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Remote sensing continuity: a
comparison of HTP platforms
and potential challenges with
field applications

Andrew W. Herr and Arron H. Carter*

Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
In an era of climate change and increased environmental variability, breeders are

looking for tools to maintain and increase genetic gain and overall efficiency. In

recent years the field of high throughput phenotyping (HTP) has received

increased attention as an option to meet this need. There are many platform

options in HTP, but ground-based handheld and remote aerial systems are two

popular options. While many HTP setups have similar specifications, it is not

always clear if data from different systems can be treated interchangeably. In this

research, we evaluated two handheld radiometer platforms, Cropscan MSR16R

and Spectra Vista Corp (SVC) HR-1024i, as well as a UAS-based system with a

Sentera Quad Multispectral Sensor. Each handheld radiometer was used for two

years simultaneously with the unoccupied aircraft systems (UAS) in collecting

winter wheat breeding trials between 2018-2021. Spectral reflectance indices

(SRI) were calculated for each system. SRI heritability and correlation were

analyzed in evaluating the platform and SRI usability for breeding applications.

Correlations of SRIs were low against UAS SRI and grain yield while using the

Cropscan system in 2018 and 2019. Dissimilarly, the SVC system in 2020 and

2021 produced moderate correlations across UAS SRI and grain yield. UAS SRI

were consistently more heritable, with broad-sense heritability ranging from 0.58

to 0.80. Data standardization and collection windows are important to consider

in ensuring reliable data. Furthermore, practical aspects and best practices for

these HTP platforms, relative to applied breeding applications, are highlighted

and discussed. The findings of this study can be a framework to build upon when

considering the implementation of HTP technology in an applied

breeding program.

KEYWORDS
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1 Introduction

Severe weather and climate change are creating new challenges

in maintaining and improving global food production. Plant

breeding is an important tool in adapting to these difficulties

(Brown et al., 2015). However, the plant breeding process is not

immune to extreme or unpredictable environmental conditions,

impacting selection efficiency and genetic gain (Xiong et al., 2022).

Despite steady increases in genetic gain, global cereal crop demand

is projected to surpass production by 2050 (Ray et al., 2013). A

practical method for increasing crop production is through the

release of new cultivars by increasing genetic gain. On average, it

takes 7-12 years to release a new winter wheat cultivar (Carver,

2009). Thus, it is imperative to look at new methods that increase

genetic gain, decrease cycle time, and improve grain yield in an era

of climate change and extreme environmental variables (Xiong

et al., 2022). Recent advancements in genomic technologies have

provided breeders with large amounts of data to utilize genomic and

marker-assisted selections. However, genomic data has limited use

without the backing of phenotypic data, creating a new bottleneck

in the industry, and limiting cultivar development efficiency (Mir

et al., 2019). One proposed solution to this limitation is

implementing high throughput phenotyping (HTP) methods

associated with established breeding strategies (Reynolds

et al., 2020).

The development of HTP results from advancements in

imaging sensors, image processing technology, and an

understanding of secondary phenotypic traits (Pauli et al., 2016;

Mir et al., 2019). Despite these advancements, unoccupied aircraft

systems (UAS) technology can be fastidious and resource intensive

for simple plant breeding applications. Most HTP strategies require

the purchase of expensive specialized equipment and tedious data

standardization and processing pipelines. There is a continued need

to identify and adapt HTP technology to better aid the breeder

while maintaining cost-effectiveness (Reynolds et al., 2020).

There are three primary options in field-based HTP. Satellites

allow for the high throughput collection of field-scale images yet are

limited by image frequencies and resolution, critical factors in plot-

level research applications. Alternatively, ground-based and

handheld systems provide high resolution imaging across a wide

range of frequencies but can be challenging to handle and capture

larger-scale, multi-plot images quickly. UAS provide a “goldilocks”

ratio of utility, temporal frequency, and spatial resolution (Araus

and Cairns, 2014; Song et al., 2021). Rotocopters are a versatile

platform that allows for high throughput, high resolution image

capture. Due to power usage and battery capacity, the limitations of

the platform arise in payload capacity and flight time (Sankaran

et al., 2015b; Xie and Yang, 2020).

The spectral reflectance data collected from handheld

radiometers and UAS cameras has minimal uses in its raw form.

Spectral reflectance indices (SRI) are used to evaluate target features

and remove image noise creating a practical, standardized trait value

(Myneni et al., 1995; Xue and Su, 2017). Vegetation indices are

developed by evaluating the reflectance value of the plant canopy at
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specific light bands associated with photosynthetic mechanisms.

Normalized Difference Vegetation Index (NDVI) is a prevalent

index used to evaluate plant health by evaluating contrast in the

maximum absorption of red in the leaf through chlorophyll

pigmentation and the maximum reflectance of near-infrared due to

leaf cellular structure (Rouse, 1974). Normalized Difference Red-edge

Index (NDRE), another popular standard vegetation index, works

similarly to NDVI but replaces red with red-edge absorption relative

to NIR (Gitelson and Merzlyak, 1996). The vegetation index used

depends on the crop, growth stage, and target trait. These factors

influence reflectance values and relative index effectiveness (Wientjes

et al., 2017; Lozada et al., 2020; Herr et al., 2023). Vegetation indices

have many applications in capturing routine trait estimates like plot

quality, biotic, and abiotic stress (Sankaran et al., 2015a; Guo et al.,

2021; Sarkar et al., 2022; Sapkota et al., 2023), as well as previously

infeasible traits like chlorophyll content and nitrogen content (Xie

and Yang, 2020; Yin et al., 2022). Unlike vegetation indices, water

indices such as Normalized Water Index (NWI) use infrared range

reflectance to evaluate stomatal conductance and overall

photosynthetic efficiency (Babar et al., 2006). Water indices can

evaluate and predict relative water content, leaf osmotic potential,

stomatal conductance, and canopy temperature(Gutierrez et al., 2010;

Bal et al., 2021; Visitacion et al., 2022).

For most breeders working with cereal crops, grain yield is the

critical trait of interest and an ideal gauge of overall biological and

economic performance. Grain yield in wheat is highly quantitative

and can make selection efficiency difficult (Reynolds et al., 2012). It

is well established that NDVI and other vegetation indices like

NDRE and NWI, through high throughput multispectral imaging,

correlate with cereal crop grain yields (Geipel et al., 2014; Gracia-

Romero et al., 2017; Lozada et al., 2020). It has also been shown that

SRI data can be utilized to improve tools like genomic selection for

grain yield. Thus, grain yield is an appealing trait for a breeder to

focus on when implementing HTP approaches (Reynolds et al.,

2020; Montesinos López et al., 2022; Herr et al., 2023).

SRI heritability and correlation to grain yield are leading

indicators of SRI and platform utility. A strong repeatable

relationship to grain yield can determine data quality and

efficiency of selection in large-scale field-based breeding

applications. While the sensors evaluated in this study collected

the same SRIs, each has a different manufacturer, sensor type, and

processing pipeline. Sensor differences create the potential for

variances in data value and quality. These variances are compared

and discussed. Finally, the practical aspects of the platforms are

compared for their potential cost relative to the benefit they could

provide (i.e., the improved resolution of ground collected data is not

worth the extra logistics required in data collection).

With the growing interest in utilizing high throughput

phenotyping technology in plant breeding, this study aimed to

compare the SRI data collected from breeding trials between ground

systems and UAS and determine if the use of ground-based

handheld systems provides an increased resolution and data

quality that justify the negative aspects of the platform, like

collection time, data noise, and secondary applications.
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2 Materials and methods

2.1 Study population

TheWashington State University (WSU) winter wheat breeding

program has collected multispectral data with three different

phenotyping systems as indicated in Figure 1: A handheld

multispectral radiometer, the Cropscan MSR16R (CROPSCAN

Inc., Rochester, MN, USA), a handheld full-range hyperspectral

spectro-radiometer, the Spectra Vista Corporation (SVC) HR-1024i

(Spectra Vista Corporation, Poughkeepsie, NY, USA), and a UAS-

based system, a Sentera Quad Multispectral Sensor (Sentera Inc.,

Minneapolis, MN, USA) mounted on a DJI Inspire 1 rotor

copter platform.

Data for all platforms was collected at anthesis due to its

established relationship with grain yield (Duan et al., 2017;

Lozada et al., 2020). Each population evaluated was sampled on

the same day by both the UAS and compared handheld system.

Handheld data was collected within a six-hour window of solar

noon, which was the typical time required to collect data given the

number of plots in the trials. UAS data was collected within a four-

hour window of solar noon. In these trials, UAS data was often

collected at or near solar noon to try and be in the middle of the

handheld data collection timeframe, and flights often took 20

minutes. The UAS mounted with the Sentera camera flew a

programmed route at an altitude of 45 m, with an 85%
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longitudinal and lateral overlap of georeferenced images. All data

was collected on days with clear skies to limit variability in solar

radiation. All trials were grown in Pullman, WA, as shown in

Figure 1, and include:
• A genetically diverse Quality Association Mapping (QAM)

panel;

• Unreplicated single plot yield trials of soft white and hard

red winter wheat;

• Replicated alpha-lattice preliminary yield trials of soft white

and hard red winter wheat;

• Replicated alpha-lattice advanced yield trials of soft white

and hard red winter wheat.
Table 1 outlines the study populations’ characteristics,

including year, trial design, total number of unique entries,

number of total plot observations, and HTP data type collected.

Plots were planted using a double-disc 8-row small plot planter at a

seed density of 250 seed per square meter. Total plot size was 1.5

meter wide by 3.5 meter long. Ground was prepared by grower

cooperators using minimum-tillage techniques and practices

customary of the region. Grain yield data were collected at all

locations with a Zurn 150 harvester (Zurn Harvesting GmbH & Co.

KG, Waldenburg, Germany). Weather data for each year can be

found at https://weather.wsu.edu/ for the Pullman, WA location.

Single environment adjusted means were calculated for all
FIGURE 1

The imaging systems used in this study were (A) a DJI Inspire 1 UAS with a Sentera Quad Multispectral Sensor, (B) Cropscan MSR16R, and (C) SVC
HR-1024i. (D) highlights the study location.
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observations of grain yield. Grain yield was the focus of observation

given its importance as the final end-value selection parameter in

many plant breeding programs.
2.2 UAS phenotypic data

The Sentera Quad Multispectral Sensor covered target bands of

interest for winter wheat evaluation. The camera has four sensors

that cover eight broad spectral bands between 450 nm and 970 nm.

Collected UAS images are stitched and prepared for data extraction

in Pix4Dmapper (Pix4D Inc., Denver, CO, USA), creating a single

orthomosaic image for each sensor per location. Orthomosaic

images were transferred to Quantum Geographic Information

System (QGIS) for plot identification and then further processed

with a custom R code for calibration, index calculation, and single

plot mean data extraction. In 2018 and 2019, a single reflectance

panel (85% reflectance) was used for radiometric calibration on

RBG and red edge bands. Quantum efficiency coefficients were used

to calculate NIR using:

NIR = (2:921� Blue) − (0:754� Red) :

The NIR band was then normalized with a coefficient of 3.07

during the calculation of SRIs (Ortiz et al., 2021). In 2020 and 2021,

a set of calibration panels (five panels ranging from 2% – 85%

reflectance, MosaicMill Oy, Vantaa, Finland) was implemented.

Iqbal et al. (2018) developed a simple radiometric calibration

methodology using a set of calibration panels with a known

variation of reflectance at each broadband wavelength of interest.

The band layers are adjusted based on the relationship:

SR = DN �m ± b,

where digital numbers (DN) are the raw observed pixel values

for collected orthomosaic images and Surface Reflectance (SR) is the
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true reflectance value. Slope (m) and intercept (b) are variables

explaining the relationship between observed and true values of the

reflectance panels. Once slope and intercept are calculated based on

the reflectance panels’ regression, the corresponding bands can

be adjusted.
2.3 Ground phenotypic data

Like the Sentera sensor, the CROPSCANMSR16R covers target

bands of interest. The CROPSCAN radiometer has 16 broad

spectral bands that range from 430 nm to 970 nm. Before data

collection the sensor is calibrated using manufacture provided

calibration panel. The sensor was attached to a pole and placed

1m directly above the wheat canopy in the middle of the plot. One

plot is collected at a time, and a mean value for each spectral band is

logged for that plot. An irradiance light sensor accounts for light

variation and reduces noise in reflectance values. The CROPSCAN

MSR system software is used to retrieve collected band values. Plot

reflectance values were normalized across all observations by

dividing each plot reflectance value by the standard deviation of

reflectance values within a trial.

The SVC HR-1024i is a hyperspectral sensor collecting

thousands of narrow band values between 338 nm and 2515 nm

for each plot. Before sampling, the sensor was calibrated using the

manufacture provided calibration panel. The SVC was held by hand

at a height of 0.75 m above the plot at an approximate 20-degree

angle. Collected SVC data reflectance curves were observed for each

plot. Observations with abnormal reflectance curves below 1000 nm

were removed from the evaluation. Band reflectance values were

normalized as done with CROPSCAN data. Broadband values that

reciprocate the collected UAS bands were then calculated by

averaging all SVC narrowband values within the 50 nm desired

broadband window.
TABLE 1 Study populations for HTP platform comparison.

Trial Year Design
Replication Number of

Entries
Total Observa-

tions UAS Cropscan SVC

Single Plot 2018
Augmented Design with repeating
checks

1 1438 1503 X X

Preliminary 2018 Alpha-Lattice 3 168 504 X X

QAM 2018
Augmented Design with repeating
checks

1 480 528 X X

QAM 2019
Augmented Design with repeating
checks

1 480 528 X X

Single Plot 2020
Augmented Design with repeating
checks

1 178 195 X X

Advanced 2020 Alpha-Lattice 3 48 144 X X

Single Plot 2021
Augmented Design with repeating
checks

1 213 227 X X

Preliminary 2021 Alpha-Lattice 3 54 162 X X

Advanced 2021 Alpha-Lattice 3 46 138 X X
frontier
QAM, Quality Association Mapping Panel; X, Indicates HTP Data Type Collected.
sin.org
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2.4 Spectral reflectance indices calculation
and data analysis

Comparing these systems is based on three overlying factors:

grain yield correlation with water indices, grain yield correlation

with vegetation indices, and overall utility for a large-scale breeding

program. The processed spectral reflectance data collected from

each plot for both the handheld and UAS platforms were used to

calculate the vegetation indices NDVI, NDRE, Transformed

Chlorophyll Absorption Reflectance Index (TCARI), Modified

Triangular Vegetation Index (MTVI), and the water index, NWI.

NDVI and NWI are the most commonly used in each of their

corresponding categories and are ideal measures of plant stress and

canopy water stress, respectively, in winter wheat (Prasad et al.,

2007; Lozada et al., 2020). NDRE, TCARI and MTVI were chosen

because of their past success in our breeding program in correlating

to yield and accounting for environmental variability. The spectral

reflectance bands used and formulas for these indices are shown

in Table 2.

Broad-sense heritability (H2) was calculated for SRIs across all

sampled locations for grain yield. Genotype, replication, block,

environment, and genotype by environment variation were used

as random effects in the calculation of H2 with the formula:

H2 =
s2
G

s 2
G +

s2
GE
x + s 2

ϵ
xr

where s2
G is genetic variance, s 2

GE is variation due to genotype

by environmental effect, s 2
ϵ represents variation due to error, x

signifies the number of environments, and r represents the number

of replications (Bernardo, 2002). Variance components used in

heritability calculations were estimated using the “lme4” package in

R. Heritability, in conjunction with correlation to grain yield, will

indicate an index’s success in indirect selection.

Phenotypic correlations among traits were calculated within the

two datasets as Pearson correlations using “cor’ function in R.

Scatterplots and regressions for each unique year and platform

combination was generated using “ggplot2” in R.

Principal component analysis (PCA) was conducted for the

2018-2019 and 2020-2021 populations using NDVI, NDRE,

TCARI, MTVI and NWI for each platform as well as grain

yield. PCA was conducted using the “FactoMineR” package

in R.
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3 Results

3.1 SRI correlation across platforms and
with grain yield

Within each population, the correlation of indices was evaluated

between collection methods as well as between indices and grain

yield. In 2018-2019 correlations with grain yield were close to zero or

slightly negative with handheld NWI, ranging from -0.23 to 0.22.

Handheld NDVI was negatively associated with UAS NDVI with a

correlation of -0.48, whereas handheld NWI and NDRE had a small

positive association with UAS with a correlation of 0.24 and 0.2,

respectively. In the 2020-2021 population, NDVI and NDRE had a

moderate to high positive correlation between collection strategies

and grain yield, as seen in Figure 2 and reinforced by PCA in Figure 3.

NWI had a low correlation between UAS and handheld, with a

coefficient of 0.07. When correlated to grain yield, UAS and handheld

NWI had a negative association of -0.34 and -0.67, respectively. The

negative correlation between water-based indices and grain yield was

supported in PCA. This negative correlation is expected in NWI with

both vegetation indices and grain yield. A lower NWI value indicates

higher water content in crop canopy.
3.2 Linear relationship of SRIs to grain yield

A clearer relationship can be seen when linear regressions are

conducted with SRIs and grain yield, as seen in Figure 3. Across all

years and environmental conditions, UAS NDVI has an expected

linear distribution relative to grain yield. Both handheld systems used

in this study produced high NDVI values across observations while

producing more non-normal distributions relative to grain yield.

UAS NDVI generally has a stronger linear relationship to grain yield

over the handheld counterpart. Only NDVI is shown because of its

relevance to wheat. All other SRIs evaluated have similar trends.
3.3 PCA of SRIs across platforms and
grain yield

The first principal component (Dim1) captured between 35.6%

and 55.8% of the phenotypic variation. The second principal
TABLE 2 Spectral reflectance index equations.

Spectral Reflectance Index Abbreviation Equation Reference

Normalized Difference
Vegetation Index

NDVI (R800 − R680)=(R800 + R680) (Rouse et al., 1974)

Normalized Difference
Red Edge

NDRE (R800 − R700)=(R800 + R700)
(Gitelson and Merzlyak,

1996)

Transformed Chlorophyll Absorption
Reflectance Index

TCARI 3� ½(R700 − 680) − 0:2� (R700 − R550)(R700=R680)� (Haboudane et al., 2002)

Normalized Water Index NWI (R970 − R800)=(R970 + R800) (Gao, 1996)

Modified Triangular Vegetation Index MTVI ((R700 − R550))=√ ((2*R800 + 1) 2 − (6*R800 − 5*√R680) − 0:5)) (Haboudane et al., 2004)
frontiersin.org
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component (Dim2) was only able to explain between 30.9% and

22.4% of trait variation. PCA biplots of individuals in both

populations group years along Dim1, indicating strong between-

year environmental variability. QAM diversity panels group closely

within their given year, while breeding trials (single plot,

preliminary, and advanced) tend to spread across Dim2. As seen

in Figure 4, the 2020 observations are tightly grouped due to ideal

growing conditions reducing genetic expression in trait variability.

In 2018-2019 handheld generated indices contributed most in Dim1

while UAS generated indices contributed more in Dim2. This differs

from 2020-2021 where most indices were contributing to Dim1

whereas only handheld MTVI and UAS NWI were major

contributors to Dim2.
3.4 Heritability of grain yield and SRIs in
evaluated trials

Broad-sense heritability for spectral indices of all years

evaluated was moderate to high, with a range of 0.50 to 0.80.

Grain yield heritability was also calculated at 0.65 in 2018-2019 and

0.76 in 2020-2021, as seen in Table 3. Across both populations, UAS

collected indices had a higher heritability than handheld collected

indices. This difference was greater with NDVI and NDRE than

with NWI.
4 Discussion

In this study, we have outlined the differences in the correlation

and heritability performance of SRIs collected from handheld and

UAS systems relative to grain yield. This study evaluated HTP data

of a breeding population from a single location, over four highly

differing years. This is typical of most breeding programs where
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lines are evaluated initially and selected based on performance at

one location. Despite these factors, there are clear differences in the

capability of the tested HTP systems for application in a breeding

pipeline to improve grain yield selection potential as secondary

traits. Both phenotypic correlation and heritability of SRIs were

assessed to evaluate the utility in improving selection for grain yield.

This section, along with the discussion of analytical results, will

break down the less tangible aspects of the HTP systems used in this

study and their relative potential utility in breeding applications.
4.1 SRI correlation and precision
across platforms

The correlations of SRIs in the 2018-2019 dataset were generally

lower than that of the 2020-2021 dataset. It is important to note that

NWI is a water index that negatively associates with canopy water

content. A higher NWI value indicates lower canopy water content,

meaning that a strong negative correlation to grain yield is ideal

(Bandyopadhyay et al., 2014). This relatively low correlation in

2018-2019 is potentially due to inadequate data quality caused by

more primitive data standardization and poor sensor quality, where

only one calibration panel was used. The poor data quality in 2018-

2019 is also exemplified in the low correlations of corresponding

SRIs between handheld and UAS. Similar findings were shown by

Deng et al. (2018) and Dıáz-Delgado et al. (2019), both highlighting

inconsistencies in sensor performance and correlation, especially

when sensor quality or calibration methods are inadequate. Finally,

despite moderate heritability, the 2018-2019 SRI data correlates

poorly with grain yield. This suggests that the collected data was not

capturing the chlorophyll or water content targeted by SRIs,

possibly because of the reduced calibration panel set. Ensuring

that data collected is of the highest quality is always essential. As

additional research was published suggesting the move from a
A B

FIGURE 2

Correlation table of grain yield, handheld collected SRIs, and UAS collected SRIs in (A) 2018-2019 population and (B) 2020-2021 population. NDVI,
Normalized Difference Vegetation Index; NDRE, Normalized Difference Red Edge; NWI, Normalized Water Index.
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single calibration panel to multiple panels, subsequent data was

improved and yielded higher correlations with grain yield (Duan

et al., 2017; Guo et al., 2019).

Unlike the 2018-2019 dataset, in 2020 and 2021, correlations are

improved to moderate or high across SRI and platform. UAS data

correlations are most likely improved over the 2018-2019

population due to an improved image calibration strategy using a

set of five calibration panels. The 2020-2021 data also displays

expected patterns across the correlation table between grain yield,

handheld and UAS data indicating a more successful capture of

target physiological characteristics relative to the 2018-2019 dataset.

There are generally stronger correlations among grain yield UAS

data in 2020-2021 relative to 2018-2019. These differences between

datasets collected by the two ground based systems could possibly

be because of variation in climatic conditions of the years. More

likely, the improved correlations in 2020 and 2021 were because of
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improved data quality with the enhanced calibration strategies that

were implemented.

The handheld radiometer systems do not have as quick of a

collection speed as UAS, allowing for the introduction of error,

similar results were found by Tattaris et al. (2016). This issue will be

discussed in later sections. This study also validated Tattaris et al.

(2016) in higher correlations of UAS derived vegetation indices to

yield relative to ground based proximal sensors. In 2020 and 2021,

handheld platforms did outperform UAS with NWI correlations.

The outlier in correlation is most likely due to NWI’s susceptibility

to environmental variability and general sensor quality. These

results are corroborated in Gutierrez et al. (2010) and

Bandyopadhyay et al. (2014), highlighting difficulties in working

with NWI. The SVC sensor used in 2020 and 2021 is a hyperspectral

sensor capable of greater precision in reflectance evaluations.

Reflectance bands used in calculating NWI are within the median
A B

D

E F

G H

C

FIGURE 3

Linear regression of grain yield and handheld NDVI (A, C, E, G) or UAS NDVI (B, D, F, H) in each year evaluated. NDVI, Normalized Difference
Vegetation Index.
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reflectance range of the SVC sensor, whereas the UAS camera works

with secondary modified sensors.
4.2 SRI heritability and reliability
in selection

Across all evaluated SRIs in both populations, UAS data

produced a higher broad-sense heritability than handheld

systems. This difference in heritability between systems is most

likely due to the increased variability of SRI data introduced during

a lengthened data collection window. Handheld systems have the

disadvantage of collection efficiency, taking approximately 10

seconds per plot, whereas a UAS system can average under 2

seconds per plot. While the UAS, Cropscan and SVC all have

methods for sensor calibration, slight changes in solar position and

intensity likely impacted reflectance readings. It has been well

established that minimization of error during the spectral

reflectance data collection process is critical to the final data

quality (Guo et al., 2016; Ortiz et al., 2021). Because the UAS
Frontiers in Plant Science 08
system captures several plots at a time and the same plot multiple

times, all within a 20-30 min window, it is likely that UAS

reflectance data has a reduced potential for error relative to the

handheld radiometers used. This difference in data quality is also

observed in NDVI’s relationships to grain yield across years, shown

in Figure 3.

The moderate SRI heritability observed in this study is expected

due to a portion of the study population being unreplicated trials.

We also expect heritability in the 2018-2019 population to be lower

than the 2020-2021 population due to the increased genetic

diversity of the population from the inclusion of the QAM

diversity panel (Bowman et al., 2015). SRI heritability was

generally lower than grain yield, limiting the potential application

for indirect selection. However, the moderate correlation and

heritability of SRIs suggest the potential for improved genetic

gain when utilized as secondary traits in selection. The utilization

of SRI data for utilization in breeding for grain yield is most

promising when incorporated in genomic selection strategies as a

covariate or in multivariate models as shown my Lozada et al.

(2020) and Montesinos López et al. (2022) respectively.
TABLE 3 Broad-sense heritability (H2) of grain yield, UAS indices, and handheld indices.

Population Grain Yield Handheld NDVI UAS NDVI Handheld NWI UAS NWI Handheld NDRE UAS NDRE

2018-2019 0.65 0.52 0.80 0.50 0.58 0.50 0.60

2020-2021 0.76 0.55 0.68 0.62 0.70 0.58 0.67
A

B

FIGURE 4

Principal component biplot of individuals and vector of variables in (A) 2018-2019 population and (B) 2020-2021 population showing the genetic
relationships of QAM diversity panel, early generation single plot, preliminary, and advanced trials.
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4.3 Platform utility in a breeding program

For most plant breeding programs grain yield is the primary

trait of interest. The highly quantitative nature of the trait can make

selection and prediction efficiency difficult (Reynolds et al., 2012).

There is evidence that SRI data can complement and improve tools

like genomic selection and machine learning prediction for use in

the breeding strategy of grain yield (Montesinos López et al., 2022;

Herr et al., 2023). It is important to validate that the methods used

in secondary trait data collection are high quality, heritable, and

correlate well to the primary trait of interest.

The overarching goal of this study was to determine if the use of

ground-based handheld systems provides an increased resolution and

data quality that justify the negative aspects of the platform, like

collection time, data noise, and secondary applications. As mentioned

above, handheld systems have the disadvantage of collection speed;

this difference is amplified when capturing large breeding trails. A

UAS can collect all data of a 1000 plot breeding trial in approximately

30 min, whereas the handheld system will take roughly 3 hours. In

smaller research programs and applications, this difference would

have minimal impact on the ability to collect desired datasets.

However, in large breeding programs with multiple trial locations,

collecting reflectance data across all locations at more than one or two

critical time points can be difficult. Solar and weather limitations

create narrow windows for image capture, and UAS imaging allows

for flexibility in data collection timing. Under ideal environmental

conditions, UAS allows for quick data capture across several locations

in a single day. The variability seen in heritability and correlation

between handheld and UAS is partly due to the differential in capture

time. The increased time it takes a handheld radiometer system to

collect data on an entire breeding trial, 2-3 hours, creates the potential

for changes in solar radiation caused by solar angle or cloud cover.

This will produce within field errors in collected reflectance data,

creating challenges in distinguishing genetic, phenotypic, and

environmental variability (Tattaris et al., 2016).

TheHTP systems used in this study highlight the reality of working

with technology in long term breeding research applications. When

first evaluating the potential of HTP, UAS sensors were not common,

thus the Cropscan system was utilized as a platform that was easy to

implement in a field-based breeding program. In 2018, as more UAS

and sensors became available, they were used in tandemwith the hand-

held Cropscan.When the Cropscan broke in 2020, alternative solutions

were pursued for a ground based radiometer, leading to the use of the

SVC system. Similarly, with the UAS calibration, when starting in 2018

the manufacturer recommendations of a single white panel were used.

As new research came out it became evident for the need to implement

higher quality, multi-panel radiometric calibration in 2020 and 2021.

With technology constantly changing and improving, it is important to

recognize the potential improvements these can make. It also

important to note that new methodology or equipment can impact

the quality and reliability of SRI data as shown in this study. As other

breeding programs begin using HTP, it is valuable to evaluate different

UAS calibration strategies and handheld platforms within the same

population and year, and across a diverse set of environments, to

clearly identify each technology’s reliability.
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Each of the three phenotyping systems used in this study has a

different method of calibration, collection, and processing that

influence the quality of data collected. The SVC and Cropscan

radiometer systems initially use a white reference panel to calibrate

the sensor. These radiometers do not collect actual images but a range

of mean reflectance bands within the sensor field of view. The

Cropscan system requires custom software for post-processing to

populate reflectance values, and the SVC requires normalization and

conversion of narrow hyperspectral band values to multispectral

broadbands. A major disadvantage of these radiometers is their

inability to screen for reflectance noise within the sensor field of

view. The UAS used in this study collects images which are later

stitched into an orthomosaic containing the desired reflectance

values. These orthomosaics can be used to create soil masks,

removing soil and other non-plant reflectance in calculating mean

plot reflectance for later use in SRI calculation.

Calibration is another strategy for minimizing reflectance noise

and standardizing collected data. All platforms in 2018-2019 and the

handheld system in 2020-2021 used a simple single-panel radiometric

calibration technique that utilizes the know reflectance of a white panel

to adjust sensor readings based on the observed panel reflectance. This

method is effective but is more limited in accurately adjusting each

reflectance band (Iqbal et al., 2018). Radiometric calibration with a

range of calibration panels, a method used for 2020-2021 UAS data

collection, improves the former strategy by utilizing three to five

reflectance panels with a known range of solar absorption. The range

of panels can be used to produce a regression of expected reflectance

against observed for each reflectance band of interest. This technique

allows for more precise adjustment in individual band readings,

producing more reliable reflectance values (Wang and Myint, 2015;

Iqbal et al., 2018). The removal of soil noise, robust radiometric

calibration, and short flight times minimize the error in the data

collected, ensuring reflectance data quality across time and locations.

It is important to maximize limited resources in large-scale

applied plant breeding research. Any implementation of HTP can

be costly and time consuming. Because of this, when looking at

implementing HTP into a breeding program, it is important to

consider the versatility and range of the platform selected. The

handheld radiometers used in this study can collect high resolution

reflectance data across a broad spectral range with the potential for

producing SRIs with moderate heritability and correlation to yield,

yet are limited in their ability to account for soil noise or inconsistent

solar radiation. The data capture speed limits the quality of data

collection across locations and time. The lack of orthomosaic image

capture in these systems also limits access to secondary traits of

interest like plant height and canopy coverage estimates.

With the continual improvement in technology and software,

the barrier to entry for UAS phenotyping continues to drop. The

speed and efficiency of UAS minimizes labor and cost while

providing quality data for further use in breeding strategies.

However, it is important to consider best practices that will

minimize unwanted environmental variability in collected UAS

data. One way that this can be done is by utilizing multiple

radiometric calibration panels as outlined in 2020 and 2021 UAS

data collection (Iqbal et al., 2018). Another practice that can

minimize unwanted variability is in timing of UAS flights. Most
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sensors utilized on a UAS are passive sensors, therefore, it is

important to adjust for shadowing and variability of solar

radiation. For best results it is recommended to fly within a 4-5

hour window of solar noon on days without clouds (Ortiz et al.,

2021). In plant breeding programs looking to incorporate high

throughput phenotyping, the UAS is an efficient and versatile

option that when used properly can produce high quality data.

Overall, it is important to know that not all HTP systems for

data collection are created equal. Knowing what HTP traits are most

important to the program, frequency and scale of data collection,

and resources allocation will help determine which platform will be

most beneficial in HTP data collection. When implemented

properly, UAS are the more promising system for SRI collection

in large-scale breeding programs.
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Dıáz-Delgado, R., Ónodi, G., Kröel-Dulay, G., and Kertész, M. (2019). Enhancement
of ecological field experimental research by means of UAV multispectral sensing.
Drones 3, 7. doi: 10.3390/drones3010007

Duan, T., Chapman, S. C., Guo, Y., and Zheng, B. (2017). Dynamic monitoring of
NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field
Crops Res. 210, 71–80. doi: 10.1016/j.fcr.2017.05.025

Gao, B.-C. (1996). NDWI—A norMalized difference water index for remote sensing
of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266. doi: 10.1016/
S0034-4257(96)00067-3

Geipel, J., Link, J., and Claupein, W. (2014). Combined spectral and spatial modeling
of corn yield based on aerial images and crop surface models acquired with an
unmanned aircraft system. Remote Sens. 6, 10335–10355. doi: 10.3390/rs61110335

Gitelson, A. A., and Merzlyak, M. N. (1996). Signature analysis of leaf reflectance
spectra: algorithm development for remote sensing of chlorophyll. J. Plant Physiol. 148,
494–500. doi: 10.1016/S0176-1617(96)80284-7

Gracia-Romero, A., Kefauver, S. C., Vergara-Dıáz, O., Zaman-Allah,M. A., Prasanna, B.
M., Cairns, J. E., et al. (2017). Comparative Performance of Ground vs. Aerially Assessed
frontiersin.org

https://doi.org/10.7273/000004802
https://doi.org/10.1016/j.tplants.2013.09.008
https://doi.org/10.2135/cropsci2005.0211
https://doi.org/10.1007/s12524-021-01325-6
https://doi.org/10.1007/s12524-021-01325-6
https://doi.org/10.1016/j.agwat.2014.07.017
https://doi.org/10.2135/cropsci2014.08.0533
https://doi.org/10.7930/J0862DC7
https://doi.org/10.1016/j.isprsjprs.2018.09.008
https://doi.org/10.3390/drones3010007
https://doi.org/10.1016/j.fcr.2017.05.025
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.3390/rs61110335
https://doi.org/10.1016/S0176-1617(96)80284-7
https://doi.org/10.3389/fpls.2023.1233892
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Herr and Carter 10.3389/fpls.2023.1233892
RGB and Multispectral Indices for Early-Growth Evaluation of Maize Performance under
Phosphorus Fertilization. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.02004

Guo, A., Huang,W., Dong, Y., Ye, H., Ma, H., Liu, B., et al. (2021).Wheat yellow rust detection
using UAV-based hyperspectral technology. Remote Sens. 13, 123. doi: 10.3390/rs13010123

Guo, J., Wang, Q., Tong, Y., Fei, D., and Liu, J. (2016). Effect of solar radiation
intensity and observation angle on canopy reflectance hyperspectra for winter wheat.
Trans. Chin. Soc. Agric. Eng. 32, 157–163. doi: 10.11975/j.issn.1002–6819.2016.10.022

Guo, Y., Senthilnath, J., Wu, W., Zhang, X., Zeng, Z., and Huang, H. (2019).
Radiometric calibration for multispectral camera of different imaging conditions
mounted on a UAV platform. Sustainability 11 (4), 978. doi: 10.3390/su11040978

Gutierrez, M., Reynolds, M. P., and Klatt, A. R. (2010). Association of water spectral
indices with plant and soil water relations in contrasting wheat genotypes. J. Exp. Bot.
61, 3291–3303. doi: 10.1093/jxb/erq156

Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., and Strachan, I. B. (2004).
Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop
canopies: Modeling and validation in the context of precision agriculture. Remote Sens.
Environ. 90, 337–352. doi: 10.1016/j.rse.2003.12.013

Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., and Dextraze, L.
(2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll
content for application to precision agriculture. Remote Sens. Environ. 81, 416–426.
doi: 10.1016/S0034-4257(02)00018-4

Herr, A. W., Adak, A., Carroll, M. E., Elango, D., Kar, S., Li, C., et al. (2023).
Unoccupied aerial systems imagery for phenotyping in cotton, maize, soybean, and
wheat breeding. Crop Science. 63, 1722–1749. doi: 10.1002/csc2.21028

Iqbal, F., Lucieer, A., and Barry, K. (2018). Simplified radiometric calibration for
UAS-mounted multispectral sensor. Eur. J. Remote Sens. 51, 301–313. doi: 10.1080/
22797254.2018.1432293

Lozada, D. N., Godoy, J. V., Ward, B. P., and Carter, A. H. (2020). Genomic
prediction and indirect selection for grain yield in US Pacific Northwest winter wheat
using spectral reflectance indices from high-throughput phenotyping. Int. J. Mol. Sci.
21, 165. doi: 10.3390/ijms21010165

Mir, R. R., Reynolds, M., Pinto, F., Khan, M. A., and Bhat, M. A. (2019). High-
throughput phenotyping for crop improvement in the genomics era. Plant Sci. 282, 60–
72. doi: 10.1016/j.plantsci.2019.01.007
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