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Editorial on the Research Topic

A large-scale biology view of crop-environment interaction: the influ-
ence of water and temperature stresses on the development of cereal
and horticultural crops
Temperature is an essential factor that plays a role in the expansion and maturation of

plants; when the temperature is either too high or too low, the plant’s output, in terms of

both quantity and quality, is reduced (Wahid et al., 2007; Liu et al., 2013; Zhu et al., 2013).

As a direct result of global warming, we are seeing an increase in the frequency of extreme

temperature fluctuations (IPCC, 2018). It has been shown that high temperatures can

increase transpiration (for cooling purposes in the presence of soil water) and

mitochondrial respiration that occur when temperatures are elevated to 1.5 degrees

Celsius above their pre-industrial levels is one of the negative effects of high

temperatures. The strain caused by high temperatures also has an effect on cellular,

physiological, biochemical, and molecular responses. For example, protein denaturation

and aggregation, disruption of cellular homeostasis, and an increase in fluidity in lipid

membranes are some of the effects of this stress. Another negative effect of high

temperatures is that enzymes in chloroplasts and mitochondria become inactive as a

result (Howarth, 2005; Barnabás et al., 2008; Li et al., 2014; Razi et al., 2021). This damage

ultimately leads to the formation of reactive oxygen species (ROS), which have the potential

to cause harm to biological molecules (Razi and Muneer, 2021; Sahithi et al., 2021).

Reprogramming their transcriptome, proteome, and metabolome is how plants react when

under the stress of an altered cellular metabolism brought on by high temperatures.

Because of these shifts, plant adapts to a new metabolic equilibrium even when subjected to
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high temperatures. It is common knowledge that temperature has a

significant impact on the growth and development of plants. As a

result of this well-known fact, agriculturalists and horticulturists

have become very interested in the topic of determining the

temperature at which plant growth is facilitated most effectively.

Drought stress is one of the most significant abiotic stresses that

significantly lowers grain yields worldwide. This, in turn, makes it

more difficult to meet the food requirements of a global population

that is continuing to grow. The annual losses incurred as a result of

natural disasters increased from approximately US$75.5 billion in

the 1960s to approximately US$660 billion in the 1990s, as reported

by the UNDP Bureau of Crisis Prevention and Recovery. As a

consequence of this, several agricultural regions were hit with

drought and saw their productivity drop by up to fifty percent or

more. Therefore, it is a challenge for all agricultural scientists and

plant breeders to find distinct drought tolerance mechanisms in

plants. More than two billion people are currently living in regions

that are extremely water-stressed as a direct result of the uneven

distribution of renewable freshwater resources. According to Oki

and Kanae (2006), there is a possibility that water will have an effect

on as much as two-thirds of the world’s population within the next

ten years. Agriculture consumes 70 percent of the world’s total

water withdrawals (FAO, 2011), and the pressure that is placed on

agriculture will only increase as the shortage of water worsens and

as the demand for food increases. Crop yields suffer significantly

when plants are grown in environments that are unfavourable to

them in the field. The vast majority of cultivated land on the planet

receives its water supply from precipitation. Crop growth in rain-

fed regions is entirely reliant on adequate precipitation to satisfy

evaporative demand and the distribution of soil moisture that

results from this process. According to Bates et al. (2008), the

frequency of climate extremes may have an effect on crop

production that is independent of the effects of changes in the

mean climate. Because of climate change, rainfall patterns will

become more unpredictable, which will expose plants to varying

degrees of available soil moisture at any given time. Improving crop

production in conditions of limited water availability has proven to

be a challenging endeavour. This is primarily attributable to the

complexity of the qualities at the molecular and physiological levels,

as well as the vast array of factors that influence the plant’s response. It

is necessary to develop complex methods in order to keep track of

phenotype expression at the crop level (Sinclair, 2011). This is

necessary in order to provide an accurate description of genotype

variation in a variety of environments. A combination of approaches

based on genetic engineering (Collins et al., 2008; Mittler and

Blumwald, 2010; Osakabe et al., 2011), proteomic, metabolomics,

transcriptomics, and genomics, as well as bioinformatics tools

(Cushman and Bohnert, 2000; Tuberosa and Salvi, 2006; Mochida

and Shinozaki, 2010), will be capable of providing strategies for

mitigating abiotic stress (Takeda and Matsuoka, 2008).

We have published a number of interesting studies related to

the current Research Topic, which focuses on finding ways to

alleviate or cope with the stress that is caused by temperature in a

wide variety of agricultural, horticultural, and cereal crops. For

instance, according to Zhou et al., the use of deficit mulched drip

irrigation can increase the yield of Isatis indigotica. They measured
Frontiers in Plant Science 02
water consumption characteristics, agronomic traits, dry matter

content and distribution, yield, and quality of these plants were

measured at various growth stages. They concluded from their

study that as water deficit worsened, water consumption decreased

more than in the control due to lower dry matter accumulation.

Ahmad‘s study on simultaneously reducing water using molecular

techniques like CRISPER-Cas genome editing will help ensure food

security in various climates. In his study, he concluded that as

“CRISPR technologies” reach and potency increase, social and

ethical questions about their use intensify, and their applications

warrant further consideration. Researchers must address the

challenges of explaining CRISPR breeding procedures to build

public trust and establish regulatory frameworks for agricultural

CRISPR use. CRISPR techniques have the potential to give

agriculture a sustainable future, but they must be used

responsibly to allay public and scientific concerns. Some of the

research that has been published in this Research Topic has also

depicted how simple agricultural techniques like grafting in

vegetable crops can be combined with molecular techniques (Razi

and Muneer) to improve drought stress. In their study a detailed

explanation was provided how drought susceptible and resistant

grafting in okra genotypes can be implied to dry and hot climatic

conditions to improve their productivity and yield. The conclusion

was achieved based on physiological characteristics and proteomic

approach. Similarly, how rice can improve its yield despite the high

temperature was investigated by Ren et al. They investigated the

molecular as well as morphological differences between various

thermotolerant lines of rice. Moreover, other reports that is

published in Research Topic also describe how the particular cold

stress related gene AHMYB-30 improved freezing and salt stress in

transgenic Arabidopsis through both DREB/CBF and ABA-

signaling pathways (Chen et al.). In their study they concluded

that Peanut AhMYB30 are responsible for encoding a MYB-related

transcription factor. Moreover, they also described that it is possible

that AhMYB30 will improve transgenic Arabidopsis’ resistance to

salt and freezing. While they also mentioned that up-regulating the

expression of some downstream stress-related genes that are

involved in DREB/CBF and ABA-signaling pathways is one

possible way for AhMYB30 to carry out its function. In other

report (Mohapatra et al.) researchers put forward an idea of how

different six rice production techniques can improve the rice in

coastal area of India. Besides, an interesting research by Zhang et al.,

described underlying mechanisms in wheat genotypes under

drought stress. They described that development of superior

dryland cultivars would benefit from a better understanding of

the biochemical mechanisms underlying the differences in growth

and yield responses to drought stress between genotypes with

different environmental backgrounds, such as dryland and

irrigated wheat genotypes. Overall, we have received an

interesting contributions from a large number of researchers who

have identified or depicted temperature-related stress maintenance

in a wide variety of agricultural, horticultural, and cereal crops. We

have high hopes that the individuals who are interested in this

Research Topic will find this resource to be helpful and informative

as they pursue their research interests in the environmental

interaction with drought/water and temperature stress.
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