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1Kálmán Kerpely Doctoral School of Crop Production and Horticultural Science, University of
Debrecen, Debrecen, Hungary, 2Department of Horticulture, College of Agriculture and
Environmental Science, Debark University, Debark, Ethiopia, 3Institute of Crop Production, Hungarian
University of Agriculture and Life Sciences, Gödöllő, Hungary, 4Faculty of Agricultural, Food Sciences
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The increasing human population and the changing climate, which have given

rise to frequent drought spells, pose a serious threat to global food security, while

identification of high-yielding drought-tolerant genotypes coupled with nutrient

management remains a proficient approach to cope with these challenges. An

increase in seasonal temperature, recurring drought stress, and elevated

atmospheric CO2 are alarmingly affecting durum wheat production,

productivity, grain quality, and the human systems it supports. An increase in

atmospheric carbon dioxide can improve wheat grain yield in a certain amount,

but the right amount of nutrients, water, and other required conditions should be

met to realize this benefit. Nutrients including nitrogen, silicon, and sulfur supply

could alleviate the adverse effects of abiotic stress by enhancing antioxidant

defense and improving nitrogen assimilation, although the effects on plant

tolerance to drought stress varied with nitrogen ionic forms. The application of

sewage sludge to durum wheat also positively impacts its drought stress

tolerance by triggering high accumulation of osmoregulators, improving water

retention capacity in the soil, and promoting root growth. These beneficial effect

of nutrients contribute to durum wheat ability to withstand and recover from

abiotic stress conditions, ultimately enhance its productivity and resilience. While

these nutrients can provide benefits when applied in appropriate amounts, their

excessive use can lead to adverse environmental consequences. Advanced

technologies such as precision nutrient management, unmanned aerial

vehicle-based spraying, and anaerobic digestion play significant roles in

reducing the negative effects associated with nutrients like sewage sludge,

zinc, nanoparticles and silicon fertilizers. Hence, nutrient management

practices offer significant potential to enhance the caryopsis quality and yield
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potential of durum wheat. Through implementing tailored nutrient management

strategies, farmers, breeders, and agronomists can contribute to sustainable

durum wheat production, ensuring food security and maintaining the economic

viability of the crop under the changing climatic conditions.
KEYWORDS

durum wheat, nutrient management, grain quality, yield, enrichment of CO2, drought,
water logging, temperature
1 Introduction

Durum wheat (Triticum turgidum L.), a commonly cultivated

form of allotetraploid, holds particular significance due to its

essential role in the production of semolina, a key ingredient for

pasta and macaroni manufacturing (Bin et al., 2017; Andrej et al.,

2021). The capacity of durum wheat to produce high-quality

foodstuffs is strongly determined by the content and composition

of grain storage proteins, which form a viscoelastic network called

gluten that is formed when flour is hydrated and mixed into a

dough (Koga et al., 2016). This network allows the dough to stretch

and retain its shape during pasta and macaroni processing, such as

kneading and extrusion. Although durum wheat offers such

enormous economic and industrial benefits, the yield, grain

protein, and mineral concentration may wane in the future due to

changing climatic circumstances (Ben et al., 2021). Globally, durum

wheat production accounts for 5% of the total wheat production,

cultivated across 16 million hectares of planting area (Beres et al.,

2020). However, only 13% of the world’s arable land is suitable for

durum wheat cultivation, and as a result of climate change, the

suitable area may have decreased by 19% and 48% in the middle and

end of the century, respectively (Andrej et al., 2021). These changes

could intensify extreme meteorological and hydrological events,

including drought, waterlogging, and heat waves, which have also

increased persistently in terms of both frequency and intensity

(Seneviratne et al., 2012; Yu et al., 2018).

The changing climatic conditions pose a substantial threat to

crop production, including durum wheat, as they give rise to

significant alterations in phytochemical, physiological, and

biochemical processes. These changes can have severe

repercussions, impacting both the yield of durum wheat and the

surrounding environment. A shift in climatic conditions such as

high temperatures and drought stress has turned out to be the most

important constraining factor for the crop production sector, where

a substantial effect is frequently observed at the later developmental

phases (Ben et al., 2021). It has been observed that, up to a certain

concentration, atmospheric CO2 enrichment could increase yield

and grain starch accumulation, but it also negatively affects the

nutritional profile of grains, such as the protein and mineral content

of most cereals (Asseng et al., 2019; Ben et al., 2021). However, the

mechanisms behind these additive and antagonistic effects remain

obscure, although common understanding ascribes the dilution

effect as the primary cause of the decline in grain nutritional
02
profile (Santos et al., 2023). Identification of drought-tolerant and

high-yielding cultivars combined with proper nutrient management

could be an effective approach to reduce these challenges (Boudjabi

et al., 2015; Ma et al., 2017; Melash et al., 2019). Indeed, this

approach may necessitate an understanding of crop response to

water stress as well as crop responsiveness to the applied nutrients

(Shew et al., 2020).

Identifying the resilience of yield and grain quality under

changing climatic conditions is of utmost importance in

effectively addressing the challenges posed by CO2 enrichment,

drought, and high temperature stresses. Hence, understanding the

temporal and spatial scales of the consequences of these stressors is

important for developing effective adaptation and mitigation

strategies. It has been proven that unless global efforts to reduce

greenhouse gas emissions are promptly and significantly intensified,

the effects of climate change will be more profound on future durum

wheat production. This could further constrain the harvestable yield

and morphometric traits of wheat, often through a decrease in

important yield attribute traits such as, the number of seeds per

spike, grain weight, and spike length (Hasan and Tacettin, 2010).

However, there has been relatively limited consideration of

potential climate impacts on malnutrition through mechanisms

such as changing the nutrient content of food products (Santos

et al., 2023). These climate-induced shifts impact on suitable

growing areas, grain yield, and nutritional composition,

necessitating a comprehensive understanding and eventual

adoption of efficient and sustainable nutrient management

techniques to stabilize production and adapt the entire food

supply chain.

Nutrient management emerges as a promising panacea to

counterbalance the negative impacts of changing climatic

conditions on durum wheat cultivation (Melash and Ábrahám,

2022). Advanced site-specific technologies and techniques allow for

the precise customization of nutrient applications, considering

factors like timing, rate, and placement, to optimize durum wheat

productivity while minimizing environmental impacts (Kizilgeci

et al., 2021). The application of precision nutrient management to

durum wheat has demonstrated encouraging results, leading to

improved grain yield and protein content. Moreover, precision

nutrient management not only enhances crop yield and income

but also promotes the efficient utilization of nutrients and water

while reducing greenhouse gas (GHG) emissions (Sadhukhan et al.,

2023). In the broader context of agriculture, implementing nutrient
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management strategies based on a nutrient expert approach has also

shown considerable benefits. This approach has resulted in a

significant reduction of 1.44 million tons in nitrogen fertilizer use

and a decrease of 5.34 million tons of CO2 equivalent emissions

annually in addition to increasing yield of crops such as rice and

wheat (Sapkota et al., 2021). This reduction reflects a more precise

and efficient use of nitrogen inputs, ensuring that crops receive the

optimal amount of nutrients, reducing wastage, and mitigating

potential environmental impacts. The strategic utilization of

nitrogen fertilizer offers a significant potential for enhancing grain

yield and bolstering crop stress tolerance. Nitrogen plays a crucial

role in maintaining leaf water potential, facilitating photosynthetic

activities, and fortifying antioxidative defense mechanisms, thus

contributing to crop performance (Abid et al., 2016). In the context

of drought stress and associated challenges in wheat crop, the

application of silicon, seaweed extracts, sewage sludge, and zinc-

containing fertilizers has been found to effectively alleviate the

inhibitory effects of abiotic stressors (Boudjabi et al., 2015;

Coskun et al., 2016; Ma et al., 2017). Hence, incorporating zinc-

containing fertilizers, sewage sludge, and silicon-based nutrients

into the cultivation system of durum wheat can provide several

benefits including optimizing nutrient availability, promoting plant

health, and enhancing the crop’s resilience to changing

climatic conditions.

The protagonists of nutrient management technologies have

been reported in various studies as a potential agronomic solution

to enhance yield and grain quality traits under the current climate

change scenarios (Sapkota et al., 2021). However, fertilizer

management practices alone cannot single-handedly mitigate

climate change effects on durum wheat productivity but rather

should be viewed as a vital component of a comprehensive set of

climate-smart agricultural strategies. Hence, adopting precision

agriculture techniques, integrating organic and inorganic

fertilizers, and implementing supportive policies can optimize

nutrient use, reduce greenhouse gas emissions, enhance soil

carbon sequestration, and promote sustainable agricultural

systems. Indeed, scientific verification has shown that the

integration of farmyard manure along with additional silicon

based fertilizers enhances growth, increases grain yield, improves

nutrient uptake, crop quality, and boosts nitrogen-use efficiency of

the crop (Naik et al., 2022). Through a comprehensive analysis of

existing research this review article aims to achieve two primary

objectives. Firstly, it seeks to identify knowledge gaps, challenges,

and opportunities associated with fertilizer management in durum

wheat production. The article could therefore provide valuable

recommendations for future research and policy development in

this field, with the ultimate goal of optimizing fertilizer use and

improving agricultural practices. Secondly, it aims to examine the

effectiveness of nutrient management strategies in enhancing the

yield, physiology, and grain nutritional composition of durum

wheat under abiotic stress conditions and promoting sustainable

agricultural systems. By assessing the outcomes of different nutrient

management approaches the article can contribute to the

development of sustainable agricultural system that promote

resilient crop production. Through these objectives, the article

can universally serve as a valuable resource for agronomists,
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and fostering advancements in durum wheat cultivation for

improved food security and sustainable agricultural practices

under the changing climatic scenarios.
2 Methodology

A comprehensive search of the literature has been conducted to

identify relevant studies and publications related to the topic of

interest. The search was performed across various electronic

databases such as PubMed, Scopus, Web of Science, and Google

Scholar. Keywords and terms used in the search included the terms

climate change, drought, waterlogging, durum wheat varieties in

combination with the terms qualitative and qualitative traits. The

initial search yielded a total of 236 articles, which were then

screened based on their titles and abstracts for relevance to the

topic under investigation. After the initial screening, a more detailed

evaluation of the selected articles was conducted and included

studies that met the following inclusion criteria: online

accessibility, written language, and most importantly, primary

data. Studies that did not meet the inclusion criteria or were

duplicates were excluded. The full texts of the selected articles

were obtained and reviewed for their relevance to the research

question and the quality of the methodology employed.

The selected studies encompassed a wide range of experimental

designs, including randomized controlled trials, long-term

observational studies, and field and greenhouse experiments as

well. In order to provide a comprehensive analysis, studies

investigating the effects of various fertilizer types, including

synthetic fertilizers, organic amendments, and bio-fertilizers, and

their role under changing climatic conditions were included in this

review. The overall findings of the included studies are summarized

and presented in a narrative format, highlighting the key trends,

patterns, and knowledge gaps in the literature.
3 Building a resilient future: evaluating
the resilience of yield and grain quality
in a changing climate

3.1 Unveiling the impact of drought-
induced stress on grain yield and quality

The change in rainfall pattern could increase short-run crop

failures and cause long-run reduction in production. This is

primarily due to the adverse effect it can have on morphometric

characteristics and associated yield-attributed traits of crops. The

harmful effect of drought stress on grain yield can be significantly

amplified when it occurs with the presence of various other climatic

parameters, as illustrated in Figure 1 (Pradhan et al., 2012; Qaseem

et al., 2019). Its cohabitation and concurrent effect can have a

synergistic, antagonistic, or hypo-additive effect on yield and other

associated yield attribute traits (Prasad et al., 2011). Heat and

drought-induced stress significantly affect the rate of wheat
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growth and development, and under such conditions, wheat species

could complete their developmental cycle much faster than under

normal conditions (Ghazi, 2012). However, the crop might have a

short duration with fewer days to accumulate more assimilates

during their entire developmental cycle (Erda et al., 2005; Wahid

et al., 2007). This effect initiates various physiological processes,

such as a decreased rate of photosynthesis coupled with abnormal

respiration, stomata closure, and high leaf temperature, leading to a

diminished potential for biomass production (Mittler, 2006;

Qaseem et al., 2019). Hence understanding the effect of heat and

drought stress on durum wheat growth and development is crucial

for developing strategies to mitigate their negative impacts and

ensure sustainable production in changing environments.

The austerity and negative impact instigated by drought stress are

usually unforeseeable, as they are also controlled by multiple factors,

including patterns in rainfall, the water-retaining ability of the soil,

and a water deficit due to a high crop transpiration rate (Yan et al.,

2016). The combination of these factors contributes to the complex

nature of drought and its impact on the entire agricultural system.

These situations further aggravate the drought stress and influence

the overall productivity of crops by affecting the relationships with

water-soluble nutrients and eventually causing a substantial decline in

grain yield due to the impairment of the photosynthetic process

(Rakshit et al., 2020; Gebrewahid et al., 2021). These results

universally indicate that drought stress is not solely determined by

absence or deficiency of rainfall; it also depends on how the available

water is retained in the soil and the rate at which the crop consume

water through transpiration. Although grain yield is a multifarious

amalgamation of diverse yield-attributed traits, drought-mediated

yield reduction could account for up to 50% of the total grain

production (Ben et al., 2021). Pollen abortion, a decrease in the
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amount of conserved food, and the formation of sterile tillers are the

main factors contributing to a decrease in grain formation during dry

climatic conditions (Duggan et al., 2005; Sinclair and Jamieson, 2006;

Ji et al., 2010). The higher deposition of abscisic acid in the spike,

triggered by drought stress, has also been found to potentially reduce

the pollination capacity of the ovary, leading to significant seed

abortion and a decline in seed set (Weldearegay et al., 2012). These

results indicate the importance of developing improved durum wheat

varieties that possess enhanced resistance to drought stress; thus, the

utilization of novel molecular markers and their successful

integration into breeding programs is a valuable approach to

achieving maximum production.

Water stress during the critical growth stages of wheat, such as

flowering and grain filling, can be particularly detrimental. These

stages are crucial for the development and filling of grains, and any

water shortage during this time can result in reduced morphometric

traits, such as plant height, the number of tillers, biomass yield, and

grain weight, which could decrease along with the grain filling rate

(Nouri et al., 2011). A substantial decline in leaf area and

photosynthesis activity was also detected under drought stress,

which eventually intensified to reduce the number of leaves per

plant, leaf size, and longevity (Shao et al., 2008). This could be due

to the limitation of leaf extension under water stress conditions to

balance the absorbed water by the root and the water status of plant

tissue (Nezhadahmadi et al., 2013). While the effect of drought

stress is a complex issue, the specific outcomes can vary depending

on various factors, such as the duration and intensity of drought

events, plant health conditions, nutritional status, varietal

differences, and growth stages at which crops are exposed to

drought and the environmental conditions in which crops are

grown (Sun et al., 2017; Yu et al., 2018).
FIGURE 1

illustrates a percentage reduction in grain yield and associated traits of wheat genotypes evaluated under drought, heat, and combinations of both
stress treatments (Qaseem et al., 2019).
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3.1.1 Drought stress and grain protein content:
understanding the complex relationship

The grain protein content plays a multifaceted role, particularly

in relation to both drought conditions and in the context of food

products. Higher grain protein concentration is not only improving

the quality of end-use products but also enhance survival of the cells

against stress conditions due to its role in stabilizing the membranes

(Jamshidi et al., 2020). Higher protein content in grains can help

crops maintain metabolic functions, sustain growth, and enhance

drought tolerance, as proteins are involved in various physiological

processes, including enzymatic reactions, cellular signaling, and

stress responses (Merewitz et al., 2011). However, establishing a

clear and consistent relationship between drought stress and grain

quality attributes in durum wheat has indeed posed challenges,

despite substantial research efforts (Flagella et al., 2010; Gebrewahid

et al., 2021). The absence of a “one-size-fits-all” model for the

impact of drought stress on durum wheat, could be a reflection of

the complex nature of drought stress and the varied responses

observed across different crop ecotypes and genotype-by-

environment (G × E) interactions. The presence of additional

factors and methodological differences among previous studies

can contribute to the challenge of establishing a simple one-

dimensional model for drought stress alone and make it difficult

to consolidate research findings into a single model.

The relationship between drought and grain protein content

could vary depending on the durum wheat varieties, the

pedoclimatic conditions of the growing environment, and their

interaction (Melash and Ábrahám, 2022). The interactions and

synergistic effects between these factors further complicate the

prediction and management of drought stress. In some cases,

drought stress significantly decreases the grain protein content, to

an extent that varies with the degree and timing of the drought

events as well (Flagella et al., 2010; Gebrewahid et al., 2021). Gene

expression of storage protein fractions such as gliadin, glutenin,

-gliadin, and -gliadin has also been downregulated when the

cropping season experiences a dry spell (Yang et al., 2011; Begcy

and Walia, 2015). The decreased grain protein concentration in

water-limited environments can be primarily attributed to the

limited availability and assimilation of nitrogen, which is an

essential component of storage grain proteins (Zia et al., 2021).

This negative consequence of the drought effect, along with poor

caryopsis quality, could further constrain the strength of the dough

and its stability, such as loaf volume and valorimetric values

(Tsenov et al., 2015).

While a number of studies suggest a negative effect of drought

stress on durum wheat grain protein content, there are also

controversial findings and alternative perspectives. It has been

observed that grain protein content can be significantly

ameliorated when wheat crops are subjected to drought stress

(Flagella et al., 2010; Ahsan et al., 2022). The improved grain

protein content and associated quality traits under such a

scenario could be due to the reduction in grain starch

accumulation (Barnabas et al., 2008), and the limited starch

accumulation allows for a higher concentration of nitrogen per

unit of starch in the grains (Stone and Nicolas, 1998). The decreased
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starch accumulation could be due to a decrease in amylose

composition, which causes the loose packaging in the starch

granules (Prathap et al., 2019). The loss of packaging in the

starch granules can further influence grain functional properties,

such as the ability to form gels and thickening properties, in food

and industrial applications. Additionally, the shortening of grain

filling stages under drought conditions could also result in reduced

starch accumulation in the developing grains due to early

senescence of the crop (Prathap et al., 2019). Early senescence in

crops results in a reduction in their photosynthetic capacity of

crops, which further exacerbating the limited supply of assimilates

required for grain filling and starch synthesis (Sehgal et al., 2018). It

is, therefore, very important to consider all involved production

factors when studying and managing the impact of drought stress

on grain protein content to develop targeted mitigation strategies

and breeding programs aimed at improving protein content under

water-limited environmental conditions.

3.1.2 Drought stress affects nitrogen assimilation
to result in poor phytochemical composition

When evaluating the effect of drought stress on durum wheat

productivity, it is important to consider various factors that directly

influences overall crop performance. Impairment in symbiotic

nitrogen fixation under drought conditions has been observed

due to improvement in oxygen diffusion resistance in root

bacteroides; resulting in reduced nitrogenase activity that may

potentially decrease the availability of nitrogen for the

biosynthesis of proteins (Sehgal et al., 2018). There is convincing

evidence that the change in composition of protein subunits owing

to drought and seasonal heat stress is principally due to alterations

in the amount of accumulated nitrogen at the grain filling stage

(Triboï et al., 2003; Urban et al., 2018). Investigating the impact of

drought stress and associated extreme events under a range of

nitrogen doses on physiological traits and other attributes could

provide important insights in the development of drought tolerant

wheat varieties (Teixeira et al., 2014). This indicates that, although

grain protein quality largely depends on the varietal performance, it

may be affected by environmental-induced factors (Gebrewahid

et al., 2021).

The reduction in mineral accumulation such as iron, zinc,

nitrogen, phosphorus, and total protein content in developing

grains due to drought stress has also been observed in a wide

range of crops (Sehgal et al., 2018). The low phytochemical

composition observed in crops under drought stress is often

characterized by lower levels of secondary metabolites such as

phenolics, flavonoids, alkaloids, and terpenoids. These

compounds play crucial roles in crops defense against various

environmental stressors, as well as in providing health benefits to

humans when consumed as part of a plant-based diet (Bindu et al.,

2021). This can have implications for plant growth, development,

drought tolerance, and the nutritional and therapeutic properties of

plants. Hence, understanding these effects is important for crop

management practices and the development of strategies to mitigate

the impacts of drought on the physiology and phytochemical

composition of durum wheat.
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While there is general knowledge about the importance of

nitrogen in growth development and phytochemical composition

of crops, the intricate interactions between variable nitrogen rate,

nitrogen source, drought stress, and specific phenological phases of

durum wheat are still an active area of research. An investigation

that examines the impact of drought stress under variable nitrogen

doses on resource use efficiency, physiological traits, and other

associated traits can provide valuable insights for developing

drought-tolerant crop varieties (Teixeira et al., 2014). Hence,

conducting a comprehensive evaluation of the combined effect of

nitrogen deficiency and drought stress can provide a valuable

insights into the physiological, biochemical, and phytochemical

responses of durum wheat varieties to drought stress. This

evaluation can also help elucidate how these responses interact

with nitrogen availability, thus agronomists, and durum wheat

breeders can develop crop varieties that are more resilient and

adaptable to the changing climatic conditions.
3.2 Unravelling the heat puzzle: decoding
the impact of high temperature stress
on crop yields

Higher temperature stress eventually reduces harvestable yield

while encouraging weed and pest proliferation. In most cases, crops

could respond to high-temperature stress in two different phases.

The first stage is based on the intrinsic tolerance to high

temperature-induced damage, known as basal thermos-tolerance,

while the second stage involves resource mobilization and gene

expression changes to deal with heat stress related injury, known as

acquired thermos-tolerance (Bento et al., 2017). High temperatures

have been observed to cause disruptions in the structure and

function of chloroplasts, a reduction in chlorophyll content, and

the inactivation of chloroplast enzymes, resulting in decreased

photosynthesis activity in wheat (Yang et al., 2002). Increased

temperature stress during the reproductive stage may also have

an impact on spike fertility and, as a result, grain yield (De Storme
Frontiers in Plant Science 06
and Geelen, 2014). It has been worth mentioning that pollen

formation in wheat is a heat-sensitive process, and high

temperature-induced pollen sterility often occurs due to

irregularities during microsporogenesis (Jäger et al., 2008;

Narayanan, 2018).

While elevated carbon dioxide levels can influence certain

aspect of crop performance, it’s overall effect on physiology, grain

quality, and yield, the overall effect is universally considered to be

smaller compared to the challenges posed by high-temperature

stress (Ben et al., 2021) (Figure 2). This effect triggers a decline in

global wheat production of about 4.1 to 6.4% for each degree

escalation in temperature (Liu et al., 2016; Ashwani et al., 2020).

Wheat crops grown under warmer climatic conditions are more

susceptible to significant grain yield losses than wheat cultivated in

cooler climatic conditions (Sommer et al., 2013). However, it is

worth noting that there is general consensus that in high latitude

regions, spring wheat production would benefit from a warmer

climate through an extension of the growing season (Sommer et al.,

2013). such a huge grain yield loss under warmer or dry climatic

conditions could be due to negative water and energy balances

resulting from limited water availability and imbalanced energy

inputs, which can offset the positive effect of elevated CO2 on

stomatal conductance, which leads to net losses in soil water

content, affecting wheat physiology and eventually grain yield

(Helman and Bonfil, 2022). The potential losses in grain yield

associated with warmer climatic conditions in wheat crops

necessitate careful consideration of climate change impacts and

the implementation of appropriate management practices and

breeding strategies.

In certain situation, the combination of reduced cooling caused

by lower transpiration rates and an increased leaf area index (LAI)

can lead to unexpectedly higher water losses in plants (Helman and

Bonfil, 2022). In a wet growing environment, varieties with a higher

LAI and radiation use efficiency could benefit from the increased

availability of water and solar radiation. A higher LAI allows for

greater light interception and photosynthetic activity, leading to

increased biomass production and subsequently higher number of
FIGURE 2

The eCO2 effect on wheat yield components (grain yield, harvest index, grain mass, grain number, total aboveground biomass, and specific grain
mass) using aCO2 as the reference. The number of observation pairs is given within the brackets. The average concentration level for ambient and
elevated CO2 treatments is given on the right y-axis (aCO2/eCO2).
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grain and yield. On the other hand, under hot and dry climatic

conditions, short maturing varieties with high grain dry-matter

potential and stay-green capacity tend to perform better (Padovan

et al., 2020). The shorter maturation periods could allow the crop to

complete their life cycle prior to the onset of server stress, while

grain dry-matter potential ensures efficient utilization of available

resources for grain production. Hence, understanding the genetic

basis for variation in phenology and other adaptive morphometric

traits could enable wheat breeders and agronomists to predict grain

yield risk factors, such as drought and heat, and thereby improve

agronomic crop management practices.
3.3 Enrichment of atmospheric carbon
dioxide effect on qualitative and
quantitative agronomic traits

The composition of durum wheat grain encompasses various

nutrients, such as proteins, carbohydrates, minerals, and

phytochemicals, which collectively contribute to its nutritional

and market value of the harvested product (Melash and

Ábrahám, 2022). This diverse array of components collectively

contributes to the nutritional quality and market value of

harvested durum wheat. The concentration can be influenced by

a number of factors such as nitrogen availability and environmental

conditions. Lower carbon dioxide (CO2) concentrations, for

instance, has been shown to have an impact on the physiology

and metabolome of mature grains. These changes in grain nutrient

composition can subsequently affect the nutritional status of the

grain (Wang J. et al., 2021). Higher CO2 levels can increase

morphometric traits and grain yield in crops, primarily due to

their positive effect on stimulating photosynthetic activities (Erda

et al., 2005). It has been proven that an increment in CO2 up to 550

ppm (parts per million) can consistently increase both biomass and

grain yields by about 5–15% (Ainsworth and Long, 2005). However,
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a nonlinear response to elevated carbon dioxide levels has been

observed in some studies, where the stimulation of grain and

biomass yield starts to diminish at around 600 ppm of CO2

(Fitzgerald et al., 2016). This nonlinear response suggests that

there might be a saturation point beyond which further increases

in CO2 do not provide additional yield benefits in crops; although

the specific threshold at which this occurs can vary depending on

crop ecotype, temperature and seasonal water availability

Increased atmospheric CO2 levels and their interactions with

other production limiting factors, such as water availability and

nitrogen supply, can strongly modulate crop growth responses and

result in a wide range of growth responses, typically spanning

between 0% and 50% (Erda et al., 2005). The coexistence of

elevated carbon dioxide and high temperature stress can have

negative effects on wheat varieties, leading to reduced biomass

and grain yield, perhaps due to a reduction in the number of

spikes per plant (Galani et al., 2022). This implies that while

elevated CO2 levels can initially stimulate photosynthesis,

enhance grain yield and biomass production, the combined effects

of heat and drought stress can override these benefits and lead to

reduced grain yield (Ben et al., 2021). It means that the combined

effect of multiple abiotic stress factors can be more detrimental to

durum grain protein content and yield than individual

stressors alone.

The detrimental impact of elevated CO2 on crop grain yield has

been extensively studied (Figure 3), shedding light on the intricate

mechanisms and physiological responses involved. However, little is

known about how it may affect the nutritional composition of wheat

grains, despite the fact that it is a vital aspect of food security

(Haddad et al., 2016; Asseng et al., 2019). The changes in chemical

composition observed in crops, such as a decrease in leaf nitrogen

concentration and an increase in the carbon-to-nitrogen (C/N)

ratio, could be strongly associated with increasing CO2

concentration (Wieser et al., 2008; De Santis et al., 2021). This

effect is thought to occur because, as CO2 levels increase, crops can
FIGURE 3

The change in grain protein content of wheat grown under high temperatures, elevated CO2, and drought stress conditions The numerical data in
the parentheses indicates, the number of observations, and the error bars indicate the 95% CI, while the single asterisk (*) indicates a statistically
significant difference between the observations at p < 0.05.
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more easily convert the excess carbon into carbohydrates, which

can lead to a dilution of protein levels in the grain. When grain

protein content is reduced under elevated CO2 levels while total

yield production remains relatively constant, there is a dilution

effect, resulting in lower grain protein content on a per-unit basis

(Thompson et al., 2019). There has been an estimated decrease in

grain protein content of about 1.08% for each 1 t ha-1 yield

increment under elevated CO2 conditions (Galani et al., 2022). It

means that as crop yields increase, there is a corresponding decrease

in grain protein content, particularly under elevated CO2

conditions. This could have significant implications for food

security and the market value of the product, as protein is an

important nutrient for human health and industrial purposes; thus,

it is an important factor to consider in breeding and food

production programs (Melash and Ábrahám, 2022).
3.4 Dynamic in quantitative and qualitative
agronomic traits under waterlogging stress

Water logging, which occurs when soil becomes water-saturated

and oxygen is limited, can have a number of negative effects on crop

growth, development, and grain protein content (Ren et al., 2014;

Chao et al., 2022). This is because waterlogging can reduce the

availability and uptake of nitrogen by plants, which is an essential

nutrient for the production of storage proteins (Otie et al., 2019).

When plants are waterlogged, the roots may not be able to take up

nitrogen from the soil (Kaur et al., 2020a), or the nitrogen in the soil

may be transformed into a form that is not readily available to

plants. As a result, the plants may not be able to produce as much

protein, or the protein content they do produce may be of lower

quality. This can have a negative impact on the nutritional quality

and commercial value of the grain. However, enhanced grain

protein content has been observed, while starch concentration

was decreased under waterlogging conditions occurred at

maturity (Wang J. et al., 2021). Higher grain protein content

under such conditions could be due to inhibition of carbohydrate

transformation into starch in the developing wheat grain (Zhou

et al., 2018). This means that, although an increase in grain protein

content is a possible response, it is not always consistent under

waterlogged conditions.

When durum wheat experiences water logging, the crop

undergoes a series of physiological and biochemical changes to

cope with the existing stress conditions. These changes often

include alterations in physio-morphological traits, such as

biomass production, grain weight, and photosynthetic activity,

due to restrictions in the availability of oxygen to the roots

(Arguello et al., 2016). A decrease in photosynthesis could limit

the ability of crops to produce energy and assimilate carbon dioxide,

resulting in a slower growth rate and a lower harvestable yield.

Waterlogging situations can also induce the formation of

adventitious roots in durum wheat (Tian et al., 2021). These roots

arise above the waterlogged zone and serve as a strategy to

overcome oxygen deprivation in the root zone. A suppressed root

respiration, decreased root activity, and energy shortage have also

been observed under waterlogged soil as compared to well-drained
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conditions (Pan et al., 2021). The impaired root system under

waterlogged conditions could further limit the ability of crops to

absorb essential nutrients, leading to nutrient deficiencies.

Inadequate nutrient uptake affects wheat growth and reduces

shoot growth, ultimately resulting in grain yield loss (Herzog

et al., 2016). Hence, to avert grain yield and quality loss under

waterlogging conditions, agronomists, plant breeders, and

researchers focus on the development of crop varieties with

improved tolerance to excess water, such as deep root systems,

enhanced photosynthetic efficiency, and better nutrient uptake

capacities. Additionally, agronomic practices such as proper

drainage, crop rotation, and soil management can minimize the

negative impacts of waterlogging on crop productivity.

A switch from aerobic respiration to anaerobic respiration due

to waterlogging can also decrease the grain yield by preventing

culms from generating spikes, slowing spikelet formation,

decreasing the number of spikelets spike-1, the formation of

florets spikelet-1, and the number of kernels spike-1 (Pampana

et al., 2016). However, the actual yield loss under waterlogging

conditions could vary widely depending on the durum wheat

varieties, their tolerance to waterlogging, the variation in the

growing environment, and the duration and severity of

waterlogging (Cotrozzi et al., 2021). In some cases, yield losses

could be moderate, ranging from 19% to 30%, while in severe and

prolonged waterlogging conditions, yield losses can exceed 55% or

even lead to total crop failure (Marti et al., 2015; Pampana et al.,

2016). Extended waterlogging conditions and anaerobic respiration

could further trigger the accumulation of toxic metabolites such as

lactic acid, ethanol, and aldehydes, along with increases in reactive

oxygen species, resulting in cell death and crop senescence (Pan

et al., 2021). Inhibited gaseous exchange capacity under

waterlogging conditions could also cause a rapid buildup or plant

hormone degradation and further influence the waterlogging

tolerance of crops (Kuroha et al., 2018; Pan et al., 2021).

It has been globally estimated that approximately 10-12% of the

agricultural area is affected by waterlogging or severe soil drainage

constraints (Kaur et al., 2020b). In the United States, for example,

flooding poses a significant hazard and has been ranked as the second

most impactful abiotic stress factor, following drought, in terms of crop

production losses over a 12-year period (Kaur et al., 2020b). These

constraints pose significant challenges to agricultural productivity and

sustainability in affected regions. A long-term research study conducted

in China also revealed that the grain yield of wheat cultivars showed a

steady improvement over the years. However, it was observed that the

rate of yield improvement was lower under waterlogging conditions

compared to normal watering conditions. Under normal watering

conditions, the grain yield increased by 53 kg ha−1 per year (equivalent

to a yearly improvement of 0.6%), while under waterlogging treatment,

the increase was 35 kg ha−1 per year (equivalent to a yearly

improvement of 0.51%) from 1967 to 2010 (Ding et al., 2020). The

research conducted in China, although specific to the wheat cultivars in

that region, provides a general indication that as wheat cultivars are

continuously developed and improved over time, there is a tendency

for their overall waterlogging tolerance to decline. This observation has

broader implications for wheat breeding programs and the selection of

traits prioritized during cultivar development.
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The detrimental impact of waterlogging on the quality, yield,

and physiological aspects of wheat universally highlights the need to

devise effective mitigation strategies. Addressing these constraints

requires a combination of management strategies tailored to a

particular or specific conditions. These may include implementing

improved drainage systems, raised bed planting, ensuring land

leveling, optimizing the sowing period, adaptive nutrient

management and utilizing plant growth-promoting substances

(Figure 4) (Pramanick et al., 2023). The use of raised beds has

proven to be significant in high rainfall regions, as observed in

Victoria, Australia. The substantial yield increases observed for both

wheat (50%) and barley (30%) in Victoria demonstrate the

effectiveness of raised beds as an agronomic measure in

mitigating the adverse effects of waterlogging in high rainfall

areas (Manik et al., 2019). In addition to the agronomic based

mitigation interventions, the contemporary advancements in

biotechnology, including functional genomics, offer promising

approaches to identify specific genes or QTL (Quantitative Trait

Loci) associated with waterlogging tolerance in wheat. Genome

modification techniques are also employed to enhance wheat’s

capacity to withstand waterlogging conditions substances

(Pramanick et al., 2023). These biotechnological interventions

play a significant role in the development of novel wheat cultivars

with improved tolerance to waterlogging.
3.5 Biofortification of crops as influenced
by the changing climate

The nutritional functional diversity of the cropping system,

which is based on both on-farm durum wheat species diversity and
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nutritional composition, holds significant potential to address

malnutrition and associated health complications. However,

increasing demand for nutritious, safe, and healthy food because

of a growing population and changing climatic conditions; pledge to

maintain biodiversity and other resources pose a major challenge to

the crop production sector (Dwivedi et al., 2017). Micronutrient

deficiency, such as zinc malnutrition, has been observed to affect

more than 17% of the world population, and enrichment of the

atmospheric carbon dioxide significantly lowers grain zinc

concentration by about 9.1% (Soares et al., 2019). This reduction

may further affect about 138 million people and place them at a new

risk of zinc deficiency by 2050 (Myers et al., 2015; Soares

et al., 2019).

When wheat crops are grown under elevated CO2 conditions,

wheat tend to accumulate a higher level of carbohydrate and

enhance yield, but with reduced concentrations of certain

minerals such as zinc and iron by about 3% and 5%, respectively

(Richard et al., 2022). This result highlights that climate change

adaptation strategies that benefit grain yield may not always have a

positive effect on grain qualitative traits, thus putting further

pressure on global quality wheat production (Asseng et al., 2019).

A recent meta-analysis also showed a significant decline in grain Zn,

Fe, S, Ca, Mg, P, Mn, K, and Mo with increasing CO2 concentration

(Ben et al., 2021). The decreased grain mineral concentration could

be primarily attributed to changes in plant physiology, such as a

decrease in the pace of transpiration rate, i.e., linked to stomatal

closure due to long-term exposure to elevated CO2, since higher

CO2 could reduce the mass flow in the soil toward roots, which

diminishes the availability of mobile minerals in the rhizosphere

(Loladze, 2002). However, higher grain zinc and iron deposition has

been observed under high temperature conditions, offsetting the
FIGURE 4

Illustrates a depiction of the causes of soil waterlogging, its impact on crop production nitrogen losses, and potential approaches for managing
these issue (Kaur et al., 2020b).
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decrease in grain mineral concentration due to elevated carbon

dioxide (Wang et al., 2020). Although the specific mechanism

behind this response is not yet fully understood, it could be

attributed to improved drought induced transportation of trace

elements, leading to higher grain mineral concentrations (Ge et al.,

2010). Addressing these issues generally requires a multifaceted

approach, such as breeding crop varieties that are more efficient in

micronutrient uptake and allocation, optimizing nutrient

management approaches, and considering agronomic practices

that can enhance the availability of mineral nutrients in the root

zone. It has been also observed that the coexistence of abiotic stress

on nutrient composition had a positive effect on gluten, Fe, Zn, and

protein, showing respective increases of 19.11%, 14.42%, 7.20%, and

4.60%. However, the decrease in yield offset the concentration gains

in other nutrients, leading to a decrease in K (-32.08%), Mn

(-21.65%), P (-13.12%), and Mg (-7.66%) (Figure 5). This result

highlights the trade-off between nutrient yield and overall grain

yield when subjected to abiotic stress. While certain nutrients such

as gluten, Fe, Zn, and protein showed improvements in yield, the

decrease in yield can offset the gains in concentration for other

essential nutrients.
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4 The climate-nutrient nexus:
managing nutrient inputs for
sustainable agriculture in a
changing climate

4.1 Nitrogen application under drought
condition: from risk to resilience

Nitrogen application under drought conditions is a crucial

aspect of agronomic practices, transforming the concept of risk

into resilience. Improving crop resistance to heat and drought

stressors through plant breeding and adjustments in agronomic

practices such as site-specific nutrient management, time of sowing,

and proper nitrogen fertilization are thought to be useful in climate

change adaptation (Van Ittersum et al., 2013). Nitrogen metabolism

such as, ion absorption, nitrogen assimilation, amino acid synthesis,

and protein synthesis are very important drought tolerance

indicators (Li et al., 2020). Increasing nitrogen application up to a

certain level may alleviate drought-induced stress by increasing root

osmotic regulators, stimulating the acceleration of root biomass
FIGURE 5

Effects of different sewage sludge amendment rates on the biomass of wheat harvested after 80 days (means ± standard error, n = 24). F values
represent a one-way ANOVA and degrees of freedom (df) = 5. ***P<0.001 (Eid et al., 2019).
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accumulation, and enhancing nitrogen assimilation ability, which

would reduce moisture limitations (Xiong et al., 2018). In the

presence of mild drought stress, application of nitrogen fertilizer

at a higher dose has been demonstrated to enhance the plasticity

expression of root development (Tran and Kano-Nakata, 2014).

Integrated nitrogen, phosphorus, and potassium applications also

profoundly increase osmoprotectant accumulation and activity of

both nitrogen absorption and antioxidant enzymes to increase

wheat grain production and drought tolerance (Shabbir et al.,

2016). However, it is important to note that excessive nitrogen

application can have negative impacts on plant growth and

development, including reduced drought tolerance (Liu et al.,

2016). This suggests that the regulatory function of nitrogen in

drought-induced stress tolerance of plants is dependent on the

severity of the stress, nitrogen amount, and crop species variation

(Xiong et al., 2018). Hence, it is essential to apply nitrogen in

appropriate amounts and at the right time to maximize its benefits

for the growth and development of durum wheat.

Nitrogen application at the appropriate timing and amount can aid

in the development of stress defense mechanisms while also promoting

normal crop growth (Chang and Liu, 2016). Under proper nitrogen

fertilization, plants can produce adequate antioxidant enzyme activity

and osmotic adjustment by generating proline accumulation to

alleviate drought-induced physiological damage (Li et al., 2020). In a

universal agreement, higher nitrogenmetabolism enhances the drought

resistance level of crop plants (Zhong and Cao, 2017). It means that

higher levels of nitrate transport and assimilation could subsidise to

improve the drought induced stress tolerance level of crops (Zhong and

Chen, 2015). Hence, implementing innovative agronomic techniques

and harnessing the potential of nitrogen-based fertilizers could enhance

durum wheat productivity, adapt to challenging climatic conditions,

and ultimately transition the crop sector from a vulnerable state to one

of resilience. However, to the best of our knowledge, the nitrogen effect

under varying drought stress levels at various intensities of abiotic stress

and the phenological plasticity of durum wheat are not clearly

understood, which may require a comprehensive investigation at a

refined molecular level.
4.2 Harnessing nanoparticles: revolutionary
solutions for mitigating crop abiotic stress

The past few decades have seen significant structural

modifications in agricultural cultivation systems that are intended

to improve how crops respond to diverse abiotic stresses. The use of

nanoparticles in agricultural production systems has been observed

as advantageous for both environmental stewardship and crop

productivity enhancement. Nanoparticles are small molecular

aggregates with dimensions of 1–100 nm. These tiny particles

may easily enter the plant cells through both above-ground

organs, such as the cuticle, epidermis, stomata, and hydathodes;

and underground organs, including root tips, cortex, lateral roots,

and wounds (El-Saadony et al., 2022). Due to their high reactivity,

nanomaterials exhibit efficient nutrient absorption for plants,

resulting in greater utilization efficacy and minimal losses in

comparison to conventional fertilizers (Avila-Quezada et al., 2022).
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Nanoparticles have been frequently reported to improve

growth, development, grain quality, and yield of crops under a

range of abiotic stress conditions. It has been observed that a proper

soil-based application of analcite nanoparticles enhances the

germination and morphometric traits of wheat, particularly under

dry climatic conditions (Hossain et al., 2021). Improved

germination percentages have also been observed in other crops

following the application of ZnO-based nanoparticles (Sedghi et al.,

2013). Nanoparticles such as Cu-based fertilization influence

various physio-morphological traits such as biomass yield,

chlorophyll concentration, carotenoid contents, leaf water

content, and anthocyanin, particularly under dry climatic

conditions (van Nguyen et al., 2022). An increase in wheat

morphometric traits due to the application of Cu and Zn

nanoparticles could be due to improvements in antioxidant

enzyme activity and relative moisture content, which ultimately

reduce the effects of drought stress (Taran et al., 2017; Semida et al.,

2021). Through adjusting these processes, nanoparticle-based

fertilization could help crops adapt to drought stress and

maintain both yield and grain protein concentration in the

current climate change scenarios.

Under drought conditions, the application of silicon dioxide

(SiO2) nanoparticles has been found to increase the shoot length,

and relative water content while reducing superoxide radical

formation, and membrane damage (Turgeon, 2010). This is

attributed to the ability of SiO2 nanoparticles to improve water

uptake and retention, thus reducing the negative impacts of

water stress on the growth, development, and grain quality of

crops. When silicon dioxide (SiO2) and titanium dioxide (TiO2)

nanoparticles are simultaneously applied, significant improvements

in grain yield and stress tolerance levels of crops have been observed

(Shallan et al., 2016). The enhanced grain yield following SiO2

fertilization can be attributed to various factors, including

improved photosynthesis, stomatal conductance, and stress

tolerance of crops (Ashkavand et al., 2015). However, the

effectiveness of nanoparticle fertilization in enhancing drought

tolerance and improving grain yield can be influenced by nutrient

application methods. It has been observed in some studies that foliar

application of titanium dioxide nanoparticles can enhance grain yield

and stress tolerance in wheat more effectively than other application

methods (Jaberzadeh et al., 2013). Additionally, the application of

zinc-based nanoparticles has shown potential for increasing grain

zinc concentration along with improving grain yield, proline, glycine

betaine, free amino acids, protein content, and other yield-related

traits (Dapkekar et al., 2018; Ghani et al., 2022). Zinc-based

nanoparticle applications have additional effects beyond the

nutrient supply, such as enhanced nutrient uptake, increased

photosynthetic activity, and improved water use efficiency; these

specific effects can contribute to the overall improvement of grain

yield, protein content, carbohydrate metabolism, and other yield-

related traits (Verma et al., 2022a).

Drought stress could also negatively affect the nutrient

absorption and utilization efficiency of plants, including essential

nutrients like nitrogen, phosphorus, and potassium (Raza et al.,

2023). However, the application of silicon-based nanofertilizers has

been shown to have positive effects on soil nutrient availability,
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including nitrogen, phosphorus, and potassium (Rizwan et al.,

2019). This effect ensures that crops have access to necessary

essential nutrients, particularly in water-limited environments,

stimulating plant growth, yield, and grain protein content. It has

also been shown to have beneficial effects in reducing the

accumulation of heavy metals, such as cadmium (Cd), under

drought conditions and improving the drought tolerance of crops

by initiating different pathways (Khan et al., 2019). It is also worth

mentioning that climatic extremes such as drought, salt, and

waterlogging could enhance the production of reactive oxygen

species (ROS), leading to oxidative stress (Hasanuzzaman et al.,

2020). This action impaired water uptake, disrupting biological

membranes, ionic imbalance, oxidative damage and nutritional

imbalance, reducing cell division and expansion, lipid metabolism

rate of photosynthesis and consequently impairing yield attribute

traits (Kumari et al., 2022). Through neutralizing ROS and

stabilizing cell membranes, silicon-based nanoparticles could

contribute to reducing the damaging effects of ROS on wheat cells

(Hussain et al., 2019). This could have a significant positive effect on

durum wheat physiology, such as enhanced stress tolerance,

improved crop health, and vigorous growth.

The other important nutrient that has gained attention as a

mitigation solution for climate change is nitrogen-based

nanoparticles due to their ability to enhance nitrogen use

efficiency and reduce nitrogen losses. It has been shown to offer

potential positive benefits in terms of tillering capacity, crop health,

vigorous growth, and leaf colour changes, i.e., from light yellow to

green (Kumar et al., 2022a). Alteration of the life colour impels that

adequate application of nitrogen based nanoparticles could

maintain the greenness of crops, which caused the crop to mature

at its proper time and promoted proper development of the grains,

and grain protein content remained high. Nitrogen-based

fertilization also improves antioxidant defense mechanisms and

reduces drought-induced oxidative damage by promoting the

synthesis and activity of antioxidant enzymes such as superoxide

dismutase (SOD) and peroxidase (POD), thus improving

photosynthesis and crop stress tolerance levels (Raza et al., 2022).

The improved photosynthesis could, in turn, increase carbon

assimilation and energy availability, which are important for crop

growth and drought stress tolerance. Although nanoparticles have a

positive effect on overall crop productivity, the optimum

concentration and sources of nanoparticles may vary depending

on specific growing conditions and wheat varieties. Thus, extensive

and rigorous field trials are necessary before widespread adaptation

of nanoparticle-based fertilization approaches aimed at improving

crop yield and grain protein content under changing

climate scenarios.
4.3 Revitalizing agriculture with silicon-
based fertilizers for enhanced productivity
and environmental sustainability

Revitalizing agriculture through the use of silicon-based

fertilizers has emerged as a promising strategy to support overall

growth and development of crops, such as by enhancing
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photosynthetic efficiency and limiting electrolytic leakage under

changing climatic conditions (Mir et al., 2022). Although it is not

classified as an essential nutrient for all crops, a number of reports

indicate the critical role of silicon in enhancing crop abiotic and

biotic stress tolerance, such as drought, salt, freezing, nutrient

imbalance, and radiation damage (Wang M. et al., 2021).

Application of silicon under drought conditions has increased the

photosynthesis rate, stomatal conductance, and antioxidant defense

compared to plants grown without silicon application, which leads

to efficient energy conversion and increased biomass production

(Ali et al., 2019). It also enhances the crop’s ability to withstand

drought stress by maintaining root growth and improving water

transport (Yan et al., 2016). The effects of which are attributed to the

increased antioxidant defense and decreased oxidative stress

induced by silicon fertilization (Gunes et al., 2007). This means

that proper application of silicon-based fertilizers could allow wheat

crops to explore or access water from deeper soil layers in a water-

limited environment.

Through enhancing photosynthetic activity, increasing the

efficiency of nutrient uptake, delaying senescence, improving

stomatal responses, and enhancing drought tolerance silicon

fertilization enables plants to maintain higher biomass and grain

yield production under abiotic stress condition (Schaller et al.,

2021; Irfan et al. , 2023). Improved morphometric and

physiological traits, such as gas exchange capacity, total root

length, surface area of the root, volume of the root, and plant

height, dry matter, have been observed following silicon

application under drought conditions (Irfan et al., 2023; Chen

et al., 2011). A larger silicon mediated root surface area could

facilitate enhanced water and nutrient absorption, which is

particularly important when soil moisture availability is limited.

This silicon-mediated change in root development could further

improve root endodermal silicification and suberization (Fleck

et al., 2011). The enhanced silicification of the endodermis could

contribute to improved water and nutrient uptake efficiency by

restricting the passive flow of water and solutes.

While the exact mechanisms of how silicon enhances seed

germination under drought conditions are still being studied,

several research studies have reported positive effects on the

stimulation of seed germination and spikelet sterility in wheat

(Hameed et al., 2013). In addition to its effect on grain yield,

proper fertilization with silicon could maintain or even increase

the protein content of durum wheat under drought conditions

(Kutasy et al., 2023). Because, silicon enhances the activity of

enzymes involved in nitrogen metabolism, this leads to improved

nitrogen uptake, assimilation, and translocation within the plant.

This, in turn, can contribute to higher grain protein accumulation.

Hence, the positive effects of silicon on physiology, yield formation,

nutrient uptake, and grain quality substantiate the need to include

these essential nutrients in the cultivation system of durum wheat

under changing climatic conditions. An intimation to adapt silicon

as a remedial measure under changing climatic conditions, is

evident from the upregulation of genes involved in adaptation

mechanisms such as phytohormone metabolism and cell wall

synthesis upon supplementation of silicon fertilizers (Haddad

et al., 2019).
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The presence of silicon in plant tissues can enhance the crop’s

ability to withstand drought stress through several mechanisms, such

as the antioxidant system and reducing drought-induced oxidative

stress (Gunes et al., 2007). It has been observed that the application of

silicon-based fertilizers exhibits improved wheat resistance to

drought stress, particularly in silicon-accumulating varieties

compared to non-silicon-accumulating crops (Thorne et al., 2021).

However, in plant species that are less effective at accumulating

silicon, the application of silicon can still have positive effects in

countering drought stress, such as tomato and canola (WangM. et al.,

2021). These suggest that both accumulators and non-accumulators

could benefit from silicon fertilization, and even low levels of Si

accumulation can contribute to improved plant performance under

drought conditions (Katz, 2014). A higher drought tolerance level in

silicon-accumulated varieties could be due to reduced transpiration,

increased water uptake, regulating stomatal behaviour, enhanced

antioxidant activity, and improved photosynthesis following silicon

application (Wang M. et al., 2021). ). These traits could therefore

contribute to the ability of silicon-accumulated wheat varieties to

better withstand and recover from abiotic stress, ultimately leading to

improved grain yield and resilience in water-limited environments.
4.4 From waste management to climate
solutions: sewage sludge fertilization as an
adaptive agricultural approach

The application of sewage sludge could be considered an

adaptive agricultural approach with potential benefits for both

waste management and climate solutions. In the presence of

abiotic stress, such as drought stress, the availability of water is

very limited, and crops like durum wheat may not be able to absorb

nutrients from the soil effectively. The use of sewage sludge has been

found to improve the water-holding capacity of soil, which can

improve the seasonal drought stress tolerance of durum wheat

(Boudjabi et al., 2015; Debiase et al., 2016). In recent years, sewage

sludge fertilization has gained interest and recognition due to its

nutrient content, organic matter contribution, and cost-

effectiveness in comparison to synthetic fertilizers (Inmaculada

et al., 2007; Boudjabi et al., 2015). It contains substantial amounts

of nutrients essential for plant growth, including nitrogen,

phosphorus, and organic carbon (Fytili and Zabaniotou, 2008).

Through improving nutrient availability and mitigating the effects

of drought stress, sewage sludge fertilization can also contribute to

an increase in grain protein, and amino acids content, resulting in

improved nutritional quality of wheat (Mazen et al., 2010).

When applied as fertilizer, sewage sludge releases nutrients

gradually, ensuring sustained supply to the crops over an extended

growing season (Muter et al., 2022). The slow release of sewage sludge

fertilizers could be more advantageous, particularly in dry land

farming where drought is a serious factor, as it allows plants to

access essential nutrients steadily in a water-limited environment

(Muter et al., 2022). Additionally, augmenting sewage sludge

fertilizers has improved the grain yield of durum wheat, through

which sludge-based fertilization allows root growth and helps to
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explore deep into the soil and absorb more water, thus enabling the

crop to avoid the seasonal water stress effect (Sonia et al., 2019).

Improved water utilization efficiency could help durum wheat plants

maintain physiological processes, minimize stress, and allocate

resources efficiently. The water stress reduction role of sewage

sludge application has been confirmed, through which sludge based

fertilization improves water retention capacity, regulates chlorophyll

a, and enhances aboveground biomass production (Boudjabi et al.,

2015). However, when sewage sludge is applied in excess, it could

increase osmotic stress, perhaps due to the hydrophilic effect of

organic matter contained in the sludge (Boudjabi et al., 2015). Higher

growth parameters and biomass yield have been observed (Figure 6),

particularly under low concentrations of sludge application, which

further decreases the risk of heavy metal toxicity (Eid et al., 2019).

Inversely, the application of sewage sludge-based fertilization,

particularly at higher doses, have showed a synergistic effect that

mitigates drought stress in other crop plants. This effect is attributed

to the increased accumulation of osmoregulators, which assist plants

in coping with water scarcity (Oustani et al., 2015). However,

responsible application practices should be followed to ensure the

safe and effective utilization of sewage sludge as a fertilizer (Oustani

et al., 2015). These results universally indicated that improper or

excessive application of sewage sludge can have a negative

consequence including nutrient imbalance, heavy metal

accumulation, and environmental pollution. Hence, regular

monitoring soil and plant samples can provide valuable insights

into nutrient levels and potential heavy metal accumulations of

wheat, enabling timely corrective measures if needed (Feszterová

et al., 2021).

The use of sewage sludge fertilizers can have significant

agronomic benefits, such as providing nutrients such as nitrogen,

ammonium, potassium, and zinc and thus improving soil quality

(Marin and Rusănescu, 2023). When sewage sludge is applied to the

soil, it can indeed improve soil organic matter (SOM) content,

nutrient contents, soil porosity, bulk density, aggregate stability, and

available water holding capacity (Simões-Mota et al., 2022). This

improvement could be attributed to several factors, such as the high

moisture content of sewage sludge and the presence of soil organic

matter (Achkir et al., 2023). This can be particularly beneficial in

drought conditions, as the soil can hold more moisture, providing a

reservoir for plant growth and reducing seasonal water stress.

However, the presence of higher organic matter in sewage sludge

can stimulate microbial populations, leading to increased microbial

respiration and subsequent water consumption (Hechmi et al.,

2020). It clearly indicates that if the soil is already experiencing

drought conditions, this increased demand for moisture could

further stress crops and reduce their growth and yield potential.

Hence, it is very important to consider the balance between the

positive effects of sewage sludge application on moisture retention

and the potential negative consequences associated with increased

microbial activity and soil moisture demand, particularly under

drought conditions.

The application of sewage sludge can also provide cost benefits

by reducing the need for mineral fertilizers and promoting

economically beneficial crop production (Silva et al., 2022).
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Previous studies have shown that the application of sewage sludge

can save up to 25% of mineral fertilizer requirements, and its

combined application with inorganic fertilizers proved

economically beneficial for cereal production (Ankush et al.,

2021). While sewage sludge can provide benefits as a fertilizer, it

is important to consider and address the potential risks associated

with its use. Because sewage sludge may contain heavy metals, and

organic pollutants that accumulate in soils and transfer to crops and

groundwater if not properly managed (Healy et al., 2016).
4.5 Zinc-infused fertilizers: cultivating
resilient harvests amidst changing climate

The need for improved compatibility between food security and

environmental stewardship is of considerable urgency under the

current climate change scenarios. Several studies have shown that

zinc deficiency can result in reduced crop yields and lower protein

content in grain (Melash et al., 2019). This is because zinc is

necessary for the synthesis of enzymes that are involved in

nitrogen metabolism, which is essential for protein production in

crops. Under changing climate conditions, such as increased

temperature and rainfall variability, crop growth and

development can be negatively affected. However, the use of zinc-

containing fertilizers has been shown to mitigate some of the

negative effects of changing climate conditions on crop yields and

grain protein content (Tao et al., 2018). These effect could be

achieved through supporting nutrient limitations and

physiological process such as improved photosynthesis pigment,

active oxygen scavenging substances, and a reduction in lipid

peroxidation under drought condition (Ma et al., 2017). This
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implies a huge grain yield and quality reduction would occur

under the co-existence of soil zinc deficiency, and drought

conditions have been observed to have a more profound effect on

decreasing the yield and quality of wheat grain (Bagci et al., 2007).

Drought stress could be alleviated through the proper

application of zinc-containing fertilizers, and this effect may be

attributed to its ability to detoxify reactive oxygen species (ROS)

generation and increase antioxidant enzymes (Wang and Jin, 2007;

Sofy, 2015). It has been also observed that the application of various

levels of zinc resulted in a significant increase in catalase, superoxide

dismutase, peroxidase, and ascorbate peroxidase activities at 40%

water holding capacity, where water availability is limited (Sattar

et al., 2022). This result suggests that zinc fertilization can enhance

the antioxidant defense mechanism of wheat crops, enabling them

to better cope with water deficit-induced oxidative stress. However,

the effectiveness of zinc-containing fertilization can vary depending

on the method of application, particularly in enhancing the drought

tolerance level and yield performance of wheat crops. The use of

zinc priming alone or in amalgamation with zinc foliar-based

application has been found to improve the regulated dissipation

of excess energy in wheat. This effect was profound, with zinc

priming alone increasing the regulated dissipation by over two-fold,

and when coupled with zinc foliar application, the increase reaches

three-fold under drought conditions (Pavia et al., 2019). Late-

season foliar application of zinc under drought conditions could

also improve photosynthesis activity, pollen viability, the number of

fertile spikes, the number of grains per spike, the water-use

efficiency of the wheat crop, and grain zinc concentration (Karim

et al., 2012). Applying zinc-based fertilizer has also improved yield

and grain zinc concentration by about 10.5 and 15.8%, 22.6 and

9.7%, and 28.2 and 32.8% under adequate water supply, moderate
FIGURE 6

Illustrates the average percentage change in nutritional composition and yield associated nutrient content of wheat varieties under the co-existence
of abiotic stress compared to the control. NB: “A” stands for ambient CO2, lower temperature settings, and no O3 addition (control). The bars
indicated with *** refer to a significant difference at p = 0.001 between the normal and yield-corrected nutrient content (Galani et al., 2022).
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drought, and severe drought, respectively (Ma et al., 2017). The

enhancement in yield and grain zinc concentration was maximum

under severe drought conditions, which implies that soil-based zinc

fertilization may be particularly beneficial in improving wheat crop

performance during periods of drought stress.
4.6 Seaweed extracts and climate
resilience: how marine-based fertilizers
can strengthen agricultural systems

The modern crop production system is facing a critical

challenge due to extreme environmental changes. These changes

are posing a serious challenge to the crop production sector,

necessitating the development of trailblazing strategies for

sustainable agriculture and food security. The use of seaweed

extracts as a natural and sustainable plant growth promoter is

gaining increasing attention, in recent years. It contains various

compounds such as cytokinins, auxins, and betaines that have been

shown to improve the water-use efficiency and stress tolerance of

crops (Ali et al., 2022). The seaweed extracts are also abundant in

phytohormones, sterols, carbohydrates, polysaccharides, sugars,

polyphenols, vitamins, lipids, amino acids, peptides, proteins,

macronutrients, and micronutrients that can potentially enhance

plant growth and yield (Shukla et al., 2019). These substances could

improve photosynthesis activities, nutrient uptake, resiliency, crop

development, and soil health, allowing crops to better withstand

drought conditions (Deolu-Ajayi et al., 2022). Seaweed extracts

have been found to enhance root growth, carotenoids, and tissue

water content, which can help crops access water and essential

nutrients more efficiently under dry climatic conditions (Ali et al.,

2022). An increase in the aggregation of soil particles, soil nutrient

availability, aeration, and water-holding capacity has been observed

following the application of soluble alginates from seaweeds and

protein hydrolysates (Colla et al., 2017).

The application of seaweed extracts improves the drought

tolerance of wheat by improving water retention capacity,

enhancing root growth, and increasing photosynthesis activity

(Sharma et al., 2019). The ability of seaweed extracts to enhance

the antioxidant activity of reactive oxygen species scavenging

enzymes, such as superoxide dismutase, peroxidases, catalases,

and phenolic antioxidants could explain the potential of seaweed

application to improve crop stress tolerance (Kumar et al., 2013;

Deolu-Ajayi et al., 2022). Important physiological traits such as

chlorophyll content were also improved following the application of

seaweed extracts by ameliorating the biogenesis of chloroplasts and

decreasing chlorophyll degradation (Jannin et al., 2013). This effect

could be due to the up-regulated genes that are strongly linked with

photosynthesis, cell metabolism, stress response, and S and N

metabolism (Jannin et al., 2013). This result universally implies

that by protecting photosynthetic tissues from damage, seaweed

extracts can help durum wheat varieties maintain and produce

energy from sunlight, even in water-scarce environments.
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Although, effectiveness of seaweed extracts and their method of

action in crops are still not well understood, the application of

seaweed extracts in stimulating yield, promoting vegetative growth,

and ameliorating grain protein content under stress conditions

indicates that it is more essential to encourage adoption by

durum wheat producing farmers, particularly in drought-

prone areas.

The seaweed extract can maintain the water balance of crops

and reduce water loss through transpiration. Studies have shown

that application of seaweed extracts under drought conditions can

improve wheat grain yield by up to 8.04% (Najafi Vafa et al., 2022).

This could be due to enhanced crop drought tolerance through

improving water retention capacity, reducing transpiration, and

enhancing the activity of antioxidant enzymes that protect crops

against drought-induced oxidative stress. A vital function of

seaweed extracts in maintaining absorption of soil nutrients by

crops, stimulated the growth and enhanced plant resistance to

abiotic stress could be the cause of such a huge yield advantage

(Chen et al., 2021). It has also been observed that the application of

seaweed extracts increases the freezing tolerance of crops other than

wheat, such as barley, with an increase in winter hardiness

(Ganesan et al., 2015). The attenuation effect of seaweed extracts

against drought, cold, and salinity stress effects has been shown to

be mediated through enhanced root morphology, a build-up of

non-structural carbohydrates, which improved storage of energy,

enhanced metabolism, and water adjustments, as well as the build-

up of proline (Ganesan et al., 2015).

When wheat is grown under elevated atmospheric carbon

dioxide, the crop tends to allocate more resources to

photosynthesis and less to nitrogen composition, which can result

in decreased grain protein content (Tcherkez et al., 2020). Offsetting

resource allocation between photosynthesis and protein synthesis

has been observed following the application of seaweed extracts

under certain conditions, resulting in higher storage proteins in the

grain (Deolu-Ajayi et al., 2022). Additionally, the application of

seaweed extracts can also improve grain yield and protein content

in crops grown under waterlogged conditions. This is thought to be

due to stimulating water retention, soil aeration, and nutrient

availability, thereby promoting grain nutritional composition

(Deolu-Ajayi et al., 2022). Priming wheat seeds with extracts of

U. linza or C. officinalis has shown positive effects on chlorophyll

content, carotenoid levels, sugar accumulation, protein synthesis,

and lipid metabolism (Arun et al., 2023). Seaweed priming

enhances protein and sugar contents by facilitating the absorption

of major elements, notably magnesium, which activates chlorophyll

synthesis and boosts photosynthetic rates (Hamouda et al., 2022).

The foliar spray of seaweed extract has been reported to be

effective in improving the performance of wheat varieties under

drought conditions. This treatment has been correlated with

numerous positive effects, such as the improvement of compatible

osmolytes, antioxidant compounds, and genetic variation in non-

coding chloroplast DNA regions like the trnL intron and psbA-tnH

(Ali et al., 2022). This suggests that seaweed extracts could be a
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promising agronomic strategy for improving the drought tolerance

of crops, which is becoming increasingly important under the

current climate change scenarios and water scarcity. A number of

studies further suggest that seaweed extracts may increase the

production of stress response genes in plants through several

mechanisms, such as hormonal regulation, antioxidant activity,

and enhanced nutrient availability. Enhanced stress response

genes such as Na+/K+ transporters and late embryogenesis

abundant (LEA) proteins, including dehydrins, and aquaporins,

have been observed following seaweed extract application under

abiotic stress conditions (Goñi et al., 2018; Rasul et al., 2021).

Although the precise mechanism by which seaweed extracts

increase the production of stress response genes in plants is not

yet fully understood and may depend on the specific extract and

varieties used, these mechanisms suggest that seaweed extracts can

provide multiple benefits to crops under stress conditions.
5 The feasibility, environmental risk,
and mitigation strategies of nutrient-
based climate interventions

Nutrient based climate change interventions in agriculture have

gained attention as potential strategies to mitigate greenhouse gas

emissions and adapt to changing climatic conditions (Kumar et al.,

2022b). These interventions involve application of fertilizers, and

altering agricultural practices to enhance carbon sequestration,

nutrient availability, reduce nitrous oxide, and improve overall

soil health (Hassan et al . , 2022b). However, prior to

implementing such interventions on large scale, it is crucial to

thoroughly asses their feasibility, potential environmental risk, and

develop effective mitigation strategies to ensure long term

sustainability. When considering the feasibility and environmental

risks of using nutrients such as silicon, sewage sludge, zinc and

sulphur for climate interventions, it is also essential to evaluate

factors such as nutrient availability, local regulations and guidelines,

potential impacts on water quality and soil health, and overall

sustainability of the practices. Implementing these interventions

should be done with careful planning, monitoring, and adherence to

best management practices to minimize any negative

environmental consequences (Muter et al., 2022).

The environmental implications of sewage sludge (SS) in

various disposal scenarios, such as landfill disposal, agricultural

use, and other applications, have garnered significant attention. The

energy consumption during the treatment of SS is the primary

contributor to global warming, accounting for over 50% of the

impact (Muter et al., 2022). The disposal of sludge in agricultural

areas primarily contributes to terrestrial acidification, and

freshwater ecotoxicity, global warming, eutrophication, and

acidification (Rorat et al., 2019). Additionally, the transportation

of SS to agricultural areas has been identified as a significant factor

influencing terrestrial and freshwater ecotoxicity, as well as ozone
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formation in terrestrial ecosystems. The toxicity associated with SS

is often linked to the presence of toxic heavy metals such as Cr, Pb,

Ni, Hg and Cd because industrial wastewater is mixed with sewage

(Mañas and de las Heras, 2021; Muter et al., 2022). Hence, the

selection of an appropriate waste treatment method plays a crucial

role in mitigating the environmental impact associated with sewage

sludge application. Various methods, including anaerobic digestion,

pyrolysis, and supercritical water oxidation, have been identified as

effective approaches for reducing the environmental risks associated

with SS (Teoh and Li, 2020). Anaerobic digestion, for instance,

allows for the conversion of organic matter in SS into biogas, cost

effective, minimizing greenhouse gas emissions and reducing the

potential for global warming (Rorat et al., 2019; Teoh and Li, 2020).

Additionally, composting or co-composting with other

biodegradable wastes and additives is an important treatment

method for SS, enabling a significant reduction in volume and

minimal emissions of hazardous substances, making it

environmentally acceptable when compared to incineration

(Sugurbekova et al., 2023). It has been also observed that applying

sewage sludge at lower doses presents minimal risks to the

environment, while simultaneously enhancing the grain yield and

quality of crops. Hence, carefully determining the appropriate

dosage, the potential negative impacts associated with SS

application can be mitigated, ensuring that the benefits outweigh

the risks.

Although further research is needed to fully understand the

long-term effects of nanoparticles, NPs based crop fertilization

possess distinct characteristics in comparison to conventional

fertilizers (Lina et al., 2023). These unique attributes contribute to

a gradual and sustainable absorption of nutrients by crops,

primarily because of their high surface-to-volume ratio and

reduced nutrient loss (Tarafder et al., 2020). In compression, the

conventional fertilizer applications, such as nitrogenous,

phosphates, and potassium-based have been found to have low

efficiency rates, with nitrogenous fertilizers ranging from 20 to 50%,

phosphates ranging from 10 to 25%, and potassium ranging from 35

to 40% (Avila-Quezada et al., 2022). This inefficiency can lead to a

significant volume of fertilizers being applied in agricultural

practices. However, nanofertilizers offer active sites that facilitate

a greater number of biological activities, thereby enhancing the

efficiency of nutrient absorption by plants (Feregrino-Pérez et al.,

2018). Moreover, NPs also contribute to the improvement of soil

fertility and create a favourable environment for the growth of

beneficial microorganisms within the soil (Thavaseelan and

Priyadarshana, 2021). As a result, nanofertilizers provide

sustainable solutions to address issues of environmental pollution

and climate change (Solanki et al., 2015). Additionally, the use of

NFs presents economic benefits by minimizing the leaching and

volatilization of conventional fertilizers. Leaching and volatilization

contribute to nutrient loss and environmental pollution, thus

reducing these processes could offer a cleaner technology for the

environment and provide an attractive proposition for agricultural

producers (Avila-Quezada et al., 2022). However, if nanoparticles
frontiersin.org

https://doi.org/10.3389/fpls.2023.1232675
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Melash et al. 10.3389/fpls.2023.1232675
are not properly managed NFs could adversely affect plants through

multiple mechanisms. These include DNA damage, the formation

of reactive oxygen species (ROS), interaction with nuclear proteins,

chromosomal abnormalities, a decrease in DNA repair

mechanisms, and the occurrence of genetic defects. For instance,

studies have shown that NiO NPs can penetrate the DNA of plants,

causing irreversible damage to their cells (Faisal et al., 2013; Verma

et al., 2022b). Similarly, when Co3O4 NPs were applied to crops, it

resulted in apoptosis (cell death) in their cells (Faisal et al., 2016).

Furthermore, the use of ZnO NPs has been found to have

detrimental effects on the membrane integrity, chromosomal

structure, and DNA strand stability in various plant species

(Faisal et al., 2016; Bhardwaj et al., 2022). Despite the remarkable

efficiency and ease of application, nanofertilizers are accompanied

by certain limitations, including complicated production processes,

fragile transport, and dosage-sensitive efficiency, which are

currently impeding the widespread adoption of nanofertilizers in

agriculture (Kalwani et al., 2022). Nevertheless, concerning

economic feasibility, nanoparticles have the potential to be

economically viable and less environmentally toxic compared to

some other alternatives (Upadhayay et al., 2023).

While nutrient based climates change interventions offer

potential benefits, nutrients could also carry certain environmental

risks that needs to be managed. Application of nutrients, such as

silicon, and zinc-based fertilizers are an essential for plants, and

silicon-based fertilizers have been developed to enhance plant growth,

increase resistance to pests and diseases, and improve abiotic stress

tolerance. Silicon inhibits the toxicity caused by heavy metals,

protecting plants from their detrimental effects and plays a crucial

role in activating soil phosphorus (P), making it more readily

available for plants (Imran et al., 2021). This activation process

enhances the absorption of P by plant roots, along with other

essential nutrients. The positive influence of Si in enhancing crop

yield, improving crop resilience, and addressing the challenges of

sustainable agriculture and food provision, emphasizing the need for

its wider adoption inmodern agriculture (Barão, 2023). However, it is

important to consider the potential for silicon accumulation in soil,

which may affect soil properties and nutrient availability. The

application of zinc containing fertilizers in crops has been found to

yield several beneficial effects. These advantages include enhanced

zinc grain accumulation and protection against cadmium (Cd)

uptake and transfer through the roots and xylem-to-phloem

pathways (Hassan et al., 2022a). While zinc is an essential

micronutrient for plants and offers numerous benefits when

applied in appropriate doses, excessive levels can negatively impact

foliage and crop yields (Xu et al., 2021). Additionally, improper

application can result in zinc leaching into water bodies, causing

water pollution (Singh et al., 2022). Hence, proper dosage and

application practices, along with regular soil testing, are necessary

to prevent the adverse effects associated with zinc-infused fertilizers.

In recent years, unmanned aerial vehicle-based spraying (UAV-based

spraying) has emerged as a safer, cleaner, and more efficient method

for the targeted application of zinc-containing fertilizers. This
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technology reduces zinc input, increases the recovery rate, and

minimizes the risk of fertilizer residue (Xu et al., 2021). This

technology expands the options for fertilizing crops and facilitates

the production of highly Zn-biofortified grain while optimizing input

costs for farmers.
6 Conclusions

The changing climate poses a significant threat to crops,

including durum wheat, and sustainable adaptation strategies are

necessary to maintain food and nutritional security. This

comprehensive review article provides a comprehensive overview

of the current understanding of nutrient management in durum

wheat cultivation under changing climatic conditions. Identifying

knowledge gaps and exploring advanced strategies, contribute to the

existing literature and provide valuable insights for researchers,

agronomists, and farmers alike. It is crucial for future research to

focus on investigating the specific nutrient requirements of durum

wheat under different climate scenarios and evaluating the

effectiveness of innovative nutrient management practices to

ensure sustainable and resilient wheat production. Implementing

precision farming techniques, optimizing fertilizer application rates

and timing, and utilizing precision nutrient delivery systems are

potential strategies to maximize farm profitability, efficiency and

mitigate the adverse effects of climate variability on durum wheat

production. However, the coexistence effect of climatic parameters

on nutrient uptake, translocation, grain quality, yield and

assimilation mechanisms within durum wheat crops remains

poorly understood. Therefore, future research should focus on

unraveling these intricacies to develop targeted nutrient

management strategies for maximizing grain quality and yield. As

the traditional nutrient management practices are also insufficient

in addressing the complex challenges posed by climate change,

there is a need for advanced nutrient management strategies to

mitigate the negative impacts of the changing climate conditions on

durum wheat. Hence, adopting innovative approaches such as

precision agriculture, controlled-release fertilizers, and site-

specific nutrient management can optimize nutrient availability,

uptake efficiency, and utilization by durum wheat plants. A

continuous research, technological advancements, and farmer

education are key to successfully addressing these challenges and

realizing the benefits of nutrient management in durum

wheat production.
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