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Exploration of chlorophyll
fluorescence characteristics
gene regulatory in rice (Oryza
sativa L.): a genome-wide
association study

Sicheng Liu1, Zhuang Xiong1, Zuolin Zhang2, Youbo Wei1,
Dongliang Xiong1, Fei Wang1 and Jianliang Huang1*

1Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle
Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural
University, Wuhan, China, 2Institute of Food Crops, Hubei Academy of Agricultural Sciences,
Wuhan, China
Chlorophyll content and fluorescence parameters are crucial indicators to

evaluate the light use efficiency in rice; however, the correlations among these

parameters and the underlying genetic mechanisms remain poorly understood.

Here, to clarify these issues, we conducted a genome-wide association study

(GWAS) on 225 rice accessions. In the phenotypic and Mendelian randomization

(MR) analysis, a weak negative correlation was observed between the chlorophyll

content and actual quantum yield of photosystem II (F II). The phenotypic

diversity observed in SPAD, NPQt, FNPQ, and Fv=Fm among accessions was

affected by genetic background. Furthermore, the GWAS identified 78 SNPs

and 17 candidate genes significantly associated with SPAD, NPQt, F II, FNPQ, qL

and qP. Combining GWAS on 225 rice accessions with transcriptome analysis of

two varieties exhibiting distinct fluorescence characteristics revealed two

potential candidate genes (Os03g0583000 from F II & qP traits and

Os06g0587200 from NPQt trait), which are respectively associated with

peroxisomes, and protein kinase catalytic domains might involve in regulating

the chlorophyll content and chlorophyll fluorescence. This study provides novel

insights into the correlation among chlorophyll content and fluorescence

parameters and the genetic mechanisms in rice, and offers valuable

information for the breeding of rice with enhanced photosynthetic efficiency.
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1 Introduction

Promotion of food security is crucial with the increase in global

population and decrease in arable land (West et al., 2014). Rice

(Oryza sativa L.) is the staple food for over half of the world’s

population (Nguyen, 2002; Bandumula et al., 2018). Photosynthesis

is the key determinant of rice yield, as it is the most crucial process

that influences the biomass accumulation and harvest index

(Makino, 2011; Ambavaram et al., 2014). In the past decades, the

Green Revolution has effectively increased rice yield by enhancing

the lodging resistance and harvest index (Khush, 2001; Liu et al.,

2021). However, these improvements have reached their limits.

Recent studies have indicated that the current light use efficiency of

rice is significantly lower than its biological potential, suggesting

that mediation of light use efficiency is a promising way to further

enhance rice productivity (Zhu et al., 2008; Long et al., 2015). In

recent years, phenotype selection and hybrid breeding aimed at

improving the light use efficiency have greatly enhanced rice yield,

contributing to significant improvement of rice production

efficiency and food security (Song et al., 2010; Qu et al., 2017).

Leaves are primary organs of photosynthesis, and the

photosynthetic capacity can be assessed using indicators such as

chlorophyll content, chlorophyll fluorescence, and gas exchange

parameters. Compared with gas exchange parameters, chlorophyll

content and fluorescence parameters have the advantages of

simplicity, speed, and high throughput (Bolharnordenkampe

et al., 1989). Among them, chlorophyll content in leaves can

indicate leaf photosynthetic capacity, and is positively correlated

with the photosynthetic rate (Fleischer, 1935; Kurahotta et al., 1987;

Croft et al., 2017). Chlorophyll fluorescence parameters are also

closely associated with plant photosynthesis and are widely used in

both in vivo and in vitro studies of plant photosynthesis (Baker,

2008). Non-photochemical quenching (NPQ) (Genty et al., 1989),

FNPQ (Kuhlgert et al., 2016), and NPQt (Tietz et al., 2017) can

describe the excited state of chlorophyll a, which is a major and

extensively studied photoprotective mechanism for plants to survive

under high light conditions (Demmig-Adams et al., 2014).

Kromdijk et al. (2016) found that acceleration of the xanthophyll

cycle leads to rapid NPQ recovery, thereby increasing plant carbon

assimilation efficiency. Kohzuma (2019) revealed significant

differences in the light-dependent changes in NPQ and the

photochemical reflectance index between the wild type and npq1

mutant. Actual quantum yield of photosystem II (FII) (Genty et al.,

1989) is a crucial indicator of photosynthetic efficiency, and

increasing the thylakoid density with nitrogen can improve the

quantum yield by enhancing the overall light absorption.

Hogewoning et al. (2012) demonstrated that the quantum yield of

plants can be affected by the light with different wavelengths.

Furthermore, chlorophyll content and fluorescence parameters

can reflect the response of total photosynthetic productivity to

environmental factors, such as temperature (Mishra et al., 2014),

dehydration (Banks, 2018), and nutrient deficiency (Ciompi et al.,

1996; Feng et al., 2015). Flag leaves serves as the most significant

source of organ and plays a dominant role in providing assimilates

for grain development (Li et al., 1998). And flag leaves shares the

same genetic system with other leaves, making it a representative of
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leaf characteristics to a certain extent (Yin et al., 2017). Therefore,

exploring the genetic factors controlling the chlorophyll content

and fluorescence parameters in the flag leaves of rice is crucial for

enhancing the photosynthetic productivity and yield of rice.

Genome-wide association study (GWAS) is a powerful tool for

identifying genetic variations. When combined with other methods

such as transcriptomics and Mendelian randomization (MR)

(Sanderson et al., 2022), GWAS can be used to identify critical

genes to develop crops with higher photosynthetic capacity and

grain yield. Rice is one of the most extensively studied crops, and

many projects such as the 3K Rice Genomes Project have provided

extensive genetic data for the research (Wang et al., 2018). Proper

distribution of photosynthetic energy can improve the efficiency of

crop light use efficiency, and some studies have identified the

functional genes related to chlorophyll content (Wang et al.,

2015), fluorescence parameters (Hao et al., 2012; Wang et al.,

2017), and photosynthesis (Wang et al., 2020; Miao et al., 2023)

through genetic mapping and natural population identification,

which can greatly facilitate the research on plant productivity and

food security. However, few loci or genes in these natural variations

have been reported to be involved in the genetic basis of rice

chlorophyll content, fluorescence parameters, and their

interrelationships, and there has been a lack of comprehensive

and effective analysis of the genetic basis and relationship of

these traits.

In this study, we identified 78 SNPs related to chlorophyll

fluorescence characteristics through genotype screening and GWAS

based on the phenotypes of 225 rice accessions, including

chlorophyll content (SPAD) and eight fluorescence parameters

(NPQt , FII , FNO, FNPQ, LEF, Fv=Fm, qL and qP). A negative

phenotypic correlation was observed between FII and SPAD.

Mendelian randomization (MR) analysis was employed to further

estimate the genetic relationship between FII and SPAD. In

addition, we conducted a transcriptome analysis on two varieties

with significant differences in phenotype, and identified 2,366

differentially expressed genes (DEGs), as well as the key

regulatory genes and pathways. Finally, by combining GWAS,

transcriptome analysis, gene annotation, and GO analysis, we

identified two candidate genes (Os03g0583000 and Os06g0587200)

related to rice chlorophyll fluorescence characteristics. This study

lays a foundation for future research on phenotypic screening, gene

function verification, genetic mechanism dissection, and genetic

enhancement of rice chlorophyll fluorescence characteristics

and photosynthesis.
2 Materials and methods

2.1 Plant materials and field experiment

The study was conducted using a diverse collection of 225

Oryza sativa accessions, consisting of 83 accessions from the Mini

Core Collection of Huazhong Agricultural University and 142

accessions from the 3K Rice Genomes Project. These accessions

originated from various parts of the world and encompassed

different subpopulations, which can complete their reproductive
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cycle in Wuhan. Table S1 provides the details of the accessions,

including their names and countries of origin.

The experiment was conducted in the field of Huazhong

Agricultural University, Wuhan, China. About 200 g of seeds

were sown on May 15th of 2018 and May 18th of 2019. 30-day-

old seedlings were transplanted into 1 m × 2 m plots, with one plant

per hill at a spacing of 0.20 × 0.25 m. Fertilizers applied to all plots

were 180 kg N ha-1, 60 kg P2O5 ha
-1, and 120 kg K2O ha-1. The plots

received standard management practices, including irrigation,

fertilization, and disease and pest control. Figure S1 shows the

weather data for the whole growing season.

To unify the data from two years, we used the lmer function

within the lme4 package. The phenotype data were modeled with a

linear mixed model, where accession was the fixed effect and year

and replication were the random effects, to calculate the BLUE (best

linear unbiased estimator, fixed factor) values to be used in the

GWAS analysis. The following formula was used to calculate the

heritability:

Heritability =  
VG

VG +   1e  VGE +   1re Vϵ
(1)

, where, VG, VGE , Vϵ, r, and e represent the genetic variance,

interaction variance between genotypes and environments, error

variance, number of replicates within each environment, and

number of environments, respectively. Data entry was done using

MS Office, while analysis and processing were carried out using the

R software (https://cran.r-project.org/).
2.2 SPAD and chlorophyll
fluorescence measurements

Five plants of each accession in the middle of the plot were

selected to investigate the chlorophyll content and fluorescence

characteristics at the heading stage. Chlorophyll content and

fluorescence parameters were measured in the middle part (1/

3~2/3) of the flag leaves between 8:30 and 11:30 a.m. on a sunny

day, using a portable chlorophyll fluorometer (MultispeQ v1.0) to

obtain more reliable data in the field setting. The instrument was

used with the protocol “Leaf Photosynthesis MultispeQ V1.0 no

open/close” provided at https://www.photosynq.org/protocols/leaf-

photosynthesis-multispeq-v1-0-no-open-close, which is a classic

and by far the most utilized PhotosynQ Protocol for measuring

many photosynthesis-related parameters in a short period of time.

Due to insufficient dark adaptation during the measurement, our

Fv=Fm parameter is not rigorous and can only reflect the plant’s

state at the time of measurement. The SPAD of the leaf was

calculated by measuring the absorbance at 650 nm and 940 nm,

and k is the calibration coefficient obtained using MultispeQ

calibration cards.

SPAD   =   k�   log10(
Abs940nm=ref :Abs940nm
Abs650nm=ref :Abs650nm

) (2)

The eight fluorescence parameters were calculated based on the

minimum fluorescence (Fo), maximum fluorescence (Fm), steady-
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state fluorescence (Fs), F
0
o and F

0
m (the same as above but measured

under light conditions), and photosynthetically active radiation

(PAR). The calculation of FII , FNO, FNPQ, and Fv=Fm parameters

related to photosynthetic efficiency was carried out as follows:

FII   =  
F

0
m − Fs
F

0
m

  (3)

FNO   =  
Fs
Fm

(4)

FNPQ = 1 −FII −FNO (5)

FV=Fm   =  
Fm − Fo
Fm

(6)

The linear electron flow (LEF) was calculated as follows:

LEF =  FII  �PAR� 0:4 (7)

The qL and qP , which reflect the “Lake” model and “Puddle”

model in Photosystem II Redox State, was calculated as follows:

qP   =  
F

0
m  −   Fs

F
0
m   −   F

0
o

(8)

qL   =   qP  �  
F

0
o

Fs
(9)

NPQt , an efficient parameter that reflects NPQ, was calculated

without the need for complete relaxation of the quenching process.

The calculation for NPQtwas as follows:

NPQt = (
4:88
F
0
m

F
0
o
− 1

) − 1 (10)
2.3 DNA isolation, sequencing, and
data processing

DNA was extracted from fresh leaves of field-grown plants

using a modified CTAB method (Yan et al., 2008). Whole-genome

DNA sequencing was performed on the Illumina HiSeq-2000

platform by Personalbio (Shanghai, China). (Andrews, 2010)

(V0.11.9) was used for quality control of sequencing data, and

paired-end 150 bp reads were mapped to the Nipponbare reference

genome (https://www.ebi.ac.uk/ena/data/view/GCA_001433935.1)

using BWA (V0.7.17) with the default parameters. After

alignment, the genomic data were sorted using SAMtools (V1.9)

and the sequencing reads were de-duplicated using SAMBAMBA

(V0.8.2). Genomic variants (in GVCF format for each accession)

were identified using the Genome Analysis Toolkit (GATK V4.3.0)

software, with the HaplotypeCaller module and GVCF model. The

raw variant sites were further filtered by Plink (V1.9), with genotype

quality for each individual ≥ 10%. After genotype imputation using

Beagle (V4.1), the minor allele frequency (MAF) was controlled to
frontiersin.org
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be ≥ 5%. The identified SNPs were further annotated using the

ANNOVAR software (version 16-Jul-2017).
2.4 GWAS analysis

All 442,634 identified SNPs were used to build a phylogenetic

tree and perform principal component analysis (PCA). The

individual-based neighbor-joining (NJ) tree was constructed using

the phylip (V3.697) and EvolView (http://www.evolgenius.info/),

based on the p-distance and with 1,000 bootstrap replicates. PCA

was conducted using the Plink (V1.9) with the command “–pca 10”

to output the top 10 PCA results. Since the first three principal

components are more representative, we utilized the top three PCA

results in the subsequent GWAS analysis. To estimate the LD in our

rice population, the squared correlation coefficient (r2) between

pairwise SNPs was computed using PopLDdecay (Zhang et al.,

2019). The r2 value was calculated for pairwise markers in a 1000-kb

window and averaged across the whole genome. The “–cv”

command of Admixture (V1.3.0) was used to calculate the cross-

validation error for K = 2, 3, 4, and 5.

GWAS was performed using a mixed linear model (MLM) in

the GEMMA (V0.98.1) package (Zoubarev et al., 2012). The matrix

of pairwise genetic distances calculated by GEMMA was used as the

variance-covariance matrix of random effects. The kinship matrix

kin.sXX.txt was calculated using the command “-gk 2 -p

Phenotype” and GWAS analysis was conducted using the

command “-k kin.sXX.txt -lmm 1 -p Phenotype -c PCA”.

Significant p-value thresholds P< 1.13 � 10-7 (0.05/442,634) were

set to control the genome-wide type 1 error rate, which was

calculated by 0.05/n (total SNPs). PVE of 100 kb was filtered out

before and after the peak signal. The Manhattan and quantile-

quantile (QQ) plots of GWAS results were generated in R software

(https://cran.r-project.org/).
2.5 MR analysis

To consistently estimate the genetic effect of FII and SPAD, the

genetic variants were selected according to the three assumptions in

MR analysis, (i) the genetic variants were obtained from the results

of GWAS associated with the single component trait at a genome-

wide significant level (P < 1.13 � 10-7); (ii) the genetic variants were

not associated with any confounders; (iii) the genetic variants only

affected SPAD through the FII trait, not through other component

traits (P > 0.05).

The MR Egger, Weighted Median, Inverse Variance Weighted,

Simple Mode and Weighted Mode methods were used for MR

analysis to assess the effect of FII on SPAD, by summarizing the

effects of multiple independent SNPs. In sensitivity analysis, the

MR Egger method and Inverse Variance Weighted method were

used for MR analysis. According to the results, leave-one-out

analysis was supplemented. MR analysis was performed in R

pa c k a g e TwoSamp l eMR (h t t p s : / /mr c i e u . g i t hub . i o /

TwoSampleMR/).
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2.6 RNA isolation and candidate gene
expression analysis

Total RNA was separately extracted from each sample using an

RN38 EASYspin plus Plant RNA kit (Aidlab Biotech, Beijing,

China). RNA integrity was determined through the RNA Nano

6000 Assay Kit of the Bioanalyzer 2100 system (Agilent

Technologies, CA, United States). The libraries were sequenced

by Personalbio (Shanghai, China) with an Illumina HiSeq

(Illumina, CA, United States) system. To ensure the accuracy,

reads with more than 10% N bases and low-quality reads with Q

≤ 20 and over 50% bases were excluded (Chen et al., 2018). The

resulting clean reads were mapped to the Nipponbare reference

genome using Tophat2 (Kim et al., 2013). Gene expression was then

calculated by counting the number of mapped clean reads for each

gene normalized into Fragments Per Kilobase of transcript

sequence per Millions (FPKM).
2.7 Differential gene expression and
functional enrichment analysis

DESeq2 R package (Love et al., 2014) was used for multiple

testing correction of DEGs, and the false discovery rate (FDR) was

calculated through the Benjamini and Hochberg’s method. DEGs

were defined as genes exhibiting at least a 2-fold difference in

expression, with |log2FoldChange(L2FC)| > 1, and P < 0.05. The

Pheatmap R package (https://www.rdocumentation.org/packages/

pheatmap/) performs bidirectional clustering analysis on the union

of all DEGs and samples in all comparison groups. The

clusterProfiler R package (Yu et al., 2012) was used to perform

GO enrichment analysis for DEGs, with the p-value adjusted

through the Benjamini and Hochberg’s method and a P < 0.05

selected as the threshold for determining significant GO terms.

For all samples, PCA was carried out to explain their

interrelationship. Blast2GO (Conesa et al., 2005) was used for

DEG annotation and functional prediction.
3 Results

3.1 Genomic variation and
population structure

The filtering generated a total of 632.17 GB of high-quality

reads, which were mapped to the Nipponbare reference genome,

with an average success rate of 94.4% (Table S2) and an average

sequencing depth of 16.5-fold (Table S2). A total of 9,989,556 SNPs

were identified on 12 chromosomes from the mapping, with the

highest and lowest density of SNPs being detected on chromosome

11 and chromosome 03, respectively, and the average marker

density was 27.10 SNPs/kb (Table S3). After filtering out SNPs

with a low genotyping rate using PLINK, gene imputation was

performed using Beagle. A final set of 442,634 SNP markers with a

MAF greater than 0.05 was retained for GWAS analysis (Table S4).
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PCA (Figure 1B) divided the population into four groups, which

is consistent with the results of phylogenetic tree (Figure 1A), and

the K value was considered as the number of subgroups with the

lowest cross-validation (CV) error (Figures 1D, S2). Figure 1C

shows the average linkage disequilibrium (LD) decay in the whole

genome. Figure 1 indicated that these materials could be divided

into four groups with some genetic differences from each other.
3.2 Phenotypic analysis of chlorophyll
fluorescence characteristics

In order to reveal the fluorescence characteristics of 225 rice

accessions, we evaluated the chlorophyll content (SPAD) and eight

fluorescence parameters (NPQt , FII , FNO, FNPQ, LEF, Fv=Fm, qL
and qP) in two years (2018 and 2019). Figure 2A shows the

distribution of each trait. We used the BLUE value to combine

the results of the two years, and performed descriptive statistical

analysis (Table S10). The box plots showed differences (Wilcox test

for one group) in fluorescence parameters among the four groups

classified by PCA (Figure 2B), where NPQt (P = 0.025), FNPQ (P =

0.035), SPAD (P = 6.7 � 10-9), and Fv=Fm (P = 0.027) exhibited

significant differences among different PCA groups, indicating that

the phenotypic differences in SPAD, NPQt , FNPQ, and Fv=Fm
among different accessions were affected by the genetic background.

We calculated the Pearson correlation coefficients to investigate

the relationship between different fluorescence characteristics. As

expected, SPAD, an indicator of chlorophyll content, was negatively

correlated with FII , qL, and qP (R = -0.21, -0.20, -0.21; P< 0.05,
Frontiers in Plant Science 05
respectively). NPQt , which can reflect non-photochemical

quenching, showed a significant positive correlation with FNPQ

(R = 0.90; P< 0.05). FII , an indicator of photochemical efficiency,

exhibited significant positive correlations with Fv=Fm, qL and qP
(R = 0.41, 0.94, 0.99; P<0.05, respectively). Additionally, FNO

showed a significant positive correlation with Fv=Fm, but negative

correlations with FNPQ, LEF, qL and qP . LEF exhibited significant

positive correlations with NPQt andFNPQ, but negative correlations

with FII , FNO, and Fv=Fm (Figure 3A).

The heritability of traits is a key parameter in breeding selection

(Nirmaladevi et al., 2015; Roy and Shil, 2020). Here, SPAD,NPQt ,FII

, FNO, FNPQ, LEF, Fv=Fm, qL, and qP exhibited different patterns of

heritability, ranging from 0.06 to 0.97 (Figure 3B). The heritability of

SPAD, NPQt , and LEF was greater than 0.4, while that of FNPQ, Fv
=Fm, FNO, FII , and qL was below 0.4. SPAD had the highest

heritability of 0.97. These results indicated that SPAD, NPQt , and

LEF are greatly influenced by genetic factors.
3.3 GWAS and candidate gene search

We conducted a GWAS using the MLM method implemented

in GEMMA software and analyzed the final set of 442,634 SNPs. Q

and K, which can represent the population structure and kinship,

were included in the MLM model to prevent spurious associations,

with a significance threshold of P< 1.13 � 10-7. By integrating the

Manhattan plots for rice chlorophyll fluorescence traits

(Figures 4A–L) and LD decay rates of 12 chromosomes in 225

rice accessions (Figure 1C), and based on the LD coefficient
B

C

D

A

FIGURE 1

Population structure of 225 rice accessions. (A) Neighbor-joining phylogenetic tree. (B) PCA plots of the first three components. (C) Genome-wide
average linkage disequilibrium (LD) decay. (D) Inferred membership fractions of the genotypes in sub-populations (K = 4).
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decreasing to half of its maximum at a distance of 1 kb, we selected

target intervals at 2 kb upstream and downstream of the SNP, and

finally identified 31 significantly associated loci. These loci included

78 SNPs associated with SPAD, NPQt , FII , FNPQ, qL and qP , which

comprised 3, 64, 8, 18, 26, and 5 SNPs, respectively (Table S5).

Moreover, clear co-localization was observed betweenFII andFNPQ

and between qL and qP (Figure S3), and the co-localization results of

FII , qL, and qP were annotated in the Manhattan plot (Figures 4C, I,

K). Based on functional analysis of genes in LD regions, a total of 17

candidate genes were identified for chlorophyll fluorescence

characteristics (Table S6). No significant SNPs were found

for FNO, LEF, and Fv=Fm (Figure S4).
3.4 Genetic relationship between FII
and SPAD

In section 3.2, we observed a negative correlation between FII

and SPAD. To comply with the requirements of MR analysis, we

included 65FII loci that reached genome-wide significance (P< 1.13

× 10-7) in the GWAS analysis. These loci, which exhibited negative

genetic effects on SPAD, were consistently observed across five
Frontiers in Plant Science 06
analytical methods (Figure 5): MR Egger (Beta = -40.47; P< 0.05),

Weighted Median (Beta = -20.43; P< 0.05), Inverse Variance

Weighted (Beta = -19.94; P< 0.05), Simple Mode (Beta = -30.35;

P< 0.05), and Weighted Mode (Beta = -29.69; P< 0.05) (Table S8).

In sensitivity analysis, homogeneity statistics showed that the effect

sizes of the studied loci were homogeneous in MR Egger (P< 0.05)

and Inverse Variance Weighted (P< 0.05) methods (Table S8). As

the Horizontal pleiotropy analysis result was insignificant

(intercept = 2.10; P > 0.05) (Table S8), we conducted a leave-one-

out analysis on the 65 SNPs (Table S9). The results further

confirmed the negative effect of FII on SPAD.
3.5 Transcriptome analysis of two rice
varieties with significant differences in
chlorophyll fluorescence characteristics

To further investigate the genetic basis for chlorophyll

fluorescence characteristics in rice, two rice varieties with

significant differences in FII and SPAD, namely D062 (High FII

type, H) and D133 (Low FII type, L), were selected from the

population for further analysis. The FII and SPAD of H and L are
BA

FIGURE 2

Phenotypic variations of chlorophyll fluorescence characteristics in 225 rice accessions. (A) Density distribution graphs for each trait. (B) Boxplots of
chlorophyll fluorescence characteristics in four PCA groups. Phi2, PhiNO, and PhiNPQ respectively represent F II , FNO , and FNPQ throughout the
paper.
BA

FIGURE 3

Phenotypic analysis of chlorophyll fluorescence characteristics in 225 rice accessions. (A) Correlation analysis of chlorophyll fluorescence
characteristics. (B) Broad-sense heritability of chlorophyll fluorescence characteristics.
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presented in Figures 6A–C. We collected flag leaves at the heading

stage for RNA sequencing with three biological replicates for each

accession. Finally, a total of 263,471,192 reads with a Q30 score of

92.33% were generated. Among these reads, 3.70–4.38% were

multiply mapped, while 95.62–96.30% were uniquely mapped to

the reference genome (Table S7). To evaluate the data reliability,

correlation analysis (Figure 6D) and cluster analysis (Figure 6E)

were conducted. DEGs between the two varieties (H and L) were

identified, including 1,434 upregulated genes and 932

downregulated genes (Figure 6F).

Expression clustering can identify the unknown biological

connections between genes. Both H and L type had good

correlations within the group, indicating that DEGs in different

groups may have specific connections with certain biological

processes, metabolisms, and signaling pathways (Figure 7A). To

uncover the functions of 2,366 DEGs, Gene Ontology (GO)

enrichment analysis was conducted, and the DEGs were classified

based on their molecular function (MF), biological process (BP),

and cellular component (CC). The top five GO terms with the

smallest p-values, namely the most significant enrichments, were

selected and presented for each category. For the MF category, the

top five enriched GO terms were protein phosphorylation

(GO:0006468), phosphorylation (GO:0016310), adenyl

ribonucleotide binding (GO:0032559), adenyl nucleotide binding

(GO:0030554), and protein kinase activity (GO:0004672). Based on

the analysis results, these DEGs were likely involved in a host of

biochemical reactions necessary for kinase activity, nucleotide

binding, and phosphorylation (Figure 6C). For the BP category,

the top five enriched GO terms were cell surface receptor signaling

pathway (GO:0007166), response to stimulus (GO:0050896),

protein phosphorylation (GO:0006468), phosphate-containing

compound metabolic process (GO:0006796), and phosphorylation

(GO:0016310). The results suggested that these DEGs may have

crucial functions in cellular signaling, response to environmental

stimuli, and metabolic processes (Figure 6C). For the CC category,
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the top five enriched GO terms were intrinsic component of

membrane (GO:0031224), integral component of membrane

(GO:0016021), plasma membrane (GO:0005886), membrane part

(GO:0044425), and membrane (GO:0016020), indicating that these

DEGs may be involved in various cellular membrane-related

functions (Figure 7B). Further scrutiny of the DEGs indicated

their potential involvement in regulating the photosynthetic

performance of rice, including NPQt , FII , and SPAD. Therefore,

these genes represent valuable research targets for further

investigation and potential avenues for crop improvement.
3.6 Discovery of candidate genes for
chlorophyll fluorescence characteristics by
integrating GWAS and transcriptome data

To further confirm the candidate genes, we validated the genes

related to rice chlorophyll fluorescence characteristics by combining

GWAS significant regions, LD decay, DEGs, and gene annotation. The

Os03g0583000 and Os06g0587200 genes were found to be located on

the SNPs identified in the GWAS, and showed significant differences in
FIGURE 5

Genetic effects of F II and SPAD obtained by MR analysis.
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FIGURE 4

Manhattan plots and quantile-quantile (QQ) plots of GWAS for chlorophyll fluorescence characteristics. (A) Manhattan plot for NPQt . (B) QQ plot for
NPQt . (C) Manhattan plot for F II. (D) QQ plot for F II . (E) Manhattan plot for FNPQ . (F) QQ plot for FNPQ . (G) Manhattan plot for the SPAD. (H) Q-Q
plot for the SPAD. (I) Manhattan plot for qL. (J) QQ plot for qL. (K) Manhattan plot for qP . (L) Q-Q plot for qP .
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expression levels (|L2FC| > 1, P< 0.05) between the two rice varieties.

Therefore, these two genes were considered as the most likely candidate

genes. Blast2GO annotations revealed that Os03g0583000 was a

peroxisomal protein, and Os06g0587200 was a protein kinase

containing a catalytic domain (Table 1).

We plotted the genetic structure of the two candidate genes

(Figure 8G), and haplotype analysis showed that six SNPs in the

promoter of Os03g0583000 formed two haplotypes (Figure 8G). The

inbred lines carrying haplotype 1 had significantly lower FII and qP
values while significantly higher SPAD values than those carrying

haplotype 2 (Figures 8A–C). In addition, transcriptome analysis

showed that the H type had a significantly lower FPKM value of

Os03g0583000 than the L type (Figure 8E), indicating that

Os03g0583000 was the most likely candidate gene for FII and qP .
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The genetic variations at the identified SNP loci were also found to

affect SPAD. In addition, three SNPs in the exon region of

Os06g0587200 formed two haplotypes (Figure 8G). The inbred lines

carrying haplotype 1 had significantly lower NPQt than those carrying

haplotype 2 (Figure 8D). Transcriptome analysis showed that the H

type had a significantly higher FPKM value ofOs06g0587200 than the L

type (Figure 8F), and the H type belonged to haplotype 2, whereas the L

type belonged to haplotype 1, indicating that Os06g0587200 was the

most likely candidate gene for NPQt .

4 Discussion

Chlorophyll is the primary light-harvesting pigment as well as the

reaction center that directly influences light interception and
BA

FIGURE 7

Clustering analysis of differentially expressed genes (DEGs) (H vs. L) (A). Bubble chart for GO enrichment analysis of DEGs in H and L (B).
B C
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FIGURE 6

Transcriptome analysis of differentially expressed genes (DEGs) in various samples. (A, B, C) NPQt , F II , and SPAD of H and L samples using boxplots.
(D) Principal component analysis (PCA) of H and L samples. (E) Correlation test results of H and L samples. (F) Volcano plot of DEGs for H and L
samples.
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conversion in plants, thereby affecting plant photosynthetic capacity

and crop productivity (Croft et al., 2017). Chlorophyll fluorescence is

an important indicator to reflect the photosynthetic status of plants.

Therefore, chlorophyll fluorescence parameters are highly effective

and widely used indicators for studying photosynthesis (Ripoll et al.,

2016). Previous studies have demonstrated that the chlorophyll

content of mature rice flag leaves is significantly correlated with the

Rubisco content, total photosynthesis rate, and maximum quantum

yield of photosystem II (Fv=Fm) (Kumagai et al., 2009). It has been

reported that plants in optimal photosynthetic states usually exhibit

higher yields and better growth due to their superior ability to utilize

solar energy, which can increase their energy levels and nutrient

efficiency (Yin and Struik, 2015; Gu et al., 2017). Therefore, this study

investigated the chlorophyll fluorescence characteristics of rice,

including chlorophyll content (SPAD) and eight chlorophyll

fluorescence parameters (NPQt , FII , FNO, FNPQ, LEF, Fv=Fm, qL
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and qP), and combined differential expression analysis, correlation

and heritability analysis to determine the relationships between

various fluorescence characteristics at the phenotype level. SPAD,

an indicator of chlorophyll content, was negatively associated with

FII(R = -0.21, P< 0.05), which was further validated by MR analysis

at the genetic level. The relationship between SPAD and FII has been

examined in many studies. Trachsel et al. (2010) observed a positive

correlation, and conversely Song et al. (2018) found a non-significant

negative correlation between them. In contrast, Fu et al. (2013)

identified no significant correlation. Notably, Singh et al. (2019)

employed a second-order polynomial function to model the

regression relationship between SPAD and FII . These results

suggested the presence of a complex nonlinear relationship between

SPAD and FII across different materials and growth stages. In this

study, an analysis of 225 rice accessions at the heading stage (a

relatively mature developmental stage) revealed a weak negative
B C

D E F

G
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FIGURE 8

Candidate genes for F II , qP , and NPQt underlying the associated loci on chromosome 03 and chromosome 06. (A–C) Boxplots for F II , SPAD, and
qP based on the genotypes. (D) Boxplots for NPQt based on the genotypes. (E, F) FPKM values of Os03g0583000 and Os06g0587200 in the flag
leaves of rice. (G) Mutation haplotype analysis and gene region of Os03g0583000 and Os06g0587200. *, **, ***, and **** represent significance
levels of 0.05, 0.01, 0.001, and 0.0001, respectively.
TABLE 1 Discovery of candidate genes by integrating GWAS and transcriptome data.

Trait Gene ID SNP L2FC P-value Description

FII , qP Os03g0583000 3:21458176 1.40 0.046 Peroxisomal protein

NPQt Os06g0587200 6:23005336 -1.52 0.048 Protein kinase, catalytic domain-containing protein
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correlation between SPAD and FII in flag leaves. SPAD is generally

measured based on the unit leaf area, and can only reflect the

chlorophyll content per unit leaf area (Uddling et al., 2007).

Previous research has indicated a positive correlation between

SPAD and leaf thickness (Li et al., 2009). In leaves with higher

thickness, despite a higher chlorophyll content, reduced translucency

limits the optimal utilization of each chlorophyll molecule, leading to

a negative correlation between SPAD and FII . In this scenario, the

leaves with lower SPAD and higher FII levels may have higher light

use efficiency in plants. Further investigation is required to better

understand the correlation between SPAD and FII .

In this study, we used 632.17 Gb of high-quality sequencing

data to identify 9,989,556 SNP loci through a comparison with the

reference genome. The high density of markers allowed a more

detailed GWAS analysis of chlorophyll fluorescence characteristics,

facilitating a more complete identification of candidate genes

related to chlorophyll content and fluorescence parameters. As a

result, 17 candidate genes were identified to be associated with NP

Qt , FNPQ, SPAD, qL and qP , which are distributed on chromosomes

1, 2, 3, 4, 6, 7, 8, 10, and 12. Compared with traditional QTL

mapping methods, GWAS provided a higher resolution for

identifying candidate genes. To investigate the genetic basis for

different fluorescence characteristics in rice, we performed

transcriptome sequencing of two rice varieties (H and L) with

significant differences in FII and SPAD. We identified 2,366 DEGs

and analyzed their functions through GO enrichment analysis. The

phosphorylat ion-re lated pathways , inc luding prote in

phosphorylation (GO:0006468), phosphorylation (GO:0016310),

protein kinase activity (GO:0004672), and phosphate-containing

compound metabolic process (GO:0006796), play important roles

in photosynthesis because photosynthesis involves a large number

of protein phosphorylation reactions (Allen, 1992). In addition, the

membrane-related pathways, including intrinsic component of

membrane (GO:0031224), integral component of membrane

(GO:0016021), plasma membrane (GO:0005886), membrane part

(GO:0044425), and membrane (GO:0016020), are also important in

photosynthesis because it occurs in chloroplasts, which have many

important membrane structures. A large number of membrane

proteins are embedded in these structures. Previous studies have

demonstrated that membrane fluidity is significantly correlated

with Rubisco activase and net photosynthesis (Kim and Portis,

2005). Exogenous substances such as polyamines can decrease the

membrane oxidation damage, contributing to improvement of

photosynthesis (Farooq et al., 2009).

Finally, by combining GWAS analysis, transcriptome analysis,

gene annotation, GO analysis, and haplotype analysis of flag leaves,

we identified the most likely candidate genes. Blast2GO predicted

that Os03g0583000 is a peroxisomal protein and has significant

correlations with FII , qP and SPAD. Its FPKM value in the H type

was significantly lower than that in the L type. Os06g0587200 was

annotated by annovar and predicted by Blast2GO to contain a

protein kinase catalytic domain. Its haplotypes showed significant

correlations with NPQt , and its FPKM value in the H type was also

significantly higher than that in the L type. Furthermore,

Os03g0583000 and Os06g0587200 are both involved in the

membrane (GO:0016020) and integral component of membrane
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(GO:0016021) pathways. Peroxisomal APX and CAT have been

shown to be associated with enzyme activity during

photoprotection in rice plants (Sousa et al., 2019), and peroxisomes

and mitochondria can coordinately regulate NAD+ transport protein

activity to enhance photosynthesis and seed yield under high CO2

levels (Feitosa-Araujo et al., 2022). In Arabidopsis, imaging analysis

of fluorescence also showed that peroxisomes are involved in the

response of fluorescence parameters to drought stress (Li and Hu,

2015). In addition, Zhang et al. (2016) found thatOsAld-Y is localized

in the peroxisome and participates in photosynthesis by affecting leaf

photosynthesis rate and sugar metabolism, which contribute to

chlorophyll accumulation, chloroplast development, and plant

growth. Therefore, in this study, Os03g0583000 and Os06g0587200

may participate in peroxisome-related antioxidant and

photoprotection processes as well as chlorophyll synthesis processes

to regulate plant chlorophyll fluorescence characteristics.
5 Conclusion

This study conducted a genome-wide association study (GWAS)

on 225 rice accessions. In the phenotypic and Mendelian

randomization (MR) analysis, a weak negative correlation was

observed between the chlorophyll content and actual quantum

yield of photosystem II (FII). The phenotypic diversity observed in

SPAD, NPQt , FNPQ, and Fv=Fm among accessions was affected by

genetic background. Furthermore, the GWAS identified 78 SNPs and

17 candidate genes significantly associated with SPAD, NPQt , FII ,

FNPQ, qL and qP . Additionally, by transcriptome analysis, we

identified the key genes and pathways responsible for the

differences in FII , qP ,   and SPAD between two representative rice

varieties, and combined GWAS with transcriptome analysis

suggested that two candidate genes (Os03g0583000 from FII & qP
traits and Os06g0587200 from NPQt trait), which are respectively

associated with peroxisomes and protein kinase catalytic domains, are

involved in regulating the chlorophyll content and fluorescence. This

study provides novel insights into the correlation among chlorophyll

content and fluorescence parameters and the genetic mechanisms in

rice, and offers valuable information for the breeding of rice with

enhanced photosynthetic efficiency.
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