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MixSeg: a lightweight and
accurate mix structure network
for semantic segmentation of
apple leaf disease in
complex environments

Bibo Lu*†, Jiangwen Lu †, Xinchao Xu and Yuxin Jin

School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
Introduction: Semantic segmentation is effective in dealing with complex

environments. However, the most popular semantic segmentation methods

are usually based on a single structure, they are inefficient and inaccurate. In

this work, we propose a mix structure network called MixSeg, which fully

combines the advantages of convolutional neural network, Transformer, and

multi-layer perception architectures.

Methods: Specifically, MixSeg is an end-to-end semantic segmentation network,

consisting of an encoder and a decoder. In the encoder, the Mix Transformer is

designed to model globally and inject local bias into the model with less

computational cost. The position indexer is developed to dynamically index

absolute position information on the featuremap. The local optimizationmodule

is designed to optimize the segmentation effect of the model on local edges and

details. In the decoder, shallow and deep features are fused to output accurate

segmentation results.

Results: Taking the apple leaf disease segmentation task in the real scene as an

example, the segmentation effect of the MixSeg is verified. The experimental

results show that MixSeg has the best segmentation effect and the lowest

parameters and floating point operations compared with the mainstream

semantic segmentation methods on small datasets. On apple alternaria blotch

and apple grey spot leaf image datasets, the most lightweight MixSeg-T achieves

98.22%, 98.09% intersection over union for leaf segmentation and 87.40%,

86.20% intersection over union for disease segmentation.

Discussion: Thus, the performance of MixSeg demonstrates that it can provide a

more efficient and stable method for accurate segmentation of leaves and

diseases in complex environments.
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1 Introduction

Apples are rich in nutritional value and are one of the most

important cash crops in the world. However, apple leaves are often

affected by pests and diseases, and failure to identify and prevent

diseases promptly can easily lead to a decrease in fruit quality and

yield, causing severe economic losses to growers (Bansal et al., 2021;

Yogeshwari and Thailambal, 2021; Aggarwal et al., 2023). In reality,

the identification of crop diseases usually relies on manual work

(Chen et al., 2022; Mu et al., 2022). The manual approach has many

drawbacks, such as excessive subjectivity, low efficiency, and high

recognition error rate (Barman et al., 2020; Xu et al., 2023).

Therefore, computer vision technology can be used to identify

diseases quickly and accurately, which plays a crucial role in

effective disease prevention and higher apple fruit quality and yield.

In recent years, with the rapid development of computer vision

technology, deep learning had gained much attention in crop

disease identification. More and more researchers used semantic

segmentation methods for crop disease recognition. For example,

(Storey et al., 2022) used ResNet-50 and MobileNetV3 as the

backbone of Mask-RCNN and then segmented apple disease

leaf disease images separately to test their suitability for this

task. (Divyanth et al., 2023) researched the advantages and

disadvantages of the semantic segmentation networks SegNet, U-

Net and DeepLabv3+, and chose U-Net and DeepLabv3+ for

segmentation of corn leaves and disease spots, respectively. (Wu

et al., 2021) tested the effect of DeepLabv3+ with different backbone

networks, Xception-65, Xception-71, ResNet-50, and ResNet-101,

on the performance of leaf and disease spot segmentation of

hydroponic lettuce, providing a guide for an automatic selection

and segmentation device for hydroponic lettuce. (Agarwal et al.,

2021) chose ResNet as the encoder of U-Net to achieve effective

segmentation of crop disease leaf images. (Yuan et al., 2022)

replaced the backbone network of DeepLabv3+ with the

lightweight MobileNetV2 to reduce the training time of the

model and was able to segment the leaf veins in real-time.

Therefore, semantic segmentation methods are suitable for

recognizing crop leaves and diseases in complex environments.

Currently, the mainstream semantic segmentation models are

mainly based on convolutional neural network (CNN) structure

and Transformer structure. CNN achieved a certain degree of offset,

scale, and distortion invariance by forcing the capture of local priors

using local perceptual fields. For the same target appearing at

different locations in the image, all feature representations with

some similarity can be extracted by CNN (Zeiler and Fergus, 2014;

He et al., 2015). In addition, CNN had a hierarchical learning

model, from simple low-level textures to higher-order semantic

patterns. This property of CNN allowed for strong robustness and

generalization when dealing with problems such as target

recognition (Simonyan and Zisserman, 2014). Therefore, CNN

was useful for extracting and optimizing local leaf and disease

features in apple leaf disease image segmentation. However, the

convolution operation focuses only on local regions, which can lead

to general limitations of CNN for modeling relationships between

distant pixels (Kuo, 2016; Hu et al., 2018). (Simonyan and
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Zisserman, 2014) extended the ability to extract global features by

stacking deeper networks to increase the field of perception. While

this alleviated the general limitation of CNN for modeling direct

long-range relations, too deep layers introduced the problem of

gradient degradation, which led to degradation of the model’s

performance (He et al., 2016). Some researchers had started using

self-attention instead of convolution to extract global features (Hu

et al., 2019; Ramachandran et al., 2019).

Transformer (Vaswani et al., 2017) was first applied in NLP and

gradually received attention in computer vision due to its excellent

performance in processing long text sequences. Unlike CNN,

Transformer used self-attention to learn the relationship between

pixels and regions. It can perform spatial transformations and

extract feature dependencies between distant pixels, so

Transformer had more flexibility. (Dosovitskiy et al., 2020) first

proposed the visual Transformer ViT, which treated an image as a

set of sequences and uses self-attention for global modeling.

Subsequently, a series of Transformer-based semantic

segmentation models started to appear, such as SegFormer (Xie

et al., 2021a), PoolFormer (Yu et al., 2022), and SETR (Zheng et al.,

2021). However, the semantic segmentation networks with self-

attention as the global modeling paradigm had some problems. For

example, self-attention had a quadratic computational complexity

for the input token sequence, and therefore, the network was not

conducive to high-resolution input. In addition, self-attention had

many parameters and was prone to overfitting when the dataset is

small (Huang et al., 2019; Wang et al., 2020; Guo et al., 2022).

Moreover, self-attention cannot encode the position and cannot

recover the target’s position information in the decoder. These

problems eventually led to less efficient network segmentation and

poor segmentation results. Multi-layer perception (MLP) was a

typical feedforward neural network consisting of multiple layers of

neurons, each fully connected to the previous layer. Compared to

self-attention, MLP aimed to establish weights for all features. Thus

it possessed a more robust ability than self-attention to extract the

dependencies of features that show long-range (Ding et al., 2021).

Moreover, MLP can be viewed as a combination of multiple linear

transformations and nonlinear functions, and it only needed to

learn the weights and biases of each layer, so MLP was less

susceptible to noise and erroneous inputs and was more stable in

computation. However, the traditional MLP had many parameters,

was computationally complex, and was also prone to overfitting. In

summary, the correct use of local prior, global dependence and

control of computational complexity are the keys to improving the

performance of semantic segmentation models.

In response to the above problems of single structured

networks, the goal of this study was to design a mix structure

semantic segmentation model by extracting the core strengths of

CNN, Transformer and MLP architectures to improve the global

modeling efficiency of the model while maintaining a strong

mastery of detailed features and being more lightweight.

Specifically, MixSeg consisted of three key components: Mix

Transformer, position indexer (PI), and local optimization

module (LOM). Mix Transformer aimed to leverage the local

feature injection of CNN, the stability of global modeling
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structure of Transformer, and the ability of MLP to establish

complete global dependency at a smaller computational cost for

extracting more comprehensive global features. The role of the

position indexer was to accurately preserve the position information

of target leaves during the downsampling process in order to

enhance the model’s anti-interference capability and segmentation

performance. LOM, on the other hand, focused on optimizing the

extraction of local features such as disease leaf edges and details. In

summary, MixSeg was a mix structure model applied to segment

apple leaves and diseases in complex environments. Compared with

the single structure model, it was capable of better segmenting

target leaves and diseases while being more lightweight and suitable

for practical applications. The main contributions were as follows:
Fron
(1) A lightweight and accurate mix structure semantic

segmentation model (MixSeg) was designed to improve

the segmentation performance of apple leaves and disease

spots in complex environments with fewer parameters and

computational effort.

(2) A novel Mix Transformer was designed, which uses the

depthwise separable convolution of the residual for local

bias injection, and the designed MMLP to reduce the

amount of computation and establish global dependencies.

(3) The PI was designed to dynamically index absolute position

information on the feature map and can be independent of

variable length inputs.

(4) The LOM was designed to enhance the model’s ability to

represent local features, optimize the segmentation effect of

leaf edges and extract more tiny spots.
The rest of the paper was organized as follows: the dataset and

the details of the proposed MixSeg were presented in Section 2.

Then, the experimental results were presented and analyzed in

Section 3. Next, the limitations of MixSeg were analyzed by

discussing the proposed method in Section 4. Finally, the work of

this study was summarized in Section 5 and future research

directions are envisioned.
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2 Materials and methods

2.1 Data collection and annotation

The data for this work were obtained from Northwest

Agriculture and Forestry University manual photpgraphy was

adopted to obtain images of apple leaf diseases in real outdoor

scenarios. A total of two common apple leaf diseases were collected,

namely apple alternaria blotch and apple grey spot. In addition, the

weather in which these dataset images were taken includes both

sunny and rainy days, which enhanced the dataset’s diversity

and authenticity.

To improve the training accuracy, we used the professional

semantic segmentation labeling software Labelme to label the

original images under the guidance of experts. We finely

labelled the edges of each leaf and disease by a pixel-by-pixel

approach. Then corresponding label files was generated, where

the background, leaf, and disease pixel values were set as 0, 1, 2,

respectively. The partial images and labels of the two apple leaf

datasets were illustrated in Figure 1, where the black, green, and red

parts of the label represented the background, leaf and disease

area, respectively.
2.2 Data augmentation

For deep learning methods, too little data volume tended to lead

to model overfitting and poor generalization. (Lee et al., 2019).

Therefore, it was necessary to use data augmentation methods to

properly extend the two apple leaf datasets. A total of six data

enhancement methods were applied: (1) Geometric deformation:

the original image and labels were cropped, randomly folded, or

rotated simultaneously to obtain new images and labels. (2)

Chromaticity change: the original image brightness, contrast, or

saturation was changed to obtain a new image, and the labels

remain unchanged. These data enhancement methods simulate the

changes in shooting angle and illumination during data acquisition,
FIGURE 1

Representative images of two types of apple leaf disease spots and their corresponding labels. In the labels, the black, green and red parts represent
the background, the leaf and the diseased area, respectively.
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which can improve the model’s robustness and generalization

ability. The apple alternaria blotch disease dataset had 256

original images and 1536 enhanced images, totaling 1792 images.

Apple grey spot disease dataset had 162 original images and 972

enhanced images, totaling 1134 images. Taking the apple alternaria

blotch leaf image dataset as an example, the enhanced images were

shown in Figure 2.
2.3 Design for MixSeg

In order to improve the segmentation accuracy and efficiency, a

mix structure network MixSeg combining the advantages of CNN,

Transformer and MLP was designed, the overall structure was

shown in Figure 3. MixSeg adopted an encoding-decoding

structure. In the encoder, the network consisted of four sets of

Mix stages. In each Mix stage, it consisted of a patch embedding and

Mix block. In addition, the core components of Mix block consisted

of Mix Transformer, PI, and LOM designed by us. In the decoder,

shallow and deep features were fused and accurate segmentation

results were output by two 3×3 depthwise separable convolutions.

Specifically, the image size of the input network was 512×512×3.

We used a 7×7 patch in Mix stage 1, and stride was set to 4. The

token serialization of the input image was performed in an

overlapping manner to reduce the parameters of the initial input

network. Each token was reshaped into a 147 dimensional vector

and mapped to a C1 dimensional embedding through a linear layer.

Immediately afterward, the extracted token sequence sets were fed

into Mix Transformer for global modeling. In particular, a PI was

inserted after each Mix Transformer to prevent the absolute

position information of the target from being lost when building

global dependencies. Then, the output of the Mix Transformer was

optimized by a LOM for local features. After the Mix stage 1, the

feature map F1 with dimension ( H4 � W
4 � C1) was output, and the

inter-level quadruple downsampling was completed. In addition,

the channel dimensions Ci(i=1, 2, 3, 4) of the output feature

maps in MixSeg-T and MixSeg-S were [32, 64, 160, 256], and
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MixSeg-M, MixSeg-L were [64, 128, 256, 512]. Other Mix stages all

use 3×3 size patches with stride 2, the inter-level double

downsampling was performed, and the multi-scale feature maps

F2, F3, F4 with f18 , 1
16 ,

1
32g of the original input are output. F1 and F4

perform feature fusion after 2x and 16x upsampling, and finally

produced fine segmentation results by two depthwise separable

convolutions. The network innovations were explained in detail in

the remainder of this section. Mix Transformer, PI, and LOM were

introduced in Section 2.3.1, 2.3.2, and 2.3.3, respectively.

2.3.1 Mix Transformer
Traditional Transformer architecture networks, such as ViT,

usually consisted of self-attention and channel MLP to achieve

spatial and channel information mixing. When pre-trained on a

large dataset, these traditional networks performed well on image

recognition tasks. However, in real production situations, data

acquisition and labeling were difficult and suffer from insufficient

sample size. In addition, in segmentation tasks, the image size

of the input network was usually large, and self-attention for

global modeling requires dealing with many long-range pixel

dependencies. Therefore, semantic segmentation networks used

self-attention as the design paradigm were usually more complex,

and they were prone to overfitting phenomena on small-scale

datasets, which was not conducive to applications in real

production. In this subsection, we proposed a new Transformer

design paradigm named Mix Transformer. It utilized depthwise

separable convolution to inject local bias. It further utilized the

designed multi-dimensional hybrid MLP (MMLP) to reduce the

computational complexity and built a complete global dependency

in multiple dimensions to make the model better match small

datasets. The structure of the Mix Transformer was demonstrated

in Figure 3.

As shown in Figure 3, the Mix Transformer maintained the

basic architecture of the Transformer, which was composed of two

main residual blocks. In particular, local bias injection was

performed in the first main residual block, which consisted of

GroupNorm and 3×3, 5×5 depthwise separable convolution of
B C D

E F G

A

FIGURE 2

Image enhancement. (A) Original image. (B) Image rotation. (C) Image flip. (D) Image crop. (E) Saturation enhancement. (F) Brightness enhancement.
(G) Contrast enhancement.
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residuals connected. Global feature dependencies were established

in the second main residual block, which consisted of GroupNorm

and MMLP.

Local biasing was a common technique in CNN, which summed

a fixed bias value to each position of the input data convolved by an

additive operation (Zhuang et al., 2019). Such an operation allowed

each convolutional kernel to learn different features and produced

corresponding responses to various input data locations. Self-

attention did not have local bias, which made some noise and

interference in the input data may affect the computational results.

Therefore, we chose depthwise separable 3×3 and 5×5 residual

convolutions instead of self-attention to inject local bias to the token

sequence set. Specifically, the first main residual block can be

expressed as:

Yi = (DWConv3�3(Norm(Xi)) + DWConv5�5(Norm(Xi)))

+ Xi (1)

where Xi(i=1, 2, 3, 4) was the output of the patch embedding in each

Mix stage, Xi∈ R(Ni×Ci). N represented the number of token

sequences, C stood for their sequence dimension. Then, Xi was

reshaped as Xi∈ R(Hi×Wi×Ci). Thus after the input local bias injection

Yi∈ R(Hi×Wi×Ci). In addition, DWConv presented the depthwise

separable convolution. 3×3 and 5×5 DWConv required few

parameters to inject rich multiscale local bias to the set of token

sequences extracted by patch embedding.

Transformer architecture usually used channel MLP for mixing

channel information. Channel MLP interacted with all the elements

in each token, so the computational complexity was large when the

token sequence was long in dimension, and overfitting was likely to

occur. In addition, channel MLP can only mix information on the

channels. Therefore, in the second main residual block, we designed

MMLP to improve the original MLP by reducing the computational

effort and jointly establishing global dependencies in multiple
Frontiers in Plant Science 05
dimensions to make the model less prone to overfitting when

training on small datasets. Figure 4 illustrated the specific

architecture of MMLP.

Specifically, Yi obtained from Equation 1 was used as input.

Taking the branching path in the H dimension as an example, this

data was reshaped as YHi ∈ R(Wi×Ci×Hi), and then linear feature

mapping in the H dimension was performed to output ŶHi , where

the H dimension shared the weight WWi ∈ R(Hi×Hi). The same

calculation was used in theW, C dimension. Immediately afterward,

the outputs of these three branches were fused in the channel

dimension. Then the number of channels was adjusted from 3Ci to

Ci. The computation of the second component can be expressed as:

YHi = Reshape(Wi,Ci,Hi)(Yi), ∀i

YWi = Reshape(Hi,Ci,Wi)(Yi), ∀i
(2)

ŶHi = Reshape(Hi,Wi,Ci)Linear(Hi,Hi)(YHi ), ∀i

^YWi = Reshape(Hi,Wi,Ci)Linear(Wi,Wi)(YWi ), ∀i

YCi = Linear(Ci,Ci)(Yi),∀i

(3)

Zi = Linear(3Ci,Ci)(Concat(ŶHi , ^YWi ,YCi )), ∀i (4)

Such a design of MMLP can significantly reduce the number of

parameters and computation, and can establish global dependencies

in different dimensions at the same time, and then summarize this

global information in the mixing stage to achieve a more complete

global dependency establishment. The number of parameters of

MMLP module can be calculated as:

ParamsMMLP = H2 +W2 + C2 + 3C2 (5)

where the parameter of 3C2 was used in the mixing phase of multi-

dimensional information. In contrast, the parameter number of

conventional MLP module was:
FIGURE 3

MixSeg overall architecture. The encoder of MixSeg consists of four MixStages, each with a patch embedding for feature serialization and a Mix block
for feature extraction. Mix transformer, PI, and LOM together form the Mix block. In addition, N represents the number of stacks of Mix Transformer
and PI, which is determined by the size of the network designed in this paper. In the decoder, DWConv represents the depthwise separable
convolution. The decoder fuses Mix Stage1 and Mix Stage4 output results and outputs the fine-grained segmentation results by two DWConv.
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ParamsMLP = 2t(HW)2 (6)

where 2 represented the two fully connected processes of expansion

to compression, t being the ratio of the expansion of the MLP layer.

In addition, the computational complexity of MMLP module can be

expressed as:

FLOPsMMLP = HWC(H +W + C) + 3HWC2 (7)

the computational complexity of MLP module can be expressed as:

FLOPsMLP = 2t(HW)2C (8)

among them, the product of H and W represents the number of

tokens, which was denoted as N. It can be found that the

computational complexity of an MMLP grows with N
ffiffiffiffi

N
p

, and

the MLP increases with N2.

In summary, Mix Transformer was designed to input local bias

to the network and model it globally by building a depthwise

separable convolution of residuals and MMLP. Compared with

the traditional Transformer architecture, Mix Transformer had

lower computational complexity, which made the model lighter

and, thus, more suitable for small datasets.
2.3.2 Position indexer
Traditional Transformer architectures implemented location

information awareness by adding absolute location codes to each

input token (Dosovitskiy et al., 2020). These location encodings

were learnable and efficient but were disrupted when the

Transformer processes longer inputs, made it impossible to

implement a pyramidal downsampling pattern while preserving

absolute location information. For example, ViT used a

downsampling rate of 16 times at each stage of the model to

maintain the order of these position-encoded vectors, which
Frontiers in Plant Science 06
made it unable to handle multi-scale target features. Therefore,

the PI that can dynamically change with the input size was proposed

in this subsection, which enabled the encoder to perform multi-

scale downsampling while retaining absolute position information.

The schematic diagram of the PI was displayed in Figure 5.

In CNN, when adding different amounts of zero-padding to the

input data, the convolution can predict the absolute position

information of the input by learning the position and amount of

zero-padding (Islam et al., 2020). Therefore, as shown in Figure 5,

the PI performed dynamic position indexing with the padding

around the input token sequence group as the domain condition.

Specifically, taking Zi of Equation 4 as the input, we first added a set

of padding around Zi for learning the position information, and the

dimension of this padding was equal to k−1
2 , and k was the

convolution kernel size. Then, group convolution was performed

using the 2D convolution of size k to index the position information

on each channel dimension and fuse it, where groups = Ci, recorded

the output result as Ẑ i. Thus, the number of parameters of the PI

can be calculated as:
ParamsPI = k2Ci (9)

the amount of computation can be calculated as:

FLOPsPI = k2CiWH (10)

In addition, the PI was added after each Mix Transformer to

index the absolute position information of the pixel points after

establishing the global dependency.

Therefore, the PI indexed the absolute position information of

the target dynamically. Such structure did not affect the translational

invariance of the model and allowed the encoder to preserve the

absolute position information while performing multi-scale

downsampling. This helped to recover the position information

accurately in the decoder and improve the segmentation

performance of the model.
FIGURE 4

The specific implementation process of MMLP. Linear represents linear feature mapping, Concat indicates stitching the fused feature maps in the
channel dimension, and Reshape denotes changing the shape of the feature maps to the specified dimension.
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2.3.3 Local optimization module
In the task of apple leaf disease segmentation, the proportion of

disease pixels to the full image pixels was small, making the

extraction of small disease features more difficult. In addition, the

jagged features of the leaf edges were difficult to extract in complex

environments, which can reduce the accuracy of leaf segmentation.

The Mix Transformer we proposed in 2.3.1 was capable of global

modeling, yet its ability to extract edge features was relatively weak

and may miss small spots. Therefore, in this subsection, the LOM

was designed to optimize the segmentation of leaf edges and

extracted more tiny spots through using CNN’s ability to extract

local features. The structure of LOM was presented in Figure 3.

As shown in Figure 3, the designed LOM first used a 1×1

convolution to up-dimension, then letted a 3×3 depthwise separable

convolution perform local feature extraction in higher dimensions,

and finally used a 1×1 convolution to adjust back to the initial

dimension. By stacking multiple convolutions, the LOM can

gradually capture different levels of texture features of the image

and combine them to form a higher-level feature representation.

Therefore, the LOM was added to the end of the Mix block to

enhance the ability of the model to extract local features.

Specifically, the Ẑ i output by the PI was used as input, the LOM

can be expressed as:

Ẑ
0
i = Conv1�1(DWConv3�3(Conv1�1(Ẑ i))) (11)

By optimizing the local features of the feature layer output from

Mix Transformer, LOM can effectively enhance the model’s ability

to extract detailed features, thus optimizing the segmentation effect

of leaf edges and extracting more tiny spots.
3 Results

In this section, the experimental environment, hyper-parameter

settings and dataset partitioning were presented in subsection 3.1.

Then, the rationale and computational formulas for the evaluation
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metrics used in this study were presented in subsection 3.2.

Thereafter, subsection 3.3 conducted ablation experiments to

explore the effects of different sizes of MixSeg on segmentation

performance. Next, subsection 3.4 compared the segmentation

accuracy of different models on two outdoor apple disease leaf

image datasets. Then, the segmentation results of different models

in real scenes were visualized in subsection 3.5. Subsequently, the

effective region of focus was analyzed in subsection 3.6.
3.1 Experiment setup

The hardware configuration of the experimental environment

for this study was as follows: Intel(R) Core(TM) i5-12400F, 16 G

memory, NVIDIA GeForce RTX3060ti, 64-bit Windows operating

system. The model was built by the Pytorch framework; the version

of PyTorch was 1.10.0. After several trials, the hyperparameters

were set as follows: optimizer was Adamw, momentum was 0.9,

weight decay was 1e-2, batch size was 8, the initial learning rate was

1e-4, the minimum learning rate was 1e-7, learning rate decay

strategy was cos, drop path rate was 0.1, and epoch was 300.

We divided the two apple leaf datasets into a training set and a

test set according to the 8:2 ratio. In addition, each dataset will be

divided into a training set and a validation set according to 9:1 for

cross-validation in the training phase.
3.2 Evaluation indicators

The following three evaluation metrics were selected to measure

the segmentation effectiveness of the model: intersection over union

(IoU), mean pixel accuracy (mPA) and pixel accuracy (PA).

In the segmentation task, IoU represents the ratio of the

intersection and union among the predicted results of a category

and the actual values of that category. mPA was the cumulative

average of the proportion of pixels correctly classified in each
FIGURE 5

The specific implementation process of PI. Convolution kernel represents the convolution kernel group for position information indexing. Before
entering the PI, the feature map will add a set of padding for learning position information around it. Then, use these convolution kernels to perform
2D group convolution on the feature map, index the position information in each channel dimension and perform fusion.
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category. PA represented the proportion of all correctly

predicted pixels to all pixels. IoU, mPA and PA were calculated

as follows:

IoU =
pii

ok
j=0pij +ok

j=0pji − pii
(12)

mPA =
1

k + 1o
k

i=0

pii

ok
j=0pij

(13)

PA = ok
i=0pii

ok
i=0ok

j=0pij
(14)

where k +1 was the number of categories plus background, pii was

the number of correctly predicted pixels, pij denoted the number of

pixels belonging to category i but predicted as category j, and pji
denoted the number of pixels belonging to category j but predicted

as category i.
3.3 Ablation studies

In this subsection, ablation experiments were performed on the

model structure of MixSeg. The following tests were performed in

the same experimental environment and utilized identical training

parameters. In addition, total parameters, floating point operations

(FLOPs), inference time, frames per second (FPS), IoU, mPA, and

PA were used to evaluate the segmentation performance of the

different models.

3.3.1 Performance comparison between different
versions of MixSeg

We designed four versions of MixSeg with different sizes by

varying the output dimension of the model and the stacking

number of Mix Transformer, which was named MixSeg-T,

MixSeg-S, MixSeg-M, and MixSeg-L according to the complexity

of the model. The results were used to analyze the effects of different

output dimensions of each Mix stage and the number of Mix

Transformer stacks on the model’s segmentation efficiency and

segmentation accuracy. Tables 1 and 2 demonstrated the

segmentation performance comparison results of each version of

the model.

According to Table 1, increased the channel dimension of the

Mix stage and the number of stacks of the Mix Transformer made

the network more complex, reduced the efficiency of the network,
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and therefore it will lead to longer inference time and less FPS. Since

the Mix Transformer we design was lightweight, increased the

number of stacks of the Mix Transformer had less impact on the

network complexity than increasing the channel dimension of the

Mix stage. From Table 3, increased the network size can improve

the segmentation accuracy on the test set of apple disease leaf

images. In addition, the proposed lightweight models MixSeg-T and

MixSeg-S were fast and efficient by the combined comparison of

Tables 1 and 2, and they took into account the lightweight and

maintain competitive performance in segmentation accuracy.

Thus, researchers can deploy MixSeg in different sizes for

mobile devices in real leaf disease diagnosis scenarios depending

on the specific situation. Generally, a larger MixSeg model will have

higher segmentation accuracy but requires more computational

resources and inference time. Therefore, researchers can choose a

smaller MixSeg model for resource-constrained application

scenarios to obtain faster inference speed and less computational

resource consumption. In contrast, they can choose a larger MixSeg

model for high-precision segmentation scenarios to obtain higher

segmentation accuracy.

3.3.2 Performance verification of PI and LOM
We designed four sets of experiments to verify the performance

of the proposed PI and LOM. Specifically, Test 1 used MixSeg-T as

the base framework and removes the PI and LOM, which were set as

the baseline. Test 2 and Test 3 were both based on Test 1, which

introduced the PI and LOM separately. In addition, Test 4, which

was the method proposed in this paper, introduces both the PI and

the LOM on top of Test 1. The evaluation results of the different test

models were shown in Tables 3, 4 were shown.

As shown in Table 3, by compared Test 1 and Test 2, the model

with the introduction of PI outperformed the baseline model in

segmentation accuracy. On apple alternaria blotch and apple grey

spot test sets, the IoU for leaf segmentation was improved by 2.14%

and 2.45%, respectively. The IoU for lesion segmentation was

improved by 1.6% and 2.6%, respectively. Compared to Test 1

and Test 3, the segmentation accuracy of the model was improved

more significantly compared to the baseline model after the

introduction of LOM. The IoU for leaf segmentation was

improved by 9.00% and 9.38%, respectively. The IoU for lesion

segmentation was improved by 7.71% and 8.96%, respectively. The

results indicate that PI helps to accurately recover the position

information of the target leaf, lesion in the decoder due to its ability

to dynamically index the absolute position information of the

target, which in turn improves the segmentation effect of the
TABLE 1 Performance metrics results for different versions of MixSeg.

Version
Output

dimension
Mix Transformer stacking

number
Total parameters/

M
FLOPs/

G
Inference time/

ms
FPS

MixSeg-T [32,64,160,256] [2,2,2,2] 1.90 4.17 8.70 114.82

MixSeg-S [32,64,160,256] [4,4,4,4] 2.97 5.33 12.67 78.96

MixSeg-M [64,128,256,512] [2,2,2,2] 6.44 14.38 18.93 52.80

MixSeg-L [64,128,256,512] [4,4,4,4] 10.03 17.85 27.00 37.03
frontie
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model. And LOM can optimize the segmentation effect of leaf edges

and extract more tiny spots, so it can also improve the segmentation

effect of the model. In comparison with Test 4 and other tests, the

combination of both PI and LOM, introduced on the baseline

model, gave the best performance in leaf and spot segmentation.

The results demonstrate that the proposed method is designed to

maximize the segmentation accuracy of the model as the LOM is

able to accurately and efficiently optimize the edge features of the

target leaves and diseases after the PI indexes to the absolute

position information of the target leaves and spots. In addition,

observed Table 4, the effects of PI and LOM on model inference

time, total parameters and FLOPs were relatively minor. However,

compared Test 1 and Test 4, the proposed method decreased 27.87

in FPS compared to the baseline model due to the increase in

network complexity. Due to the complexity of the orchard

environment, sacrifice of some FPS to ensure accurate segmentation

of apple leaves and diseases was necessary. In summary, the proposed

methodhadgood segmentationperformance in the taskof segmenting

apple diseased leaf images.
3.4 Comparsion of different models

In this subsection, to demonstrate the advantages of the MixSeg

model, MixSeg was compared with popular deep learning semantic

segmentation models, including CNN-based and Transformer-

based single structure models. These models were PSPNet (Zhao
Frontiers in Plant Science 09
et al., 2017), HRNetV2 (Sun et al., 2019), U-Net (Ronneberger et al.,

2015), DeepLabv3+ (Chen et al., 2018), and SegFormer (Xie et al.,

2021b). PSPNet used a pyramid pooling module to efficiently

exploit contextual information. HRNetV2 provided rich semantic

information by simultaneously extracting features at branches

of different resolutions and then fusing features from these

branches to maintain high resolution while providing rich

semantic information. U-Net used a symmetric encoding-

decoding structure to achieve multi-scale information fusion by

jump linking. DeepLabv3+ used atrous spatial pyramid pooling

(ASPP) to efficiently enhance the receptive field and mitigate the

information loss problem caused by pooling. SegFormer was a

Transformer semantic segmentation-based model, which further

improves the segmentation efficiency of the model by reducing the

number of parameters of self-attention and decoder. To be fair, all

models were placed in the same experimental environment as

MixSeg, and both were trained on two outdoor apple disease leaf

image datasets. The segmentation accuracy of different models was

shown in Table 5.

As illustrated in Table 5, MixSeg-T performed best on both

outdoor apple diseased leaf image datasets. Taking the apple

alternaria blotch leaf dataset as an example, the same results were

shown on another dataset. MixSeg-T was much better than PSPNet

in segmentation accuracy. Compared with PSPNet, MixSeg-T

achieved 2.75% higher IoU for leaf segmentation and 15.6%

higher IoU for lesion segmentation. HRNetV2 had less accuracy

than MixSeg-T in both leaf and disease spot segmentation, with the
TABLE 3 The results of segmentation accuracy for different test models.

Test No. Model

Apple
alternaria blotch

Apple
grey spot

IoU/% mPA PA IoU/% mPA PA

Leaf Disease Leaf Disease

1 Baseline 88.48 76.71 93.79 96.07 87.53 73.26 93.65 96.05

2 Baseline+PI 90.62 78.31 94.28 96.88 89.98 75.86 94.19 96.92

3 Baseline+LOM 97.48 84.42 96.48 99.21 97.36 82.22 96.18 99.25

4
Baseline+PI+LOM
(Proposed method) 98.22 87.40 97.21 99.45 98.09 86.20 97.26 99.46
The bold font indicates which model performs best on a particular evaluation metric.
TABLE 2 The results of segmentation accuracy for different versions of MixSeg.

Apple
alternaria blotch

Apple
grey spot

Version IoU/% mPA PA IoU/% mPA PA

Leaf Disease Leaf Disease

MixSeg-T 98.22 87.40 97.21 99.45 98.09 86.20 97.26 99.46

MixSeg-S 98.39 88.55 97.54 99.50 98.32 87.98 97.62 99.53

MixSeg-M 98.41 88.63 97.58 99.51 98.40 88.12 97.67 99.55

MixSeg-L 98.53 89.55 97.87 99.55 98.49 88.87 97.93 99.58
The bold font denotes which MixSeg version has the best performance on a particular evaluation metric.
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IoU of leaf segmentation being 3.1% lower than that of MixSeg-T

and the IoU of disease spot segmentation being 8.17% lower than

that of MixSeg-T. Compared to SegFormer, MixSeg-T achieved

1.42% higher IoU for leaf segmentation and 5.18% higher IoU for

lesion segmentation. In addition, DeepLabv3+ and U-Net were

closer and better than other methods in segmentation accuracy,

but both were inferior to MixSeg-T. DeepLabV3+ was 1.37%

and 4.85% lower than the proposed method in the IoU of leaf

and spot segmentation, respectively. At the same time, U-Net

was 2.73% and 3.68% lower in the IoU of leaf and spot

segmentation, respectively.

This indicates that the combined CNN, Tranformer and MLP

models outperform the single structure model in terms of

segmentation accuracy for apple leaves and diseases in outdoor

environments. Therefore, the more accurate segmentation

capability of MixSeg can help growers better analyze the disease

status of their crops, detect pests and diseases in time and take

effective preventive measures. It can also help researchers gain a

deeper understanding of the characteristics and development

patterns of crop diseases and improve the accuracy and efficiency

of disease diagnosis.

Table 6 recorded the inference time, FPS, total parameters and

FLOPs for all models. According to Table 6, MixSeg-T exhibited a

more lightweight performance. MixSeg-T was 30.97ms faster than

PSPNet in inference time, and the FPS was 89.62 higher. Moreover,

the total parameters and FLOPs of MixSeg-T were only 3.9% and

6.8% of PSPNet. The inference time of HRNetV2 was 20.87ms

slower than MixSeg-T, and the FPS was 81.01 less. Compared with
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the lightweight SegFormer, the inference time of MixSeg-T was

1.84ms faster, the FPS was 20.02 higher, and the total parameters

and FLOPs are lower than SegFormer. In contrast to MixSeg-T, the

inference time of U-Net was 36.06ms slower than MixSeg-T, and

the FPS was 92.49 lower. Moreover, the total parameters and FLOPs

of MixSeg-T were only 7.6% and 1.8% of U-Net. In addition, the

inference speed and FPS of DeepLabv3+ were close to those of

MixSeg-T, but MixSeg-T had fewer total parameters and FLOPs.

In practical scenarios, apple trees in outdoor environments can

be widely dispersed, and the diagnosis of leaf diseases needs to be

conducted at various locations. This necessitates models with

smaller scale and lower computational requirements to be

optimally deployed on mobile devices, enhancing the flexibility

and efficiency of the diagnosis process. Experimental findings

demonstrate that MixSeg outperforms mainstream segmentation

models in terms of lightweight characteristics, rendering it

more suitable for real-world applications. It can be swiftly

deployed on mobile devices such as smartphones, drones, and

application robots, enabling efficient diagnosis of leaf diseases.

Consequently, this facilitates the timely implementation of

effective preventive measures.
3.5 Visualization of apple diseased leaf
segmentation results

To validate the segmentation performance of MixSeg in

complex environments, all models were predicted with two sets of
TABLE 5 The results of segmentation accuracy of different models on two diseased leaf test sets.

Model

Apple
alternaria blotch

Apple
grey spot

IoU/% mPA PA IoU/% mPA PA

Leaf Disease Leaf Disease

PSPNet 95.47 71.80 93.50 98.56 94.69 64.84 91.91 98.46

HRNetV2 95.12 79.23 94.06 98.45 95.75 76.85 93.92 98.77

SegFormer 96.80 82.22 95.89 99.00 96.60 78.94 94.93 99.03

U-Net 95.49 83.72 95.71 98.57 95.46 82.23 95.99 98.70

DeepLabv3+ 96.85 82.55 96.74 99.01 96.47 79.41 96.88 98.98

MixSeg-T 98.22 87.40 97.21 99.45 98.09 86.20 97.26 99.46
The bold font indicates which model performs best on a particular evaluation metric.
TABLE 4 Performance metrics results for different test models.

Test No. Model Inference time/ms FPS Total parameters/M FLOPs/G

1 Baseline 7.00 142.69 1.70 3.99

2 Baseline+PI 7.37 135.68 1.71 4.01

3 Baseline+LOM 8.48 120.32 1.89 4.15

4 Baseline+PI+LOM (Proposed method) 8.70 114.82 1.90 4.17
f

The bold font indicates which model performs best on a particular evaluation metric.
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outdoor apple disease leaf test images. We adjusted the

transparency of the predicted result image to 50% and then fused

it with the original image to compare the segmentation effect of each

method more clearly.

Figures 6 and 7 demonstrated the segmentation results of each

model under the test set of apple alternaria blotch leaf images.

Compared Figure 6, PSPNet was less effective in segmenting

outdoor leaves and was easily disturbed by other leaves. Moreover,

PSPNet missed many small disease spots. This poor performance can

also be seen in Figure 7. HRNetV2 did not segment both leaves and

disease spots well. The leaf area extracted by HRNetV2 is incomplete,

and small spots were missed. SegFormer was less effective in outdoor

leaf image segmentation, and there was a loss of tiny spots. DeepLabv3

+ was not accurate enough in extracting leaf regions and misses small

spots. Although the segmentation of U-Net was better and superior to

the previously mentioned methods, it also suffered from the

interference of overlapping leaves and misses some tiny spots. We

can see that both MixSeg-T and MixSeg-L have better segmentation

results than U-Net. They can extract the target leaves clearly from the

complex environment and the tiny spots missed by other methods.

Figures 8 and 9 demonstrated the segmentation results of each

model under the test set of apple grey spot diseased leaf images.

Compared Figures 8, 9, PSPNet can usually segment the whole

target leaf, but it was vulnerable to other environmental factors.

Therefore the target leaf area extracted by PSPNet was not complete
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enough to segment the serrated shape of the leaf edge. Moreover,

the color of the disease spots at the leaf tip was similar to some

elements in the background, and PSPNet cannot extract these spots.

The leaf areas extracted by HRNetV2 were somewhat more

complete than those of PSPNet. However, HRNetV2 also cannot

segment the serrated shape of the leaves. Moreover, HRNetV2 also

missed the disease spots at the leaf tips. SegFormer had poor

segmentation performance on leaves, which were disturbed by

other leaves. In addition, SegFormer could not accurately extract

the diseased areas at the leaf tips. DeepLabv3+ was also less effective

in segmenting the spots at the leaf tips. The segmentation of U-Net

was better and superior to the above methods, but not as good as

MixSeg-T and MixSeg-L. Although U-Net extracts the spots at the

leaf tips, the area of the disease spots was not accurate enough. In

contrast, MixSeg-T and MixSeg-L can extract the area of leaf tip

spots more accurately. In addition, MixSeg-T and MixSeg-L can

better segment the serrations on the leaf edges.

To more comprehensively compare the differences in

segmentation performance between the different models, Figure 10

compared the segmentation results. From Figure 10, the comparison

with MixSeg, other models had poor segmentation results due to the

difference in feature extraction structure. For example, the pyramid

pooling and spatial pyramid structure of PSPNet and DeepLabv3+,

although expanding the sensory field, tended to miss small spots in

the downsampling. SegFormer, although used self-attention for global
B C D
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FIGURE 6

Fusion segmentation results of different models for apple alternaria blotch leaf with breakage. (A) Image. (B) PSPNet. (C) HRNetV2. (D) SegFormer.
(E) DeepLabv3+. (F) U-Net. (G) MixSeg-T. (H) MixSeg-L.
TABLE 6 The results of performance metrics for different models.

Model Inference time/ms FPS Total parameters/M FLOPs/G

PSPNet 39.67 25.20 49.07 61.63

HRNetV2 29.57 33.81 9.64 18.66

SegFormer 10.54 94.80 3.71 6.77

U-Net 44.76 22.33 24.89 225.85

DeepLabv3+ 7.96 125.52 5.81 26.44

MixSeg-T 8.70 114.82 1.90 4.17
The bold font indicates which model performs best on a particular evaluation metric.
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E F G H
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FIGURE 8

The results of different models for fusion segmentation of apple gray spot leaves with lesions present at the leaf tip. (B) PSPNet. (C) HRNetV2.
(D) SegFormer. (E) DeepLabv3+. (F) U-Net. (G) MixSeg-T. (H) MixSeg-L.
B C D

E F G H
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FIGURE 7

The results of fusion segmentation of different models on overlapping apple alternaria blotch leaves. (A) Image. (B) PSPNet. (C) HRNetV2.
(D) SegFormer. (E) DeepLabv3+. (F) U-Net. (G) MixSeg-T. (H) MixSeg-L.
B C D

E F G H

A

FIGURE 9

The results of fusion segmentation of apple gray spot leaves by different models in overilluminated environments. (B) PSPNet. (C) HRNetV2.
(D) SegFormer. (E) DeepLabv3+. (F) U-Net. (G) MixSeg-T. (H) MixSeg-L.
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modeling, cannot encode the absolute position it cannot accurately

recover the position information of leaves and spots in the

upsampling. This led to poor segmentation results. Through a

comprehensive comparison, MixSeg outperformed other methods

in terms of segmentation effect.
3.6 Effective focus on regional analysis

To further demonstrated the effectiveness of the MixSeg

architecture, we outputted the heat map of effective attention

regions for DeepLabv3+ and MixSeg classification heads used the

Grad-CAM technique separately and compared them. DeepLabv3+

was selected because it can be found through various experiments

that DeepLabv3+ had the best overall performance except for
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MixSeg. Grad-CAM explained the parts of the network that are of

concern in the decision-making process, and these regions of

concern played an essential role in the final prediction. Regions

with brighter colors or higher intensities in the heat map were

considered more important for the network’s decision-making. In

contrast, regions with darker or lower intensities were relatively less

critical. Based on this, we can better measure the segmentation

performance of the network. Figure 11 showed the comparison

results of DeepLabv3+ and MixSeg effective attention regions.

Observed the second and third rows of Figure 11, the effective

area of focus of MixSeg can accurately focus on the target leaves.

However, DeepLabv3+ was not focused enough on the target leaf

because it was vulnerable to environmental distracting factors. In

addition, through comparing with DeepLabv3+, MixSeg can notice

the serrated shape on the leaf edge so that it can obtain better leaf
FIGURE 10

Fusion segmentation results of different models for outdoor apple alternaria blotch and grey spot leaf image datasets.
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segmentation results. Compared with the fourth and fifth rows of

Figure 11, the color of the spots was similar to the color of some

elements in the background, and DeepLabv3+ was less resistant to

interference and therefore misses the attention to some spots. In

contrast, MixSeg can focus on the spots missed by DeepLabv3+.

Moreover, MixSeg was able to give more substantial attention to the

spots. Therefore, MixSeg had a better segmentation effect on the spots

in the final prediction. In summary, MixSeg was more resistant to

interference and had a more accurate region of attention, which made

MixSeg have better segmentation performance.
4 Discussion

The MixSeg model proposed in this paper introduced a hybrid

structural network model based on CNN, Transformer and MLP for

apple leaf and disease segmentation. By comparing with the latest

segmentation models, it can be found that MixSeg was the most
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lightweight with the best segmentation accuracy and segmentation

effect. In addition, the segmentation performance of MixSeg with

different sizes was verified by ablation experiments. The ability of

MixSeg to accurately extract leaves and diseases in complex

environments was further demonstrated by analyzing and

comparing the effective regions of focus of MixSeg and DeepLabv3+.

In the current work, the feasibility of MixSeg applied to segment

apple leaf diseases in real scenarios was deeply experimented and

discussed. MixSeg was designed to be lightweight for the

requirements of deployment on mobile devices in real scenarios.

In addition, MixSeg was resistant to interference and had strong

feature representation capability and flexibility to capture and learn

the features of target leaves and diseases in complex environments.

Although the performance of MixSeg had only been validated on

the task of apple leaf spot segmentation in complex environments in

this study, the core principles and technical framework were

somewhat generalizable and therefore very likely to be applied to

other crop leaves. In the subsequent work, we will further add
FIGURE 11

The results of DeepLabv3+ and MixSeg for effective focus areas on outdoor leaves and diseases. Areas with brighter colors or higher intensity in the
heat map are considered more important for network decision-making, while areas with darker colors or lower intensity are relatively less important.
These focus areas play an important role in the final prediction of the network.
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different varieties of crop disease leaf datasets and continue to train

MixSeg in order to improve its generalization ability in practical

applications. However, there may be some limitations when

applying MixSeg to other crop leaf categories. For instance,

different kinds of leaves may have a varying morphology, texture

and disease characteristics, which may limit the performance of

MixSeg in some cases. Therefore, in future research, when

extending MixSeg to other crop leaves, further research and

understanding of the characteristics of the target crop leaves and

diseases are needed to optimize and adjust accordingly to ensure the

accuracy and robustness of the method.
5 Conclusion

This work presented a mixed-structure semantic segmentation

method, MixSeg, for fast and accurate segmentation of apple leaves

and diseases in complex environments. In this model, Mix

Transformer was designed to inject multi-scale local biases into the

model at a much smaller computational cost and establishes global

dependencies between pairs of pixels. The PI was proposed, which

was independent of the input length and thus allowed the model to

perform multi-scale modeling while extracting learnable absolute

position information. LOMwas proposed to optimize the effect of the

model on local feature extraction. In addition, the advantages of the

mix structure model were demonstrated by comparing various

experiments of MixSeg with mainstream single-structure semantic

segmentation models. The experimental results showed that MixSeg

was the most effective in segmenting apple diseased leaf images in

complex environments, which made this study a key attempt to

advance the research on smart agriculture. However, only apple

diseased leaves were selected as experimental objects in the study,

and the generalization ability of the model needed to be further

improved. In future research, we will increase the variety of datasets

used for training and further optimize the model according to the

characteristics of different crop diseased leaves and the complex

environments in which they grow, so that the mix structure model

can be more widely applied to the field of smart agriculture.
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