae (Doitsidis et al., 2017). These techniques can be applied to

improve the effectiveness of eradication programs by providing

accurate and real-time data to aid in decision-making.

Furthermore, owing to the excellent picture resolution that can

be obtained by using our concept of 3D monitoring and the

potential for wireless technology to be used for data transfer, it is

now feasible to remotely control insect detection, behavior, and

identification, hence minimizing the need for field trips. In addition

to lowering the expenses associated with conventional field

monitoring techniques, this offers the potential for enhanced pest

control through more frequent and precise monitoring.

The utilization of a 3D monitoring system yields increased

accuracy due to the inclusion of depth information. In contrast,

conventional 2D monitoring systems only consider motion along

the x-horizontal and y-vertical axes, omitting the z-depth

dimension. This limitation becomes apparent when an insect

moves parallel to the camera direction on a leaf. In a 2D system,

such motion appears static, but a 3D system can discern the insect’s

movement in the z-direction. The 3D system’s ability to detect

motion in the depth dimension enhances its capacity to track insect

movements more comprehensively, providing valuable insights in

scenarios where z-direction motion is significant.

There are several practical applications that can be derived from

the current system, which demonstrate the practical significance of the

study. First, by systematicallymonitoring insects across a diverse range

of plant species, this study provides valuable insights into their

behavioral preferences. Consequently, it facilitates the identification

of plant varieties that are less attractive to insects. This knowledge can

significantly contribute to informed decision-making in agricultural

practices, enabling the selection of plant species that exhibit greater

resilience against insect infestations. Second, through the monitoring

of insects during various treatmentmethodologies, it becomes possible

to assess their responses. This evaluation process enables the

identification of the most effective treatment options for preserving

plant health and preventing insect-related damage. The outcomes of
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this research contribute to the development of efficient pest control

strategies for farmers and agricultural researchers. Third, this study

involves meticulous observation of how insects respond to changes in

environmental conditions. By analyzing these responses, valuable

insights into the adaptive mechanisms of insects can be gained. This

knowledge is instrumental in predicting andmanaging insect behavior

within different environmental contexts, thereby facilitating effective

pest control measures and supporting ecosystemmanagement efforts.

Finally, simultaneously monitoring plants and insects during plant

transformations, such as leaf discoloration, provides a unique

opportunity to examine the intricate interplay between these

phenomena and insect behavior. Through this investigation,

valuable insights into the complex dynamics governing the

interactions between plants and insects can be obtained. Such

insights help unravel the underlying mechanisms that drive

their interactions.
5 Limitation

The primary focus of this study lies in the monitoring of

individual brown hopper insect on single plants, which limits the

availability of sufficient data for evaluating insect reidentification.

Given the current setup and the challenges posed by the blurriness

of insect images with the current performance of insect

reidentification, a drawback of our system is its inability to

monitor a large number of insects simultaneously.
6 Conclusion

Using a 3D insectmonitoring system, wewere able to identify and

detect insect movement and behavior. The 3D monitoring system is

more accurate in visualizing the movement than the 2D system. The

system can be used by entomologists and other researchers to study

insect behavior and movement patterns. By providing detailed 3D

visualizations of insects, the system can help researchers to better

understand theways inwhich insects interactwith their environments.

This system also cannot be limited to pest monitoring only; it can also

be used for early detection and surveying of other invasive species,

which enables quick responses to potential infestations. In summary,

this 3D insectmonitoring systemcanbe apowerful tool formonitoring

insect populations and controlling pest infestations, as well as for

conducting research on insect behavior and ecology.
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