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The bacterium Stenotrophomonas rhizophila is known to be beneficial for plants

and has been frequently isolated from the rhizosphere of crops. In the present

work, we isolated from the phyllosphere of an ornamental plant an epiphytic

strain of S. rhizophila that we named Ep2.2 and investigated its possible

application in crop protection. Compared to S. maltophilia LMG 958, a well-

known plant beneficial species which behaves as opportunistic human pathogen,

S. rhizophila Ep2.2 showed distinctive features, such as different motility, a

generally reduced capacity to use carbon sources, a greater sensitivity to

fusidic acid and potassium tellurite, and the inability to grow at the human

body temperature. S. rhizophila Ep2.2 was able to inhibit in vitro growth of the

plant pathogenic fungi Alternaria alternata and Botrytis cinerea through the

emission of volatile compounds. Simultaneous PTR-MS and GC-MS analyses

revealed the emission, by S. rhizophila Ep2.2, of volatile organic compounds

(VOCs) with well-documented antifungal activity, such as furans, sulphur-

containing compounds and terpenes. When sprayed on tomato leaves and

plants, S. rhizophila Ep2.2 was able to restrict B. cinerea infection and to prime

the expression of Pti5, GluA and PR1 plant defense genes.

KEYWORDS

beneficial microbes, biological control agents (BCAs), Solanum lycopersicum, plant

pathogens, plant microbiome, induced resistance, defense priming, antimicrobial VOCs
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1 Introduction

Plant-associated microbes that collectively constitute the plant

microbiota can live inside plants as endophytes, or populate as

epiphytes on the surface of roots, leaves and other organs (Bulgarelli

et al., 2013; Berg et al., 2014). The plant microbiota affects deeply

plant growth, productivity and resistance to stresses (Berg et al.,

2017). However, it has been demonstrated that crops may display

reduced microbial diversity as compared to their wild relatives,

probably because this trait was impoverished by the domestication

process to which they were subjected (Martıńez-Romero et al.,

2020). For these reasons, the plant microbiota has become the

central target of emerging biotechnological strategies aimed at

improving yields and resilience of crops: microbiome engineering,

microbiome management and microbiome-based products are

believed to represent promising alternatives to reduce chemical

inputs in agriculture (Berg et al., 2017; Arif et al., 2020; Ke et al.,

2021; Malacrinò et al., 2022). The plant microbiota is a precious

source of novel beneficial microbes that may be used in agriculture

as biofertilizers, biostimulants, biological control agents (BCAs) (El-

Saadony et al., 2022), or as source of microbes that may be

assembled in artificial (synthetic) consortia to reconstruct the

structure and function of impaired plant microbiomes (Arif

et al., 2020).

Among the microbes possessing the ability to improve plant

performance and health, plant growth-promoting rhizobacteria

(PGPR) are probably the most known category. PGPR can increase

the availability of nutrients and synthesize phytohormones thereby

promoting plant growth, or they may produce antimicrobial

compounds and prime immune responses thereby improving

resistance to pathogens (Mauch-Mani et al., 2017; Tabassum et al.,

2017; El-Saadony et al., 2022). Volatile organic compounds (VOCs)

emitted by beneficial microbes can affect the mechanisms of plant

tolerance to abiotic (Liu and Zhang, 2015; Brilli et al., 2019) and biotic

stresses (Enebe and Babalola, 2019; Thankappan et al., 2022). For

instance, VOCs emitted by PGPR can inhibit the growth of plant

pathogenic fungi and bacteria either directly (Raio et al., 2020) or

indirectly by activating plant defenses (Brilli et al., 2019; Liu and

Brettell, 2019). Studies have also shown how VOCs emitted by a single

bacterial strain can simultaneously inhibit pathogen growth and induce

plant defense (Sharifi and Ryu, 2016).

Therefore, to reduce our dependence on agrochemicals, the

identification, isolation and characterization of novel plant-

associated beneficial microbes is strongly demanded. In the

present work, we have investigated a novel strain of the Gram-

negative bacterium Stenotrophomonas rhizophila that we isolated

from the phyllosphere of Hibiscus syriacus plants and named Ep2.2.

S. rhizophila belongs to the class of Gammaproteobacteria, order

Xanthomonadales, family Xanthomonadaceae. The genus

Stenotrophomonas was first described for the species S. maltophilia,

formerly known as Pseudomonas maltophilia and subsequently

Xanthomonas maltophilia (Palleroni and Bradbury, 1993). S.

maltophilia was used as an efficient biocontrol agent for a long time,

until it was found to behave as an opportunistic human pathogen in

immunocompromised patients (Ryan et al., 2009; Berg and Martinez,

2015). For this reason, S. rhizophila has attracted increasing attention in
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recent years as a harmless alternative for biotechnological applications

(Berg andMartinez, 2015). S. rhizophilawas identified for the first time

in the rhizosphere of rape and potato plants (Wolf et al., 2002) and

reported to colonize roots behaving as endophyte in plants (Berg and

Martinez, 2015). However, S. rhizophila appears to be a ubiquitous

bacterium, since isolates have been collected not only from plants but

also from very different environments, such as marine environments

and underground archeological sites (Rivas-Garcia et al., 2019; Cuzman

et al., 2023). S. rhizophila possesses plant growth-promoting ability and

biocontrol properties against phytopathogens, but its mode of action

has often remained elusive (Kai et al., 2007; Ryan et al., 2009; Schmidt

et al., 2012; Maurer et al., 2013; Reyes-Perez et al., 2019; Rivas-Garcia

et al., 2019).

Here, the phyllosphere epiphytic strain Ep2.2 of S. rhizophila

was characterized biochemically and metabolically in comparison

to S. maltophilia, and its biocontrol activity against different fungal

plant pathogens was assessed. By coupling Proton Transfer

Reaction – Quadrupole Mass Spectrometer (PTR-MS) and Gas

Chromatography–Mass Spectrometry (GC-MS) analyses, we

thoroughly analyzed in vitro the complex blend of VOCs

produced by S. rhizophila Ep2.2, in order to identify those having

antifungal activity. Then, we analyzed the ability of S. rhizophila

Ep2.2 to restrict B. cinerea infection on tomato leaves and to prime

plant defense genes.
2 Materials and methods

2.1 Isolation and identification of the
epiphytic strain Ep2.2 of
Stenotrophomonas rhizophila

Hibiscus syriacus plant samples were collected during a survey

on the cultivable bacterial population inhabiting ornamental plants.

The survey was carried out in 2012 in a commercial nursery located

in Pistoia, Italy, by sampling one plant per species. Ten grams of

leaves, stems and buds were suspended in 90 mL of a solution

containing 1% peptone and 1% Tween 90, and shaken at 200 rpm

for one hour at room temperature. Three suspensions were

prepared, bulked and then spread as 100 µL aliquots onto the

surface of nutrient glucose agar (NGA) medium amended with

cycloheximide (200 ppm). Plates were incubated at 25 ± 2°C for one

week, after that bacterial colonies of different morphology were

picked up and streaked (at least twice) on NGA medium for

purification. Pure cultures were suspended in 30% glycerol

solution and maintained at -80°C until this work was carried out.

The S. rhizophila strain that we named Ep2.2 was identified by

16S rDNA amplificat ion with the pr imers fD1 (5 ’ –

GAGTTTGATCCTGGCTCAG–3 ’ ) and rP1 / rP2 (5 ’ –

GGYTACCTTGTTACGACTT–3 ’ ; Y=C/T) (Pious and

Thyvalappil, 2009) according to the protocol described by Krimi

et al. (2016). The amplified 16S rDNA fragment was analyzed for

similarity by comparing to known nucleotide sequences present in

the NCBI GenBank database by BLASTn search (http://

blast.ncbi.nlm.nih.gov/). The taxonomical affiliation was also

determined by aligning the S. rhizophila Ep2.2 16S rDNA
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sequence to 16S rDNA sequences available in the NCBI database

belonging to six Stenotrophomonas species, three Xanthomonas

species, and Xylella fastidiosa. The evolutionary history was

inferred using the Neighbor-Joining method (Saitou and Nei,

1987). The evolutionary distances were computed using the

Maximum Composite Likelihood method (Tamura et al., 2004)

and expressed in the units of the number of base substitutions per

site. Evolutionary analyses were conducted in MEGA 6 (Tamura

et al., 2013). The S. rhizophila Ep2.2 16S rDNA sequence was

deposited in the EMBL/GenBank/DDBJ nucleotide databases under

the accession number MZ841807. S. rhizophila Ep2.2 is included in

the microbial collection of the IPSP-CNR (Sesto Fiorentino, Italy).
2.2 Biochemical and metabolic
characterization of Stenotrophomonas
rhizophila Ep2.2

S. rhizophila Ep2.2 was assessed for Gram reaction by the KOH

test (Buck, 1982), for catalase and oxidase activities (Schaad et al.,

2001), for siderophore production on King agar B medium (Sigma-

Aldrich, MO, USA) following the procedure of Mikiciński et al.

(2016), and for glucanase activity on tryptic soy agar medium

(Sigma-Aldrich, MO, USA) amended with glucane 0.1%.

Proteolytic, lipolytic and chitinolytic activity tests were performed

on skim milk agar, LB agar (Sigma-Aldrich, MO, USA) amended

with 1% Tween 40, and Chitin azure medium (Sigma-Aldrich, MO,

USA), respectively. Exopolysaccharide (EPS) production was

assayed by using the protocol described by Tallgren et al. (1999).

The ability to grow at 4, 30, 37 and 40°C was assessed in LB medium

after one week of incubation. 1-aminocyclopropane-1-carboxylic

acid (ACC) deaminase activity was detected by means of M9

minimal medium with ACC as unique N source (Penrose and

Glick, 2003). The ability to solubilize P was verified by using the

NPRBB growth medium (Nautiyal, 1999). Indole-3-acetic acid

(IAA) production was tested on LB medium amended with L-

triptophan according to Bric et al. (1991). The bacterial strains used

as reference for the different biochemical tests are reported in

Supplementary Table S1.

Swimming, swarming and twitching motility, and ability to

form biofilm, were determined according to Déziel et al. (2001).

Motility was assessed in comparison to S. maltophilia LMG 958,

Xanthomonas campestris pv. campestris Xcc1, Erwinia amylovora

E1 and Agrobacterium tumefaciens C58. The biofilm production

assay was modified to be performed in microtiter plates (Costar

assay plate, Corning, NY, USA).

The metabolic profile of S. rhizophila Ep2.2 was analyzed with

the BIOLOG system by using GEN III MicroPlate (Catalog No.

1030, Rigel, Italy), according to the protocol provided by the

manufacturer (BIOLOG, USA). The GEN III MicroPlate includes

94 phenotypic tests: 71 carbon source utilization assays and 23

chemical sensitivity assays, and allows identifying bacteria at the

species level. The analysis of the metabolic fingerprint was

performed by incubating at 30°C for 75 h in the OmniLog device

(BIOLOG, USA), which yields colorimetric curves indicating

utilization of the carbon sources or resistance to inhibitory
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chemicals, as a result of cell respiration. Respiration causes

reduction of a tetrazolium redox dye and formation of purple

color. The test was carried out in comparison with S. maltophilia

type strain LMG 958 in order to highlight metabolic differences

with S. rhizophila Ep2.2.
2.3 In vitro estimation of the antagonistic
activity of Stenotrophomonas rhizophila
Ep2.2 against fungal plant pathogens

The antagonistic activity of S. rhizophila Ep2.2 was evaluated by

dual culture assay against four fungal plant pathogens: Alternaria

alternata, Botrytis cinerea, Fusarium oxysporum f. sp. lycopersici and

Rhizoctonia solani. Briefly, 5 mm plugs were cut from the margin of

fresh fungal colonies grown on potato dextrose agar (PDA; VWR

Chemicals, Belgium)medium and placed in the middle of Petri dishes

containing the same medium. Two 50 µL aliquots of S. rhizophila

Ep2.2 suspension (OD600 nm = 0.1, corresponding to 1x108 cells/mL)

were streaked at the two opposite sides of the fungal plug. The plates

were incubated at 26°C for six days before measuring fungal colony

diameters and comparing to control cultures grown in the absence of

S. rhizophila Ep2.2.

Subsequently, to demonstrate the inhibitory role of volatile

compounds produced by S. rhizophila Ep2.2 on B. cinerea growth,

Petri dishes, prepared as described above, were either sealed with

three layers of parafilm or kept unsealed, and incubated at 26°C for 2,

3 or 7 days. Diameters of fungal colonies grown both on sealed and

unsealed plates were then measured and compared.

In order to exclude inhibition by diffusible molecules, a culture

filtrate of S. rhizophila Ep2.2 was prepared and tested against B.

cinerea as described below. S. rhizophila Ep2.2 was grown on

Nutrient Broth (Scharlab S.L., Spain) amended with 2.5 g/L

glucose (NGB) on an orbital shaker at 25 ± 2°C, 120 rpm, for

48 h. The bacterial suspension was then centrifuged at 10,000 rpm

for 10 min. and the supernatant was then collected and sterilized

through a Millipore 0.2 µm filter. The sterile filtrate (1.5 mL) was

mixed with 15 mL of PDA cooled at 55°C. After medium

solidification, a 0.5 mm agar plug was cut from the margin of a

colony of B. cinerea grown on PDA and placed in the middle of the

Petri dish. The test was conducted in triplicate. B. cinerea was grown

on unamended PDA as a control. Plates were incubated at 26°C for

4 days after that the inhibitory activity was evaluated by measuring

the diameter of B. cinerea colonies.
2.4 In vitro assessment of the inhibitory
activity of volatile compounds from
Stenotrophomonas rhizophila Ep2.2 on the
growth of phytopathogenic fungi

Two-compartment 92-mm-diameter Petri dishes with

ventilation cams and common headspace (Sarstedt, Nümbrecht,

Germany) were used to determine the inhibiting activity of volatile

compounds produced by S. rhizophila Ep2.2 against the four

different phytopathogenic fungi listed in the previous paragraph.
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An aliquot (7 mL) of agarized NGB medium (NGA) was poured

into one of the two compartments of the plate, while 7 mL of PDA

medium were poured into the other compartment. Once dried, 50

mL of S. rhizophila Ep2.2 bacterial suspension (OD600 nm = 0.1) were

spread on NGA medium, whereas a 5-mm diameter plug was cut

from the edge of the fungal colony grown on PDA and placed at the

center of the other compartment containing PDA. As a control,

two-compartment plates containing non-inoculated NGA and

fungus-inoculated PDA were used. Inoculated plates were sealed

with 3 layers of parafilm to prevent dispersion of volatile

compounds, and the inhibitory activity on phytopathogenic fungi

was evaluated by measuring the colony diameter after 3 days of

incubation at 26°C. Four replicates per each S. rhizophila Ep2.2-

fungus combination were analyzed.
2.5 In vitro analysis of volatile organic
compounds (VOCs) emitted by
Stenotrophomonas rhizophila Ep2.2

2.5.1 Bacterial culture preparation
S. rhizophila Ep2.2 was grown on NGA plates at 26°C for 48 h.

Bacterial cells were scraped from the agar surface and suspended in

0.8%NaCl to obtain 1x108 CFUmL−1 suspensions (OD600 nm = 0.1).

An aliquot of 500 mL of each suspension was added to 500 mL

airtight flasks containing 50 mL of NGA medium. All the flasks

were then incubated at 26°C for 48 h before PTR-MS and GC-

MS analyses.

2.5.2 PTR-MS analysis
Emission of VOCs from S. rhizophila Ep2.2 was screened in

real-time by PTR-MS through direct air sampling of the flask

headspace above the bacterial culture, with a PTR-MS instrument

(Ionicon Analytic GmbH, Innsbruck, Austria). In particular, VOCs

were detected following chemical ionization between molecules of

H3O
+ (produced at high density in an ion source) and those of

VOCs present into the headspace air and having a proton affinity

higher than that of H2O (= 166 kcal mol-1). Proton transfer reaction

occurred in a drift tube under constant conditions of pressure (= 2.2

mbar), temperature (= 50°C) and electrical field (600 v cm-2), thus

resulting in an ionization energy E/N = 130 Td (Lindinger et al.,

1998). All the protonated ions related to VOCs and/or fragment of

VOCs were analyzed with a duty cycle of 200 s spanning from m/z

20 to 220 m/z 20 with a dwell time = 1 s for each single m/z. An

amount of 6 full cycles were completed for each analyzed flask,

during which the 100 mL min-1 of the headspace air was sampled by

PTR-MS and simultaneously replaced within the flasks with the

same amount of VOC-free air produced by a customized zero air

generator. All the 6 cycles recorded from one flask headspace were

averaged within one single measurement, and the different

measurements were replicated nine times in two independent

experiments. In addition, the headspace of four flasks containing

only NGA medium were measured by PTR-MS and the resulting

averaged value was subtracted to those of the flasks containing S.

rhizophila Ep2.2 (Brilli et al., 2019; Raio et al., 2020).
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2.5.3 GC-MS analysis
An external pump (Pocket Pump SKC Inc., PA, USA) was used

to sample 100 mL of the flask headspace air above the S. rhizophila

Ep2.2 culture at a flow rate of 50 mL min−1 in a cartridge filled with

200 mg of Tenax GC® (Markes International, Ltd, Llantrisant, UK).

After sampling, all the cartridges were thermally-desorbed for

15 min at 280°C with a helium flow rate of 50 mL min−1 (Markes

International, Series 2 Unity) and VOCs were transferred into a

cold trap rapidly heated from 10°C to 280°C. Subsequently, VOCs

were separated and further identified with a 7890A gas

chromatograph coupled with a 5975C mass detector (GC–MS,

Agilent Technologies, Wilmington, USA) through fast injection

onto a capillary column (ZB-1, 60 m × 0.25 mm I.D. × 0.25 mm film

of polymethylsiloxane; Phenomenex, Inc. Torrance, CA, USA) via a

transfer line heated at 200°C. In particular, peak integration and

identification of VOCs were performed through ChemStation

software (Agilent Technologies, Wilmington, USA) through

comparison of the retention times and the fragmentation patterns

listed in the NIST11 database of mass spectra. Furthermore, the

identified VOCs were quantified by using an external standard

calibration procedure obtained by means of calibrated gas cylinders

of different VOCs (Rapparini et al., 2004; Baraldi et al., 2019).
2.6 Ability of Stenotrophomonas rhizophila
Ep2.2 to protect tomato leaves against
Botrytis cinerea infection

Solanum lycopersicum cv. Micro-Tom and cv. Marmande plants

were grown in a growth room under LED lights (photoperiod 12/

12 h) as previously described (Baccelli et al., 2022). The ability of S.

rhizophila Ep2.2 to protect from B. cinerea infection was first tested

on Micro-Tom leaves detached from plants during their second

month of growth. A number of 10-13 mature and healthy leaves

(selected among the 3rd to the 5th leaf) were cut from different

undamaged plants and placed into 90 mm-Petri dishes containing a

filter paper disc soaked with 1 mL sterile water to ensure high internal

relative humidity (RH) conditions during incubations. S. rhizophila

Ep2.2 was grown overnight in NGB medium at 28°C, centrifuged at

low speed, washed twice in 10 mM MgCl2, and finally suspended in

10 mM MgCl2 (OD600 nm = 0.1) for leaf treatment. Treatments were

performed by spraying the lower (abaxial) surface of a leaf with

approximately 300 mL of bacterial suspension with a 10-mL pump

atomizer. Control leaves were sprayed with 10 mM MgCl2. All the

plates were sealed with parafilm and incubated at 21°C (day)/18°C

(night), photoperiod 12/12 h (100 mmol m2 s−1) for 48 h, after that

B. cinerea strain B05.10 was inoculated. For pathogen inoculation,

conidia were collected from 15-20 day-old B. cinerea cultures grown

in PDA under a light/dark regime (Schumacher, 2017; Baccelli et al.,

2022). Conidia were suspended in potato dextrose broth (PDB,

Laboratorios Conda S.A., Spain) at the concentration of 1x106

conidia/mL and inoculated on leaves by applying one, or two, 10-

µL droplets on each side of the midrib on the abaxial leaf surface. All

the plates were sealed once again with parafilm and incubated as

described above. Necrotic lesions caused by B. cinerea infection were
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measured after 3 days of incubation. The protective effect shown by S.

rhizophila Ep2.2 against B. cinerea was validated on whole plants by

using the tomato cv. Marmande. Plants were sprayed 2 weeks after

germination on the adaxial leaf surfaces with S. rhizophila Ep2.2 as

described above, incubated 48 h under high RH conditions, and

subsequently inoculated on the adaxial surface of two opposite leaves

(2nd and 3rd) with a drop of a conidial suspension prepared as already

described. Lesions were measured after 3 days of incubation.
2.7 Gene expression analyses in tomato
leaves treated with Stenotrophomonas
rhizophila Ep2.2

The expression of plant defense genes was analyzed by RT-qPCR

to investigate the ability of S. rhizophila Ep2.2 to induce localized

resistance in leaves. The analyses were designed to reveal either the

ability of S. rhizophila Ep2.2 to induce directly defense genes before

infection, or prime them for a quicker/boosted induction during B.

cinerea B05.10 infection. Leaves from different 5-week-old S.

lycopersicum cv. Micro-Tom plants were detached and treated as

follows: a) leaves were spray-treated on their abaxial surface either

with S. rhizophila Ep2.2 (OD600 nm = 0.1 in 10 mMMgCl2), or with 10

mMMgCl2 as control, and then incubated for 48 h (samples named as

“S. rhizophila” and “control”, respectively, at 48 hours post treatment,

hpt); b) leaves were spray-treated on their abaxial surface with either S.

rhizophila Ep2.2, or 10mM MgCl2 as control, incubated for 48 h, and

subsequently inoculated with 10-µL droplets (3-6 per leaf) of 1x106 B.

cinerea conidia/mL in PDB (samples named as “S. rhizophila +

B.cinerea” and “control + B. cinerea”, respectively, at 6 or 24 h post

infection, hpi); c) leaves were spray-treated on their abaxial surface with

either S. rhizophila Ep2.2, or 10 mM MgCl2 as control, incubated for

48 h, and subsequently mock inoculated with 10-µL droplets (3-6 per

leaf) of PDB (samples named as “S. rhizophila + mock” and “control +

mock”, respectively, at 6 and 24 hpi). Each biological replicate consisted

of two leaves belonging to different plants, and three biological replicate

per condition were prepared. Leaves were incubated into 90 mm-Petri

dishes as described in the previous paragraph and frozen in liquid

nitrogen upon sampling. To check that the treatments were leading to

the expected reduction in disease symptoms, some “control +

B. cinerea” and “S. rhizophila + B. cinerea” leaves were inoculated

with a single 10-µL drop of conidial suspension prepared as described

above and kept incubating for a longer period (96 hpi). Lesion

diameters were then measured.

For RNA extraction, leaves were ground in liquid nitrogen and

total RNA was extracted by using RNeasy Plant Mini Kit with buffer

RLT (Qiagen, Italy) (Baccelli et al., 2022). The extracted RNA was

quantified in a Qubit fluorometer (Thermo Fisher Scientific, MA,

USA) and its integrity verified by agarose gel electrophoresis.

Amplification Grade DNase I (Sigma-Aldrich) was used to

degrade traces of contaminating DNA before reverse-

transcription, which was performed with Maxima First Strand

cDNA Synthesis Kit (Thermo Fisher Scientific, MA, USA). qRT-

PCRs were performed in a StepOne Real-Time PCR System

(Applied Biosystems, Thermo Fisher Scientific Inc. Waltham,
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MA, USA) by using Fast SYBR™ Green Master Mix (Applied

Biosystems, Vilnius, Lithuania) as described in Baccelli et al. (2022).

The following genes were analyzed: Proteinase inhibitor II

(PIN2), b-1,3-glucanase A (GluA), Pathogenesis-related protein 1

(PR1), 1-aminocyclopropane- 1-carboxylate oxidase 1 (ACO1),

Pathogenesis-related genes transcriptional activator (PTI5),

Lipoxygenase A (Lox1.1), and Polygalacturonase inhibitor protein

(PGIP). The genes were selected based on their known modulation

occurring during B. cinerea infection in tomato cv. Micro-Tom

(Baccelli et al., 2022). Gene locus IDs and primer sequences are

reported in Baccelli et al. (2022). Relative gene expression values

were calculated by using the 2-DDCT method as described in Livak

and Schmittgen (2001) after melting curve analysis and

amplification plot comparisons. Actin-7 was used as the

endogenous reference gene for transcript normalization (Baccelli

et al., 2022). Three biological replicates and two technical replicates

were analyzed per each condition.
2.8 Statistical analyses

Motility of bacterial strains was analyzed by one-way ANOVA

with Tukey–Kramer multiple comparison post-test (p ≤ 0.05) by

performing the analysis separately per each time point. Data

concerning colony and lesion diameters were analyzed by

unpaired t-test (S. rhizophila-treated vs. control) and considered

significant at p ≤ 0.05. Relative gene expression values were

analyzed by unpaired t-test (48 hpt) or one-way ANOVA with

Tukey–Kramer multiple comparison post-test (6 and 24 hpi) after

normality check, and considered significantly different at p ≤ 0.05.

Analyses were performed in GraphPad Prism 9 (GraphPad

Software Inc., CA, USA).
3 Results

3.1 Identification and characterization of
the epiphytic strain Ep2.2 of
Stenotrophomonas rhizophila

The bacterial strain that we named Ep2.2 was isolated from

aboveground organs of a H. syriacus plant, as described in materials

and methods. The analysis of 16S rDNA sequence (GenBank acc.

no. MZ841807) allowed identifying the strain as S. rhizophila

(99.78% nucleotide identity). The phylogenetic analysis clustered

Ep2.2 with the reference S. rhizophila strain e-p10, clearly

separating them from other Stenotrophomonas and Xanthomonas

species (Figure 1).

S. rhizophila Ep2.2 developed on NGAmedium as a pale-yellow

glistening bacterial colony, with entire margins. The pure isolate

was Gram negative, catalase and oxidase positive, and unable to

grow at 4°C and 37°C. The strain showed proteolytic, lipolytic and

chitinolytic activities but it did not produce b-glucanases (Table 1).
S. rhizophila Ep2.2 was also unable to produce siderophores,

extracellular polymeric substances (EPS), indole-3-acetic acid
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(IAA), ACC deaminase, and to solubilize phosphate (Table 1). S.

rhizophila Ep2.2 displayed a marked ability to form biofilm,

similarly to S. maltophilia LMG 958, as well as significant

swimming and swarming abilities which were comparable,

although statistically different, to those of other tested bacterial

species (Figure 2). In particular, S. rhizophila Ep2.2 showed higher

swimming and swarming abilities, and lower twitching ability than

S. maltophilia LMG 958 (Figure 2).

The metabolic profile of S. rhizophila Ep2.2 was unambiguously

different from that of S. maltophilia LMG 958 (Figure 3). In general,

the metabolic response of S. rhizophila Ep2.2 was slower or reduced

in comparison to S. maltophilia LMG 958, except for D-trehalose,

b-Methyl-D-Glucoside, and D-galactose on which S. maltophilia

Ep2.2 displayed a better utilization capacity (Figure 3: wells A4, B4,

and C4, respectively). However, unlike S. maltophilia LMG 958, S.

rhizophila Ep2.2 either did not or barely utilize N-acetyl-b-D-
mannosamine, D-fructose, 3-methyl glucose, D-fucose, L-fucose,

L-rhamnose, inosine, D-glucose-6-phosphate, D-fructose-6-

phosphate, D-serine, L-arginine, L-aspartic acid, L-glutamic acid,

D-galacturonic acid, L-galactonic acid lactone, D-gluconic acid, D-

glucuronic acid, glucuronamide, D-lactic acid methyl ester, a-
Hydroxy-Butyric Acid, and a-Keto-Butyric Acid (Figure 3: wells

B7, C3, C5, C6, C7, C8, C9, D6, D7, D9, E4, E5, E6, F2, F3, F4, F5,

F6, G3, H3, and H5, respectively). S. rhizophila Ep2.2 resulted more

sensitive to fusidic acid and potassium tellurite (Figure 3: wells C11

and G12). Noteworthy, the sensitivity to NaCl, previously known to

discriminate S. rhizophila from S. maltophilia (Wolf et al., 2002),

was similar between the two Stenotrophomonas strains tested here

(i.e. tolerance to 1 and 4% NaCl; sensitivity to 8% NaCl) (Figure 3:

wells B10-12). Moreover, both S. rhizophila and S. maltophilia
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strains showed sensitivity to minocycline (Figure 3: well D12).

Distinct metabolic curves were observed concerning growth at pH

5, and regarding utilization of dextrin, sucrose, D-turanose, L-

histidine, L-serine, L-lactic acid and Tween 40 (Figure 3: wells

A12, A2, A7, A8, E7, E9, G4, and H1).
3.2 Stenotrophomonas rhizophila Ep2.2
inhibits growth of fungal plant pathogens
in vitro

The inhibitory activity of S. rhizophila Ep2.2 was assessed

against four fungal plant pathogens able to infect tomato plants:

B. cinerea, A. alternata, F. oxysporum f. sp. lycopersici and R. solani.

Two different methods were used: dual culture assay, where both S.

rhizophila Ep2.2 and the pathogenic fungus were grown on the

same PDA medium (in a Petri dish not sealed with parafilm), and a

two-compartment assay where S. rhizophila Ep2.2 and the

pathogenic fungus were grown physically separated, each one on

its appropriate medium (NGA and PDA, respectively), while the

headspace containing volatile compounds was shared. The two-

compartment Petri dish was sealed with parafilm.

The dual culture assay highlighted a mild inhibitory activity of

S. rhizophila Ep2.2 against A. alternata (~11% growth reduction),

whereas B. cinerea, R. solani and F. oxysporum f. sp. lycopersici were

not significantly affected by the presence of S. rhizophila Ep2.2 after

6 days of growth on PDA medium (Figure 4).

In contrast, when the two-compartment assay was performed,

the growth of both B. cinerea and A. alternata was markedly

inhibited by S. rhizophila Ep2.2 (~62% and ~28% growth
FIGURE 1

Phylogenetic tree showing the evolutionary relationships of the strain Ep2.2 identified by 16S rDNA sequencing as Stenotrophomonas rhizophila. The
neighbor-joining analysis was performed by using 16S rDNA sequences available in the NCBI database: Stenotrophomonas rhizophila e-p10 (acc. no.
NR_121739.1), Stenotrophomonas bentonitica BII-R7 (acc. no. NR_157765.1), Stenotrophomonas malthophilia LMG 958 (acc. no. NR_119220.1),
Stenotrophomonas chelatiphaga LPM-5 (acc. no. NR_116366.1), Stenotrophomonas tumulicola T5916-2-1b (acc. no. NR_148818.1),
Stenotrophomonas panacihumi MK06 (acc. no. NR_117406.1), Xanthomonas arboricola LMG 747 (acc. no. NR_125714.1), Xanthomonas campestris
ATCC 33913 (acc. no. NR_074936.1), Xanthomonas vesicatoria ATCC 35937 (acc. no. NR_026388.1), and Xylella fastidiosa subsp. multiplex PL.788
(acc. no. NR_041783.1) (outgroup). The optimal tree with the sum of branch length = 0.08281655 is shown. The percentage of replicate trees in
which the associated taxa clustered together in the bootstrap test (1000 replicates) are shown next to the branches (Felsenstein, 1985). The tree is
drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree.
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reduction, respectively), whereas no significant reduction was

detectable for R. solani and F. oxysporum f. sp. lycopersici

(Figure 5). These results highlighted a role for volatile compounds

in inhibiting the growth of microbial pathogens, especially B.

cinerea (Figures 4, 5 and Supplementary Figure S2).

In order to confirm this clue, the dual culture assay between S.

rhizophila Ep2.2 and B. cinerea was repeated by sealing the plates

with parafilm, and B. cinerea growth was measured after 48, 72 and

168 h by comparing sealed with unsealed plates. As shown in

Figure 6, whereas B. cinerea was not significantly affected by S.

rhizophila Ep2.2 in unsealed plates, its growth was significantly

inhibited in parafilm-sealed plates (Figure 6). In addition, when a

culture filtrate from S. rhizophila Ep2.2 was produced and tested

again B. cinerea no significant reduction in growth was observed as

compared to control (Supplementary Figure S1). This result excluded

an inhibitory role of diffusible molecules released by the bacterium

into the medium. Overall, these results suggested the production by S.

rhizophila Ep.2.2 of volatile compounds able to inhibit the growth of

fungal plant pathogens (A. alternata and B. cinerea) and B. cinerea

was exclusively inhibited by these compounds.
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3.3 Headspace analysis of VOCs emitted
in vitro by Stenotrophomonas
rhizophila Ep2.2

Real-time screening by PTR-MS of VOCs present in

the headspace of axenic cultures of S. rhizophila revealed a

complex blend, although 10 protonated ions represented 97.9%

of the total (Table 2 and Supplementary Table S2). In particular,

three protonated ions resulted to be mainly present: m/z = 33

(32.3 ± 4.9%), which was unambiguously assigned to methanol,

followed by m/z = 97 (30.1 ± 43.3%) and m/z = 49 (21.8 ± 13.8%).

Because of the high relative humidity of the headspace, the

abundant presence of methanol generated a small percentage

of a water-clustered methanol (i.e. methanol-H2O) detectable at

m/z = 51 (2.0 ± 15.7%). Simultaneous GC-MS analysis of the

same samples (Supplementary Table S3) allowed identifying the

protonated ion m/z = 97 as 2, 4-dimethyl furan, whereas m/z = 49

was assigned to methanethiol (Table 2). Among the VOCs emitted

in higher percentage, other sulphur containing compounds such as

dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) were

detected by PTR-MS at m/z = 63 and at m/z = 95, respectively, as

confirmed by GC-MS identification (Table 2 and Supplementary

Table S3). Moreover, the PTR-MS analysis detected a protonated

ion at m/z 99 (4.0 ± 52.2%) that we assigned to a fragment of

hexanoic acid rather than to hexenals, based on previous analyses

(Bergamaschi et al., 2015) and because we did not detect the

fragment at m/z 81, which is typically produced from the

fragmentation of hexenals following proton transfer reaction

(Brilli et al., 2011). We assigned to hexanals the protonated ion at

m/z 101 due to the concomitant presence ofm/z 83 (Supplementary

Table S3), which is its main fragment (Brilli et al., 2011).

Complementary analysis by GC-MS, which has different

sensitivity and selectivity than PTR-MS, highlighted the capacity

of S. rhizophila to emit a wide variety of VOCs belonging to different

chemical classes (Figure 7). Among those, the most abundant VOCs

resulted to be the haloalkane trichloromethane (26.0 ± 15.7%),

the alkanes 2,4-dimethyl heptane (9.5 ± 8.8%) and 4-methyl octane

(8.0 ± 9.1%), followed by furans (furan = 2.4 ± 8.4% and 2,4-

dimethyl furan = 3.0 ± 31.2%) and the organosulfur compound

dimethyl sulfide (3.2 ± 8.9%). Terpenes, such as a- and b-pinene,
camphene, and D-3-carene were present in very small percentage

(< 0.1%) (Supplementary Table S3).
3.4 Stenotrophomonas rhizophila Ep2.2
restricts Botrytis cinerea infection and
primes defense genes in tomato leaves

To assess the ability of S. rhizophila Ep2.2 to protect plant tissues

against B. cinerea infection, leaves from tomato cv. Micro-Tom were

detached, sprayed with S. rhizophila Ep2.2, incubated for 48 h under

high RH conditions, and subsequently inoculated with B. cinerea

conidia. As shown in Figure 8, the treatment with S. rhizophila Ep2.2

strongly reduced B. cinerea colonization of leaf tissues. The disease
frontiersin.o
TABLE 1 Biochemical and physiological characteristics of
Stenotrophomonas rhizophila strain Ep2.2 and Stenotrophomonas
malthophilia LMG 958 reference strain.

S. rhizophila Ep2.2
S. maltophilia
LMG 958

Gram reaction – –

Catalase + +

Oxidase + +

Growtha at 4°C – –

Growtha at 30°C + +

Growtha at 37°C – +

Growtha at 40°C – +

Protease + +

Lipase + +

b-glucanase – –

Chitinase + +

Siderophore – –

Biofilm formationb + +

EPS – –

IAA – nt

ACC deaminase – nt

Phosphate solubilization – nt
+, tested positive; -, tested negative; nt, not tested.
aGrowth at different temperatures was determined in LB medium.
bValues of absorbance OD600nm measured for the different species were: S. rhizophila = 1.89;
S. maltophilia = 1.76; A. tumefaciens = 1.12; X. campestris pv. campestris = 0.96.
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severity, as determined by the lesion size diameters, was significantly

reduced after three days of incubation (~50%). After four days, the

lesion size reduction was even greater (Supplementary Figure S3).

The protective effect induced by S. rhizophila Ep2.2 against

B. cinerea was clearly reproducible on whole tomato plants of a

different cultivar (Marmande) (Supplementary Figure S4).

A gene expression analysis was performed to investigate the

contribution of induced resistance to the protective effect shown by

S. rhizophila Ep2.2 against B. cinerea infection in tomato leaves.

This analysis was designed to highlight either the local induction of

plant defense genes before infection, or their quicker or stronger

expression upon infection (i.e. defense priming). Genes were

selected based on their involvement in defense responses to B.
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cinerea as reported in Baccelli et al. (2022). Before RNA extraction,

the outcome of B. cinerea infection was verified to make sure that

leaf samples were displaying increased protection against B. cinerea

infection (Supplementary Figure S3).

After 48 h following treatment with S. rhizophila, and prior to B.

cinerea inoculation, no significant changes in the expression of

defense genes were detectable in tomato leaves compared to control

(Figure 9A). In contrast, 6 h after B. cinerea inoculation (Figure 9B),

a significant up-regulation of the Pti5 gene was detectable only in

tomato leaves previously treated with S. rhizophila (“S. rhizophila +

B. cinerea” samples) (Figure 9B), thus indicating a quick response to

pathogen infection in S. rhizophila-treated leaves. After 24 h, all the

genes investigated were significantly modulated by the infection (24
A

B

C

FIGURE 2

Motility of Stenotrophomonas rhizophila strain Ep2.2. Swimming (A), swarming (B), and twitching (C) abilities were compared to S. maltophilia,
Xanthomonas campestris pv. campestris, Erwinia amylovora and Agrobacterium tumefaciens. Colony diameters (mean ± SEM, n = 4) were measured
after 24 and 168 hours (i.e. 7 days) of incubation at 26°C. Different letters indicate statistically significant differences within each time point as
determined by one-way ANOVA (p ≤ 0.05).
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hpi) with the exclusion of Pin2, whose levels remained unaltered

(Figure 9C). The GluA gene was significantly up-regulated in B.

cinerea-infected tomato leaves regardless of S. rhizophila treatment,

although in S. rhizophila-treated leaves the expression level was

significantly higher (Figure 9C), indicating a stronger response to

pathogen infection in leaves pre-treated with S. rhizophila. In

contrast, the Pti5 gene was up-regulated to a lower extent by B.

cinerea infection in the leaves pre-treated with S. rhizophila

(Figure 9C). The Lox1.1 gene was strongly downregulated by the

infection with B. cinerea, whereas PGIP and Aco1 genes were

significantly upregulated, irrespective of the treatment with S.

rhizophila. After 24 h, the PR1 gene was significantly up-

regulated only in the leaves pre-treated with S. rhizophila (i.e. “S.

rhizophila + Mock” and “S. rhizophila + B. cinerea”) (Figure 9C),

whereas no significant up-regulation was detectable in B. cinerea

infected leaves which were not treated with S. rhizophila (“control +

B. cinerea”), indicating that the beneficial bacterium was able to

enhance PR1 gene expression.

Overall, the gene expression analyses suggested that inoculation

with S. rhizophila did not cause major changes in gene expression in

healthy tomato leaves, with the exception of PR1 gene up-regulation

at late time points (24 hpi, i.e. 72 h after S. rhizophila inoculation on

leaves, Figure 9C). However, the treatment with S. rhizophila led to

the early up-regulation of the Pti5 gene (6 hpi) and to the enhanced

up-regulation of GluA and PR1 genes (24 hpi) during infection with

B. cinerea.
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4 Discussion

With the present work, we provide a thorough biochemical and

metabolic characterization of a novel phyllosphere epiphytic strain

of S. rhizophila and show how this bacterium can protect tomato

leaves from infection by B. cinerea, a polyphagous pathogenic

fungus able to infect hundreds of plant species on their above-

ground organs (Dean et al., 2012).

A well-known distinctive feature of S. rhizophila is the inability

to grow at the human body temperature, a trait that has been

explained with the lack of heat-shock genes and the probable

activation of suicide mechanisms occurring at high temperatures

(Alavi et al., 2014). In accordance with this evidence, the S.

rhizophila strain Ep2.2 that we isolated with this work was unable

to grow at 37°C or 40°C, unlike we observed for S. maltophilia

LMG 958.

S. rhizophila Ep2.2 showed higher swimming and swarming

abilities than S. maltophilia LMG 958, but lower twitching ability.

Bacterial swimming and swarming motilities are powered by

rotating flagella, whereas twitching is powered by the extension

and retraction of type IV pili (Kearns, 2010). Motility in plant-

associated bacteria is important for survival and host colonization

(Turnbull et al., 2001). A comparative genomic analysis carried out

to detect genes and functions useful to differentiate plant beneficial

and human pathogenic Stenotrophomonas strains evidenced several

genes responsible for motility in S. rhizophila (Alavi et al., 2014),
A
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FIGURE 3

Metabolic profiling of S. rhizophila Ep2.2 (red curve) and S. malthophilia LMG 958 (green curve) as resulting by the colorimetric curves produced
with the OmniLog device. The two species were grown in GEN III MicroPlates (BIOLOG) for 75 hours at 30°C. Measurements were performed every
15 min. The curves indicate utilization of the carbon sources or resistance to the inhibitory chemicals. Columns 1-9, carbon source utilization assays;
Columns 10-12, chemical sensitivity assays. Details on the microplate content are shown in Supplementary Figure S5 and commented in the Results
section 3.1.
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supporting both rhizosphere and phylloplane competency. It is

reasonable to hypothesize here that the marked swimming and

swarming abilities displayed by S. rhizophila Ep2.2 can be related to

its epiphytic lifestyle.

Ourmetabolic profiling of S. rhizophila Ep2.2 provided new insights

on the chemical sensitivity and capability of this bacterium to use

various carbon sources. The sensitivity to NaCl, previously reported to
Frontiers in Plant Science 10
be lower for S. rhizophila (Wolf et al., 2002), was instead similar between

S. rhizophila Ep2.2 and S. malthophilia LMG 958: both strains were able

to tolerate 1% and 4% NaCl, while they were negatively affected by 8%

NaCl. In addition, both strains displayed sensitivity to minocycline, a

tetracycline antibiotic used to treat S. malthophilia infections in humans

(Hand et al., 2016). In contrast, S. rhizophila Ep2.2 wasmore sensitive to

fusidic acid and potassium tellurite than S. malthophilia LMG 958. It is
frontiersin.or
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FIGURE 4

Dual culture assays against fungal tomato pathogens. Botrytis cinerea (A), Alternaria alternata (B), Fusarium oxysporum f. sp. lycopersici (C) and
Rhizoctonia solani (D) were grown in the presence of S. rhizophila Ep2.2 in Petri dishes not sealed with parafilm. Colony diameters were measured
after 6 days of growth at 26°C. Values are reported as mean ± SD, n = 3. The experiment with B. cinerea was repeated with similar results. Asterisks
indicate statistically significant differences at p < 0.01 (**); ns, not significant.
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worth nothing here that our results confirm the high tolerance of S.

malthophilia to tellurite (Pages et al., 2008).

In the carbon source utilization assays, S. rhizophila Ep2.2

generally showed a slower response to several tests and a reduced

utilization ability as compared to S. malthophilia LMG 958.

However, S. rhizophila Ep2.2 showed better utilization capacity

for D-trehalose, b-Methyl-D-Glucoside and D-galactose. The result

of trehalose utilization is noteworthy, since a previous genomic

comparison between the two species pointed to the ThuA gene,
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encoding an enzyme involved in trehalose utilization, as

characteristic of the species S. rhizophila, being absent in S.

malthophilia (Pinski et al., 2020). Therefore, we may assume that

the ThuA gene is responsible for the difference in D-trehalose

utilization that we observed.

Overall, the biochemical and metabolic data confirmed the

genetic identification of S. rhizophila Ep2.2 while revealed

differences and similarities between S. rhizophila and S.

maltophilia never been reported so far.
A B

DC

FIGURE 5

Effect of volatile compounds from S. rhizophila Ep2.2 on the growth of fungal tomato pathogens in vitro. Botrytis cinerea (A), Alternaria alternata
(B), Fusarium oxysporum f. sp. lycopersici (C) and Rhizoctonia solani (D). The assay was conducted in two-compartment Petri dishes sealed with
parafilm. Colony diameters were measured after 3 days of growth at 26°C. Values are reported as mean ± SD, n = 4. The test with B. cinerea was
repeated and similar results were obtained. Asterisks indicate statistically significant differences at p < 0.01 (**) or p < 0.0001 (****); ns, not
significant. Representative pictures are included as Supplementary Figure S2.
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In this work, we also analyzed the potential of S. rhizophila

Ep2.2 to protect tomato plants from pathogens. To do so, we first

performed analyses in vitro by focusing on four fungal pathogens.

The antifungal activity of the species S. rhizophila has been known

since its first identification (Wolf et al., 2002), and several studies

have suggested the involvement of VOCs (Kai et al., 2007; Cernava

et al., 2015; Reyes-Perez et al., 2019; Rivas-Garcia et al., 2019). Here,

we clearly demonstrate that VOCs produced by S. rhizophila Ep2.2

not only contribute to the antifungal activity against A. alternata,

but are the only determinants of the activity against B. cinerea in

vitro. This is consistent with Rojas-Solıś et al. (2018), whose study

led to a similar conclusion concerning the antifungal activity of S.

maltophilia against B. cinerea.

In this regard, we thoroughly screened VOC emissions from S.

rhizophila Ep2.2 by combining PTR-MS and GC-MS analyses. The

capability of PTR-MS to detect a wide range of VOCs in real-time

was complemented by that of GC-MS. This because while PTR-MS

enables the analysis of VOCs by avoiding preselection bias, it
Frontiers in Plant Science 12
cannot distinguish VOCs and/or fragments of VOCs having the

same molecular weight. On the other hand, the selectivity of both

the sampling adsorbent materials and the gas chromatography

column limits the variety of VOCs to be analyzed, especially

those having a low molecular weight (for instance methanol),

although recognition by mass spectrometry allows identification

of ambiguous protonated ions related to VOCs (Sharifi et al., 2022).

In accordance with Shestivska et al. (2015), our PTR-MS analysis

confirmed methanol to be among the most abundant VOCs within

the blend produced by S. rhizophila Ep2.2. Bacteria commonly emit

methanol as a product mainly resulting from metabolic processes of

demethoxylation of cellular polysaccharides (Mincer and Aicher,

2016; Misztal et al., 2018). Likewise, abundant emission of alkanes

and haloalkanes detected by GC-MS could be a general feature of S.

rhizophila Ep2.2 metabolism (Ladygina et al., 2006; Klähn et al.,

2014; Weigold et al., 2016). Among the main protonated ions

detected by PTR-MS within the VOC blend, 2,4-dimethyl furan

was found in the highest percentage, and it was unambiguously
A B

FIGURE 6

Dual culture assays against Botrytis cinerea in Petri dishes unsealed (A) and sealed (B) with parafilm. Colony diameters were measured after 48, 72
and 168 hours of growth at 26°C. Values are reported as mean ± SEM, n = 4. Asterisks indicate statistically significant differences at p ≤ 0.05 (*); ns,
not significant.
TABLE 2 The 10 most abundant protonated ions related to VOCs and/or fragments of VOCs detected by PTR-QMS from axenic cultures of
Stenotrophomonas rhizophila Ep2.2, which represent ~ 98% of the overall blend of VOCs.

Protonated ion (m/z) Relative amount within the
VOC blend (%) ± error (%)

Assignment to specific
VOCs/fragment of VOCs

33 32.3 ± 4.9 methanol

97 30.9 ± 43.3 2,4-dimethyl furan*

49 21.8 ± 4.0 methanethiol*

99 4.0 ± 52.2 e.g. hexanoic acid fragment

43 2.7 ± 442.3 hexanal fragment

51 2.0 ± 15.7 methanol-water cluster

98 1.7 ± 54.5 n.a.

63 1.5 ± 30.6 dimethyl sulfide (DMS)*

95 0.6 ± 278.5 dimethyl disulfide
(DMDS)*

101 0.4 ± 125.3 hexanals
The remaining ions are shown in Supplementary Table S2. Mean values were calculated from 7-9 different bacterial cultures from two independent experiments and indicate the percentage of
protonated ions related to VOCs and/or fragment of VOCs on the total protonated ions detected, whereas ± errors express, in percentage, the standard error of the different replicates with respect
to their raw mean values. (*) indicates VOCs which have been further identified by GC-MS analysis; n.a., not assigned.
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identified by GC-MS analysis. The antifungal activity of dimethyl

furan emitted by bacteria has been recently demonstrated against

various fungal plant pathogens (Lin et al., 2021). Moreover, both

PTR-MS and GC-MS analyses confirmed the emission of DMS and

DMDS by S. rhizophila Ep2.2. We assigned to methanethiol the

protonated ion m/z 49, which was recorded by PTR-MS as one of

the main constituents of the VOC blend, although it was not

detected by the GC-MS analysis. Since methanethiol had been

detected by the same GC-MS system in a previous investigation

as a highly abundant VOC emitted by Pseudomonas chlororaphis

(Raio et al., 2020), we believe that the low sensitivity of our GC

column for sulphur compounds may have limited its detection in

the present study case. All these sulphur-containing VOCs emitted

by S. rhizophila Ep2.2 may show toxicity against plant pathogens

due to the bonding of S-functional groups to reactive sites in fungi

(Baerlocher et al., 1999; Groenhagen et al., 2013). In particular,

DMS has been demonstrated to have antifungal activity both in

vitro (Wang et al., 2013) and in vivo when fumigated to plants (Li
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et al., 2010). We also detected, by both PTR-MS and GC-MS, trace

emissions of terpenes (i.e. monoterpenes) from S. rhizophila Ep2.2.

Terpenes play biological and ecological roles in bacteria to cope

with different (a)biotic stresses, and may act as infochemicals in

mediating microbial interactions (Avalos et al., 2022). Bacterial

terpenes (i.e. b-pinene) can also show inhibitory activity against

fungi (Song et al., 2015). Our PTR-MS analysis also detected, among

the main VOCs emitted by S. rhizophila Ep2.2, a small percentage of

hexanals which possess antifungal activity (Zhang et al., 2021).

Therefore, the synergy of furans, sulphur containing VOCs and

terpenes can explain the high antifungal activity shown by S.

rhizophila Ep2.2 against A. alternata and B. cinerea in vitro.

The novel information we provide on the blend of VOCs

emitted by S. rhizophila highlights a species-specific inhibitory

activity of S. rhizophila against various pathogenic fungi (Kai

et al., 2007). The blend of VOCs we detected can be the result of

specific peculiarities of the S. rhizophila Ep2.2 strain (Lo Cantore

et al., 2015), as well as be influenced by the growth medium and
FIGURE 7

Mean abundance of different chemical classes of VOCs emitted by axenic cultures of Stenotrophomonas rhizophila Ep2.2 as identified by GC-MS
analysis. In particular, % values are: Alkanes = 56.97%; Alkenes = 3.36%; Arenes = 0.27%; Carboxylic acid = 0.03%; Furans = 5.49%; Haloalkanes =
26.04%; Ketones = 2.62%; Organosulfur compounds = 3.42%; Aldehydes = 1.26%; Terpenes = 0.02%.
A B

FIGURE 8

S. rhizophila Ep2.2 protects tomato leaves from B. cinerea infection. Tomato cv. Micro-Tom leaves were treated with a bacterial suspension of S.
rhizophila Ep2.2 and inoculated 48 hours later with B. cinerea (10-µL drops of 1×106 conidia/mL). Lesions caused by B. cinerea were measured after
3 days of incubation (mean ± SEM, n = 12-13) (A). Asterisks indicate statistically significant differences at p < 0.001 (***). Pictures were taken on the
same day (B); upper line, control leaves infected with B. cinerea; lower line, leaves treated with S. rhizophila Ep2.2 and infected with B. cinerea. The
experiment was performed three times with similar results.
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conditions used in this study (Blom et al., 2011). In fact, with respect

to the study of Shestivska et al. (2015), we cultured S. rhizophila on

nutrient glucose agar (NGA) medium rather than Mueller-Hinton

broth (MHB) liquid medium, incubated at 26°C rather than 30°C,

and for a longer period of time. However, our analytical

instrumentation and assay contribute to the complete

characterization of the VOC profile emitted by S. rhizophila, as

we employed both a different absorbent material and GC-column

type than that of Shestivska et al. (2015), as well as a PTR-MS rather

than a selected ion flow tube mass spectrometry (SIFT-MS) having a

different sensitivity for VOCs, in addition to avoid problems related

to the use of solvents (Kai et al., 2007).

When sprayed on tomato leaves and plants, S. rhizophila Ep2.2

was able to restrict B. cinerea colonization. Beneficial microbes are

known to stimulate the plant’s immune system for enhanced

defense responses to pathogen infection (Pieterse et al., 2014;

Syed Ab Rahman et al., 2018). Induced resistance in plants may

involve both direct elicitation of defenses ahead of infection and
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their quicker/stronger activation upon infection. This latter

phenomenon is termed “defense priming” (Mauch-Mani et al.,

2017). Beneficial bacteria may produce and release various

molecules with resistance-inducing/priming activity (Pieterse

et al., 2014; Mauch-Mani et al., 2017). Our PTR-MS analysis

indicated for instance the production of hexanoic acid, a well-

known priming compound able to enhance resistance in B. cinerea-

infected tomato plants (Aranega-Bou et al., 2014).

The detached leaf assay used here appears to be a reliable system

to reveal both gene expression changes and resistance induction.

Control leaves, in fact, responded to B. cinerea at the gene

expression level in a similar manner to what previously observed

on plants and were also similarly susceptible to infection (Baccelli

et al., 2022). The gene expression analyses demonstrate that leaf

inoculation with S. rhizophila Ep2.2 induces resistance in leaves. In

particular, while defense genes were not pre-activated by S.

rhizophila before B. cinerea infection, these were up-regulated

either more quickly (Pti5 gene) or to a higher extent (GluA and
A

B

C

FIGURE 9

Expression of defense genes in Solanum lycopersicum cv. Micro-Tom leaves sprayed with S. rhizophila Ep2.2 (A) and subsequently inoculated with
B. cinerea conidia (B, C). Mock infections were performed with potato dextrose broth (PDB). hpt, hours post treatment; hpi, hours post infection.
Genes analyzed by RT-qPCR: PIN2 (Proteinase inhibitor II), GluA (b-1,3-glucanase (A)) PTI5 (Pathogenesis-related genes transcriptional activator 5),
Lox1.1 (Lipoxygenase A), PGIP (Polygalacturonase inhibitor protein), ACO1 (1-aminocyclopropane-1-carboxylate oxidase 1), PR1 (Pathogenesis-
related protein 1). Actin-7 was used as the endogenous reference gene for transcript normalization. Control [in (A)] or control + mock at 6 or 24 hpi
[in (B, C) respectively] samples were used as calibrators (grey bar) for relative gene expression calculations. Mean fold change values ± SEM are
shown (n = 3). Statistical analysis per each gene at each specific time point was performed by one-way ANOVA. Significant differences are marked
by different letters (p ≤ 0.05); ns, not significant.
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PR1 genes) during B. cinerea infection. This suggests that leaves

were primed by S. rhizophila for an enhanced pathogen defense

(Martinez-Medina et al., 2016).

B. cinerea is a necrotrophic plant pathogen able to enter the host

trough stomata or by penetrating directly the cuticle (Bi et al., 2023).

In the early phases of infection, B. cinerea produces molecules able

to promote plant cell death; subsequently (24-48 hpi), the fungus

has to defend itself from the attack of plant antimicrobial

compounds to spread further into the plant tissues (Bi et al.,

2023). The genes analyzed in this study are all known to be

involved in defense signaling or encode antifungal enzymes in

tomato (Baccelli et al., 2022). PR1 expression is considered as a

marker of salicylic acid (SA)-dependent defenses and has been also

associated to priming to both necrotrophic and biotrophic

pathogens (Mauch-Mani et al., 2017). The Pti5 gene, which was

primed 6 h following infection with B. cinerea in our experiment,

encodes a transcription factor that has been reported to accelerate

pathogen-induced expression of defense-related genes, among those

the Glucanase B and PR1 genes (He et al., 2001; Wang et al., 2021).

In Arabidopsis, the expression of Pti5 gene from tomato has been

reported to activate the SA-regulated genes PR1 and PR2 (b-1,3-
glucanase) (Gu et al., 2002). Noteworthy, our results actually

showed enhanced transcription of b-1,3-glucanase A (GluA) and

PR1 genes 24 h after B. cinerea infection, allowing to hypothesize a

link between the early expression of Pti5 and the subsequent

enhanced expression of the SA-associated genes GluA and PR1 in

S. rhizophila primed plants. This picture is consistent with former

studies that indicate a role for SA-dependent defenses in restricting

B. cinerea infection in tomato and Arabidopsis (Zimmerli et al.,

2001; Achuo et al., 2004).

The resistance-inducing ability of Stenotrophomonas spp. in

plants has been scarcely studied so far. Root colonization with S.

maltophilia SBP-9 was found to increase resistance to

F. graminearum infection in wheat plants by enhancing the

activity of antioxidant enzymes and b-1,3-glucanases (Singh and

Jha, 2017), suggesting the induction of priming. More recently, soil

inoculation with S. rhizophila SR80 was reported to increase

resistance to F. pseudograminearum in wheat by boosting the

expression of defense-related genes during pathogen infection (Liu

et al., 2021). Our results clearly show that tomato leaves inoculated

with S. rhizophilawere more protected from B. cinerea infection, and

this was likely due to a primed state that allowed quicker and

stronger expression of defense genes. Despite we cannot exclude that

the emission of antifungal VOCs by S. rhizophila may have

contributed to hinder leaf colonization by B. cinerea, the

occurrence of defense priming at the gene expression level was

demonstrated, and it is tempting to speculate that some VOCs

produced by S. rhizophila may act as priming-inducing stimuli.
5 Conclusion
To safeguard yields, we need to protect our crops from stresses

and diseases. New eco-friendly approaches are currently strongly

demanded for this purpose, such as those employing beneficial

microbes that crops may have lost either during domestication or

because of intensive agricultural practices. With this study, we
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highlight the potential of a phyllosphere epiphytic strain of S.

rhizophila isolated from an ornamental plant as foliar inoculant

to control leaf infection in crops, specifically in tomato. Our results

reveal the production of antifungal VOCs by S. rhizophila Ep2.2 and

a priming effect at the gene expression level that may contribute to

inhibit pathogen growth and host colonization.
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