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Genetic architecture of soybean
tolerance to off-target dicamba
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Jianfeng Zhou4, Brian Diers5, Dean E. Riechers5,
Henry T. Nguyen4 and Grover Shannon4

1Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States,
2Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, United States,
3Agronomy Department, University of Florida, Gainesville, FL, United States, 4Division of Plant Science
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University of Illinois, Urbana, IL, United States
The adoption of dicamba-tolerant (DT) soybean in the United States resulted in

extensive off-target dicamba damage to non-DT vegetation across soybean-

producing states. Although soybeans are highly sensitive to dicamba, the

intensity of observed symptoms and yield losses are affected by the genetic

background of genotypes. Thus, the objective of this study was to detect novel

marker-trait associations and expand on previously identified genomic regions

related to soybean response to off-target dicamba. A total of 551 non-DT

advanced breeding lines derived from 232 unique bi-parental populations were

phenotyped for off-target dicamba across nine environments for three years.

Breeding lines were genotyped using the Illumina Infinium BARCSoySNP6K

BeadChip. Filtered SNPs were included as predictors in Random Forest (RF)

and Support Vector Machine (SVM) models in a forward stepwise selection loop

to identify the combination of SNPs yielding the highest classification accuracy.

Both RF and SVM models yielded high classification accuracies (0.76 and 0.79,

respectively) with minor extreme misclassifications (observed tolerant predicted

as susceptible, and vice-versa). Eight genomic regions associated with off-target

dicamba tolerance were identified on chromosomes 6 [Linkage Group (LG) C2],

8 (LG A2), 9 (LG K), 10 (LG O), and 19 (LG L). Although the genetic architecture of

tolerance is complex, high classification accuracies were obtained when

including the major effect SNP identified on chromosome 6 as the sole

predictor. In addition, candidate genes with annotated functions associated

with phases II (conjugation of hydroxylated herbicides to endogenous sugar

molecules) and III (transportation of herbicide conjugates into the vacuole) of

herbicide detoxification in plants were co-localized with significant markers

within each genomic region. Genomic prediction models, as reported in this

study, can greatly facilitate the identification of genotypes with superior

tolerance to off-target dicamba.
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1 Introduction

With over 95% of the soybean [Glycine max (L.) Merr.] acreage

grown with genetically-engineered herbicide-tolerant cultivars in

the United States, dicamba (3,6-dichloro-2-methoxybenzoic acid)-

tolerant (DT) soybean seeds are planted in nearly 22.3 million

hectares each year (Tindall et al., 2021; USDA Economic Research

Service, 2022). The widespread adoption of DT soybean since 2016

resulted in extensive off-target damage to non-DT soybean and

other dicots plants (Bradley, 2017; Bradley, 2018; Wechsler et al.,

2019; Chism et al., 2020; Wagman et al., 2020). From 2016 to 2021,

the Environmental Protection Agency (EPA) recorded more than

10,500 reports of dicamba-related injuries in non-DT vegetation

across 29 of the 34 states where the over-the-top use of dicamba is

authorized (Echeverria, 2020; Tindall et al., 2021). Due to its high

vapor pressure, dicamba is prone to increased occurrences of off-

target movement to nearby fields (Behrens and Lueschen, 1979;

Egan and Mortensen, 2012). Environmental conditions consisting

of high temperatures and relative humidity (Egan and Mortensen,

2012), and lower soil pH (Oseland et al., 2020), often observed in

soybean-producing regions during the growing season, can

exacerbate off-target movement. Based on market research and

aggregated sales data, 60% of the acreage planted with DT soybean

was treated at least once with dicamba. Thus, there were up to 8.9

million hectares grown with DT soybean seeds not for the

herbicide-based weed management system but as protection

against unintentional off-target dicamba exposure (Tindall

et al., 2021).

As a growth regulator herbicide, dicamba is a synthetic auxin

that triggers fast and uncontrolled growth of the stems, petioles, and

leaves resulting in the death of sensitive dicots (Grossmann, 2010).

Soybean is highly sensitive to dicamba. Symptoms of dicamba

exposure include crinkling and cupping of immature leaves,

decreased plant height, apical meristem death, abnormal pod

formation, and reduced grain yield (Weidenhamer et al., 1989;

Andersen et al., 2004; Grossmann, 2010; Kniss, 2018; Canella Vieira

et al., 2022b). Timing, dosage, frequency, and duration of exposure

have been shown to affect the severity of the symptoms. For

instance, soybean is far more sensitive to dicamba exposure at the

early reproductive stage relative to the vegetative stage (Egan et al.,

2014; Solomon and Bradley, 2014; Soltani et al., 2016; Kniss, 2018).

Recently, different genetic backgrounds were reported to also

influence the intensity of symptomology resulting from off-target

dicamba in soybean (Canella Vieira et al., 2022b). That study

reported differential responses of conventional soybean genotypes

to off-target dicamba, where certain genetic backgrounds showed

consistently superior responses with minimal symptoms and yield

losses under prolonged off-target dicamba exposure (Canella Vieira

et al., 2022b).

Genome-wide association studies (GWAS) are performed to

detect significant associations between a trait of interest and

molecular markers using linear regression models (Yu et al., 2006;

Hwang et al., 2014; Vuong et al., 2015; Zhang et al., 2015) as well as

machine and deep learning algorithms (Liu et al., 2019;

Yoosefzadeh-Najafabadi et al., 2021; Canella Vieira et al., 2022c;

Yoosefzadeh-Najafabadi et al., 2022). Using a panel of genetically
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diverse soybean accessions, significant associations were reported

between off-target dicamba response and single nucleotide

polymorphisms (SNPs) on chromosomes 10 [Linkage Group

(LG) O], 11 (LG B1), 15 (LG E), 18 (LG G), and 19 (LG L)

(Canella Vieira et al., 2022a). Interestingly, the identified

associations are located in genomic regions nearby genes with

annotated functions consisting of various phases of herbicide

detoxification in plants (Canella Vieira et al., 2022a). This

includes oxidation or hydrolysis by cytochrome P450s and

carboxylesterases, respectively (Phase I) (Kreuz et al., 1996;

Barrett , 2000), uridine diphosphate (UDP)-dependent

glycosyltransferases conjugation of hydroxylated herbicides to

endogenous sugar molecules (Phase II) (Riechers et al., 2010),

and transportation of phase II-conjugated herbicide by multidrug

resistance proteins (MRPs) into the vacuole (Phase III) (Riechers

et al., 2010).

Thus, the purpose of this study was to conduct GWAS to

identify novel marker-trait associations and expand on previously

identified genomic regions in a new population with different

genetic backgrounds than Canella Vieira et al. (2022a). A

machine learning (ML)-GWAS pipeline incorporating a

supervised feature dimension reduction based on Variable

Importance in Projection (VIP) and classification algorithms was

implemented to identify the combination of SNPs that provided the

highest classification accuracy for off-target dicamba response.

Identification and characterization of the genetic architecture of

soybean tolerance to off-target dicamba and the development of

non-DT tolerant genotypes may sustain the production and

adoption of other genetically engineered herbicide-tolerant

soybean production systems in regions severely affected by off-

target dicamba exposure, as well as the expanding niche markets

based of organic and conventional soybean.
2 Materials and methods

2.1 Plant material and genomic data

Soybean genotypes consisted of 551 non-DT advanced breeding

lines derived from 232 unique bi-parental populations. In addition,

18 commercial cultivars [14 DT and four non-DT glyphosate [(N-

(phosphonomethyl)glycine)]-tolerant (GT)] were included in the

study as controls to confirm the presence of off-target dicamba

exposure and assess the homogeneity of off-target dicamba

distribution (Canella Vieira et al., 2022b). In 2019, plant materials

consisted of 210 advanced breeding lines, three GT commercial

cultivars, and seven DT commercial cultivars. In 2020, plant

materials consisted of 204 advanced breeding lines, three GT

commercial cultivars, and six DT commercial cultivars. In 2021,

209 advanced breeding lines, three GT commercial cultivars, and 11

DT commercial cultivars were evaluated. In the study, some

overlapping of genotypes across years was observed, hence the total

number of genotypes evaluated across environments included more

than 551 advanced breeding lines and 18 commercial cultivars. The

maturity group (MG) of genotypes ranged from 4-early tomid-5. MG

was noted as the number of days after August 1st when 95% of pods
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on the main stem had reached mature brown color (Fehr and

Caviness, 1977). Relative maturity (RM) was calculated as days

earlier or later than reference controls and was used to assign MG,

where 4-early = 4.0 to 4.3 (88 genotypes), mid-4 = 4.4 to 4.6 (127

genotypes), 4-late = 4.7 to 4.9 (171 genotypes), 5-early = 5.0 to 5.3

(138 genotypes), and mid-5 = 5.4 to 5.6 (27 genotypes) (Canella

Vieira et al., 2022b). All soybean breeding lines were genotyped using

the Illumina Infinium BARCSoySNP6K BeadChip (Song et al., 2020)

at the USDA-ARS Soybean Genomics and Improvement Laboratory

(Beltsville, MD). A total of 4,970 SNPs were obtained after filtering

based on minor allele frequency (MAF)< 0.05.
2.2 Field experiments and data collection

Nine environments (combination of location, field, and year)

under prolonged off-target dicamba exposure were used to conduct

field experiments for three years (2019-2021) in Portageville, MO

(36°23’44.2”N lat; 89°36’52.3”W long). Genotypes were distributed

in field trials based on MG. Each field trial was arranged in a three-

replicate randomized complete block design where each plot

consisted of four 3.66 m long rows spaced 0.76 m apart. The

homogeneity of off-target dicamba exposure was assessed and

confirmed using an inhomogeneous Poisson marked point

process (Daley and Vere-Jones, 2003) based on the spatial

distribution of the relative yield performance between GT and

nearby DT commercial cultivars (Canella Vieira et al., 2022b).

Soybean genotypes were visually assessed for off-target dicamba

damage on a 1 to 4 scale with 0.5 increments between R1 and R3

(Fehr et al., 1971). As described by Canella Vieira et al. (2022b), a

damage rating of 1 showed symptomology equivalent to the DT

control with none to minimal visual dicamba damage symptoms; a

damage rating of 2 showed moderate tolerance with modest

cupping of the immature leaves without effect on canopy

coverage and vegetative growth; a damage rating of 3 showed

intensified cupping of the immature leaves and moderate

reduction in canopy coverage and vegetative growth, and a rating

of 4 showed extreme damage symptomology including drastic

cupping of the immature leaves and acute reduction in canopy

coverage and vegetative growth (Canella Vieira et al., 2022b). The

consistency and reliability of scores across and within environments

were confirmed using Pearson’s correlation coefficients and

Cronbach’s alpha (Cronbach, 1951), respectively, as reported by

Canella Vieira et al. (2022b).

Damage ratings were adjusted across environments using the

function ‘ls_means’ of the R (R Core Team, 2023) package ‘lmerTest’

(Kuznetsova et al., 2017). A mixed-effects linear model including

the fixed effect of ‘genotype’, the random interaction between

‘genotype’ and ‘environment’ (G×E), the random effect of

‘environment’, and the nested random effect of ‘replication’

within ‘environment’ was fitted using the package ‘lme4’ (Bates

et al., 2015). Genotypes were classified into three categories based

on the adjusted off-target dicamba damage: tolerant when damage

scores ≤ 2, moderate > 2, ≤3, and susceptible >3.
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2.3 Genome-wide association study

Two linear regression-based models were utilized to conduct

GWAS, including the Fixed and Random Model Circulating

Probability Unification (FarmCPU) (Liu et al., 2016) and the

Bayesian-information and Linkage-disequilibrium Iteratively

Nested Keyway (BLINK) (Huang et al., 2019). In addition, one

ML-GWAS pipeline incorporating feature dimension reduction and

classification algorithms was implemented. In summary, FarmCPU

maximizes the advantages of mixed linear models and stepwise

regression by using them iteratively. It substitutes kinship with a set

of molecular markers fitted as fixed effects that are tested one at a

time across the genome. The molecular markers are optimized in a

restricted maximum likelihood method in a mixed linear model

with variance and covariance defined by the set of pre-selected

molecular markers, reducing the risk of model overfitting (Liu et al.,

2016). BLINK is an improved version of FarmCPU that discards the

assumption that genes associated with a trait are evenly spread

across the genome. It replaces the restricted maximum likelihood

method with Bayesian Information Content (BIC) to improve

computing speed (Huang et al., 2019). Both FarmCPU and

BLINK models were conducted using the R (R Core Team, 2023)

package “GAPIT” (Lipka et al., 2012).
2.4 Feature selection and machine learning
classification algorithms

The ML-GWAS pipeline to identify the combination of

predictors yielding the highest prediction accuracy was

implemented following the protocol first described by Canella

Vieira et al. (2022c) (Figure 1). A Partial Least Square (PLS)

(Hold, 1966) model was fitted using the off-target dicamba

damage scores as the variable response and the 4,970 SNPs as

predictors. The components’ coefficients were trained using a 10-

fold cross-validation to achieve a low validation error. The relative

importance of each predictor in the components was represented by

the Variable Importance in Projection (VIP) scores. The analysis

was conducted in R (R Core Team, 2023) using the package ‘pls’ to

fit the PLS model (Mevik and Wehrens, 2007) and ‘plsVarSel’ to

obtain the VIP scores (Mehmood et al., 2012).

The SNPs with VIP scores< 2.0 were discarded. Among the

SNPs with VIP ≥ 2.0, Pearson’s correlation coefficients were

calculated for each possible pairwise combination. For each

iteration, if the pair-wise correlation was< 0.7, both SNPs were

kept. The SNP with the lowest VIP was discarded when an absolute

pairwise correlation ≥ 0.7 occurred. The loop finished after the last

possible pair-wise correlation was calculated. The objective of this

filtering step was to limit overfitting and multicollinearity by

discarding highly correlated predictors with low relative

importance to the response variable.

The non-correlated selected SNPs with VIP ≥ 2.0 were included

as predictors in the Random Forest (RF) and Support Vector

Machine (SVM) models in a forward stepwise selection loop to
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identify the combination of SNPs yielding the highest classification

accuracy. The selection loop started by fitting the SNP with the

highest VIP, followed by adding each SNP one at a time. The SNP

yielding the highest accuracy in the preceding iteration was retained

in the subsequent loop, of which the classification accuracy was

calculated with an additional SNP. The loop concluded when no

further improvement in the classification accuracy was observed by

the addition of another SNP, thereby identifying the optimal

combination of predictors. To evaluate the impact of overfitting

on the prediction accuracy of both models, the loop continued

despite no additional gain in classification accuracy, and

classification accuracy metrics were recorded for each iteration.

Each iteration was analyzed with 5-fold cross-validation and

classification accuracy metrics were recorded. The overall accuracy

of each iteration was computed using eq. 1. Class accuracy is

represented by the proportion of true positives (TP) and true

negatives (TN) for individual classes (sum of TP, TN, false

positive (FP), and false negative (FN)) (Eq. 2). Precision is

described as the number of TP by the number of predicted

positives (TP + FP) for individual classes (Eq. 3). Specificity is

defined by the ratio of TN by TN and FP for individual classes (Eq.

4).

Overall  Accuracy

=  
No :  of  Correct  Classif ications

Total No :  of  Samples
 � 100% (1)

Class Accuracy =  
TP + TN

TP + TN + FP + FN
(2)

Precision =  
TP

TP + FP
(3)

Specif icity =  
TN

TN + FP
(4)

where,
Fron
TP = True Positive (correctly predicted as the positive class);

TN = True Negative (correctly predicted as the negative class);

FP = False Positive (incorrectly predicted as the positive class);
tiers in Plant Science 04
FN = False Negative (incorrectly predicted as the negative

class).
RF and SVM machine learning models were used for the multi-

class prediction problem. These were chosen based on their efficacy

in handling data in which the number of predictors is larger than

the number of observed samples, as well as a providing satisfactory

balance between the variance-bias trade-off (James et al., 2013). RF

is a supervised learning algorithm based on the assembly of multiple

decision trees. It conducts feature selection and generates non-

correlated decision trees making it feasible to include a high number

of predictors in the model (Breiman, 2001). The SVM model places

flexible hyperplanes among classes, being particularly useful in

classification problems. The model provides flexibility to identify

combinations of adjustable parameters that optimize model

performance while mitigating the risk of overfitting.

The RF model was conducted using the R package

‘randomForest’ (Liaw and Wiener, 2002) with the square root of p

predictors (number of predictors) randomly selected at each split.

The SVMmodel was conducted using the R package ‘e1071’ (Meyer

et al., 2021) with the kernel defined as ‘radial’. The optimal

combination of trainable parameters was provided using the

function ‘tune’. The final model was tunned using a grid search

for the cost ranging from 0.01, 0.1, 1, 10, 100, and 1000, and gamma

ranging from 0.0001, 0.001, 0.01, 0.5, and 1 (Canella Vieira

et al., 2022c).
3 Results

3.1 Phenotypic distribution

Across all testing years (2019-2021), a total of 107 genotypes

were classified as tolerant (19.4%), 341 as moderate (61.9%), and

103 as susceptible (18.7%) (Figure 2). The distribution was relatively

uniform across the years, although the frequency of susceptible

genotypes declined over the years as a result of the potential indirect

selection of tolerant genotypes based on favorable agronomic traits

and yield in environments exposed to prolonged off-target dicamba.

Indirect selection has been documented in soybean for multiple
FIGURE 1

Machine learning-based GWAS pipeline scheme including feature dimension reduction (Partial Least Square), reduction of multicollinearity (Pairwise
Pearson’s Correlation), and identification of sets of SNPs conferring the highest classification accuracy (Forward stepwise selection loop using
Random Forest and Support Vector Machine).
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traits, including off-target dicamba tolerance (Canella Vieira et al.,

2022b), adaptation and maturity (Board et al., 1997), seed size

(LeRoy et al., 1991), and grain yield (Board et al., 2003; Kahlon et al.,

2011). Multi-environment grain yield, the impact of off-target

dicamba exposure on yield, and the consistency and reliability of

scores across and within environments of these genotypes have

been previously reported by Canella Vieira et al. (2022b).
Frontiers in Plant Science 05
3.2 Genome-wide association results

Significant marker-trait associations (logarithm of the odds

(LOD) > 4.0) were identified using both FarmCPU and BLINK

models across chromosomes 6 (LG C2), 8 (LG A2), 9 (LG K), 10

(LG O), and 19 (LG L) (Figure 3). The genomic regions and

harboring candidate genes were reported based on the soybean
FIGURE 2

Distribution of genotypes based on off-target dicamba response (tolerant, moderate, and susceptible) within each year and across all testing
environments.
FIGURE 3

Manhattan plot highlighting in magenta the significant marker-trait associations identified using the BLINK and FarmCPU models. The threshold of
marker-trait association significance was LOD > 4.0.
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assembly Williams 82 Version 2 (Genome Browser Wm82.a2,

www.soybase.org). In chromosome 6, three separate genomic

regions were detected at 10,891,060 bp, 20,739,900 bp, and

47,550,354 bp. The genomic region on chromosome 6 (10,891,060

bp) represented by the SNP ss715592728 (minor allele frequency

(MAF) of 0.33) resulted in LOD scores of 5.4 and 12.3 for the

FarmCPU and BLINK models, respectively (Table 1). The SNP

ss715593866 (MAF of 0.47, 20,739,900 bp) had the highest LOD

scores in both FarmCPU and BLINK models (19.8 and 30.3,

respectively) across the entire set of SNPs. A Universal Stress

Protein (Glyma.06g209600) has been reported within 50 kb of

ss715593866 (Genome Browser Wm82.a2, www.soybase.org).

Lastly, ss715594836 (MAF of 0.34, 47,550,354 bp) is co-localized

with a glycosyltransferase protein (Glyma.06g286500) and resulted

in LOD scores of 6.0 and 7.5 for the FarmCPU and BLINK models,

respectively. In chromosome 8, a genomic region at 22,622,648 bp

(ss715600920, MAF of 0.17) resulted in LOD scores of 6.1 and 4.3

for the FarmCPU and BLINK models, respectively. A gene

(Glyma.08g255800) expressing an S-adenosylmethionine

decarboxylase is located within 50 kb of ss715600920. In

chromosome 9, ss715604850 (MAF of 0.16, 48,055,288 bp) had

LOD scores of 4.9 and 6.4 for the FarmCPU and BLINK models,

respectively. Interestingly, an additional glycosyltransferase protein

(Glyma.09g224800) is located within 50 kb of ss715604850. The

genomic region identified on chromosome 10 (981,062 bp) is co-

localized with the region previously reported by Canella Vieira et al.

(2022a). The SNP ss715608720 (MAF of 0.40) had LOD scores of

4.6 and 6.3 for the FarmCPU and BLINK models, respectively. Two

genes with plant herbicide detoxification functions were detected

within 50 kb of ss715608720, including Glyma.10g010000

(g l yco sy l t rans f e ra se pro t e in) and Glyma .10g010700

(oxidoreductase activity). Lastly, a novel genomic region in

chromosome 19 was identified at 1,656,743 bp. The SNP

ss715633252 (MAF of 0.47) had LOD scores of 7.5 and 10.0 for
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the FarmCPU and BLINK models, respectively. Two ATP-binding

cassette (ABC) transporter family proteins (Glyma.19g016400 and

Glyma.19g016600) were identified within 50kb of this SNP. A

second genomic region at 45,152,186 bp of chromosome 19 was

also detected. This region was previously reported by Canella Vieira

et al. (2022a) and is rich in UDP-dependent glycosyltransferase

genes. The SNP ss715635454 (MAF of 0.33) had LOD scores of 6.3

and 13.9 for the FarmCPU and BLINK models, respectively. Across

all significant marker-trait associations, the reported candidate

genes have biological functions directly associated with the multi-

phase herbicide detoxification model (Riechers et al., 2010). The

genomic regions on chromosomes 6, 8, 9, and 19 identified in this

study have not been previously reported as associated with off-

target dicamba response and may be the focus of further

investigations to understand the physiological mechanisms

conferring tolerance.
3.3 Variable importance in projection and
classification metrics

The distribution of SNPs across chromosomes was relatively

uniform with an average of 248 SNPs per chromosome, ranging

from 190 (chromosome 17, LG D2) to 327 SNPs (chromosome 8).

The average VIP score across 4,970 SNPs was 0.82, ranging from

0.01 (ss715598194) to 3.16 (ss715593866) (Figure 4). Within

chromosomes, the average VIP score ranged from 0.59

(chromosome 8) to 1.02 (chromosome 19). The VIP metric ranks

predictors (SNPs) based on their significance to the aggregate index

(De). Given the average of squared VIP scores are equal to 1.0, a

threshold higher than 1.0 is employed to select features that make

the most substantial contribution to De (Chong and Jun, 2005;

Cocchi et al., 2018). In scenarios where the number of independent

variables significantly exceeds the number of observations and there
TABLE 1 Summary of significant marker-trait associations identified using the BLINK and FarmCPU models including genomic position, minor allele
frequency, logarithm of odds, variable importance in projection, and co-localized candidate genes.

SNP Chr.
Position

MAF (%)2
LOD3

VIP4 Candidate Genes5 Function5

(bp)1 BLINK FarmCPU

ss715592728 6 10,891,060 0.33 12.3 5.4 2.46

ss715593866 6 20,739,900 0.47 30.3 19.8 3.16 Glyma.06g209600 Universal Stress Protein

ss715594836 6 47,550,354 0.34 7.5 6.0 3.07 Glyma.06g286500 Glycosyltransferase

ss715600920 8 22,622,648 0.17 4.3 6.1 2.30 Glyma.08g255800 S-adenosylmethionine decarboxylase

ss715604850 9 44,855,340 0.16 6.4 4.9 1.85 Glyma.09g224800 Glycosyltransferase

ss715608720 10 981,062 0.40 6.3 4.6 2.23
Glyma.10g010000 Glycosyltransferase

Glyma.10g010700 Oxidoreductase

ss715633252 19 1,656,743 0.47 10.0 7.5 2.83
Glyma.19g016400 ABC Transporter Protein

Glyma.19g016600 ABC Transporter Protein

ss715635454 19 45,152,186 0.33 13.9 6.3 2.27 Glyma.19g187400 UDP-glycosyltransferase genes
1Position in the genome reported as base pairs (Genome assembly version Wm82.a2). 2Minor allele frequency reported in percentage. 3LOD, the logarithm of odds calculated as the negative
logarithm of the observed p-value for each model. VIP, variable importance in projection. 5Candidate Genes and Functions identified within a 50 kb window from the significant SNP (Genome
Browser Wm82.a2, www.soybase.org).
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is considerable multicollinearity, a threshold of 2.0 is suggested to

filter significant predictors (Cocchi et al., 2018; Canella Vieira et al.,

2022c). A total of 113 SNPs with VIP scores above 2.0 were

distributed across chromosomes 1 (7 SNPs, LG D1a), 2 (6 SNPs,

LG D1b), 3 (6 SNPs, LG N), 4 (1 SNP, C1), 6 (25 SNPs), 7 (1 SNP,

LG M), 8 (2 SNPs), 9 (2 SNPs), 10 (4 SNPs), 11 (1 SNP, LG B1), 13

(6 SNPs, LG F), 17 (16 SNPs), and 19 (36 SNPs) (Figure 4). To

further reduce model overfitting, SNPs with absolute values of

pairwise Pearson’s correlation ≥ 0.7 were removed, resulting in 41

SNPs selected to be included in the ML algorithms. These SNPs
Frontiers in Plant Science 07
were distributed across chromosomes 1 (3 SNPs), 2 (4 SNPs), 3 (4

SNPs), 4 (1 SNP), 6, (7 SNPs), 7 (1 SNP), 8 (2 SNPs), 9 (2 SNPs), 10

(2 SNPs), 11 (1 SNP), 13 (4 SNPs), 17 (4 SNPs), and 19 (6

SNPs) (Figure 4).

The SVM model yielded the highest overall classification

accuracy (0.79) including 12 SNPs as predictors, with a noticeable

reduction in overall classification accuracy with the inclusion of more

SNPs (Table 2). The SNPs that resulted in the highest classification

accuracy, sorted by order of inclusion in the model,

were ss715593866, ss715600920, ss715594836, ss715592728,
TABLE 2 Summary of SVM model classification accuracy metrics based on the number of predictors.

# SNPs1 Overall Accuracy2
Tolerant Moderate Susceptible

Accuracy3 Precision4 Specificity5 Accuracy Precision Specificity Accuracy Precision Specificity

1 0.71 0.50 – 1.00 0.60 0.72 0.95 0.67 0.62 0.94

2 0.71 0.50 – 1.00 0.58 0.71 0.95 0.68 0.67 0.96

3 0.72 0.55 0.50 0.98 0.62 0.73 0.93 0.68 0.67 0.96

4 0.70 0.61 0.57 0.97 0.58 0.71 0.95 0.56 0.60 0.98

5 0.72 0.63 0.56 0.96 0.65 0.76 0.89 0.67 0.57 0.93

6 0.69 0.51 0.20 0.96 0.59 0.72 0.91 0.68 0.67 0.96

7 0.68 0.61 0.57 0.97 0.60 0.73 0.86 0.63 0.47 0.91

8 0.75 0.65 0.71 0.98 0.70 0.79 0.88 0.75 0.57 0.90

9 0.74 0.65 0.73 0.99 0.69 0.78 0.88 0.72 0.52 0.89

10 0.75 0.70 0.64 0.96 0.68 0.78 0.89 0.70 0.64 0.94

11 0.77 0.74 0.71 0.99 0.70 0.78 0.93 0.67 0.62 0.94

12 0.79 0.81 0.78 1.00 0.71 0.80 0.95 0.65 0.65 0.96

13 0.79 0.81 0.78 1.00 0.71 0.79 0.95 0.65 0.64 0.96

14 0.77 0.81 0.77 1.00 0.69 0.78 0.93 0.62 0.55 0.94

15 0.78 0.81 0.67 1.00 0.70 0.78 0.93 0.65 0.58 0.94

16 0.78 0.78 0.76 1.00 0.70 0.78 0.93 0.67 0.62 0.94

17 0.76 0.78 0.75 1.00 0.67 0.77 0.93 0.62 0.55 0.94

18 0.76 0.75 0.77 1.00 0.67 0.77 0.93 0.65 0.58 0.94

(Continued)
fr
FIGURE 4

Variable Importance in Projection (VIP)-based Manhattan plot of the 4,970 SNPs. The SNPs with VIP scores higher than 2.0 are highlighted in gray,
and the 41 uncorrelated SNPs selected to be used in the ML-based GWAS are colored in magenta.
ontiersin.org

https://doi.org/10.3389/fpls.2023.1230068
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Canella Vieira et al. 10.3389/fpls.2023.1230068
ss715635403, ss715627948, ss715579081, ss715588076, ss715582179,

ss715608720, ss715586851, ss715634898, and ss715616396. The model

including the 12 SNPs as predictors outperformed both

model including only the highest VIP SNP (ss715593866) and the

model including all 41 selected SNPs by approximately 11% (0.71 to

0.79) (Table 2). All classification metrics, including precision and

specificity, observed equivalent improvements. The SVM model

resulted in minor extreme misclassifications (observed tolerant

predicted as susceptible, and vice-versa) highlighting its high

suitability to be implemented in an applied soybean breeding

pipeline aiming to identify genotypes tolerant to off-target dicamba

(Figure 5). For instance, out of all tolerant predictions, 78% were

observed as tolerant and 22% as moderate, while out of all susceptible

predictions, 65% were observed as susceptible, 29% as moderate, and

only 6% as tolerant (Figure 5).

The highest overall classification accuracy (0.76) in the RF

model was achieved using 17 SNPs as predictors, including

ss715593866, ss715635403, ss715588076, ss715592728, ss715600920,
Frontiers in Plant Science 08
ss715582179, ss715633252, ss715626266, ss715583058, ss715582533,

ss715610029, ss715605561, ss715605251, ss715599209, ss715627948,

ss715616396, ss715595654, and ss715580115 (Table 3). Eight SNPs,

including ss715593866, ss715635403, ss715588076, ss715592728,

ss715600920, ss715582179, ss715627948, and ss715616396

overlapped between the SVM and RF models yielding the highest

overall classification accuracy. A larger increase in overall

classification accuracy (17%) was observed between the baseline

model including only ss715593866 (0.65) and the model including

17 SNPs (0.76). Substantial improvements in class accuracy,

precision, and specificity were also observed between the two

models. The RF model also demonstrated high suitability to be

implemented in real-world prediction problems. Out of all tolerant

predictions, 86% were observed as tolerant and 14% as moderate,

while out of all susceptible predictions, 78% were observed as

susceptible and 22% as moderate (Figure 5). Overall, the RF

model did not perform any extreme misclassifications. Similar to

the SVM model, a substantial decrease in overall classification
TABLE 2 Continued

# SNPs1 Overall Accuracy2
Tolerant Moderate Susceptible

Accuracy3 Precision4 Specificity5 Accuracy Precision Specificity Accuracy Precision Specificity

19 0.74 0.74 0.67 0.98 0.67 0.77 0.86 0.68 0.53 0.91

20 0.75 0.78 0.69 0.99 0.67 0.77 0.89 0.64 0.50 0.92

21 0.75 0.74 0.72 0.98 0.69 0.78 0.88 0.71 0.59 0.92

22 0.74 0.70 0.70 0.97 0.68 0.78 0.85 0.73 0.58 0.91

23 0.75 0.70 0.70 0.97 0.68 0.78 0.86 0.74 0.61 0.92

24 0.75 0.70 0.70 0.97 0.69 0.78 0.88 0.74 0.65 0.93

25 0.75 0.71 0.72 0.98 0.68 0.78 0.89 0.72 0.63 0.93

26 0.76 0.71 0.72 0.98 0.70 0.79 0.89 0.74 0.65 0.93

27 0.75 0.71 0.78 0.98 0.68 0.78 0.89 0.72 0.63 0.93

28 0.76 0.71 0.78 0.98 0.70 0.79 0.89 0.74 0.65 0.93

29 0.76 0.71 0.78 0.98 0.70 0.79 0.89 0.74 0.65 0.93

30 0.76 0.71 0.78 0.98 0.70 0.79 0.89 0.74 0.65 0.93

31 0.76 0.71 0.78 0.98 0.70 0.79 0.89 0.74 0.65 0.93

32 0.77 0.71 0.76 0.99 0.70 0.79 0.91 0.74 0.65 0.93

33 0.78 0.74 0.70 0.99 0.72 0.80 0.91 0.74 0.65 0.93

34 0.75 0.71 0.75 0.98 0.69 0.78 0.88 0.74 0.61 0.92

35 0.76 0.71 0.75 0.98 0.70 0.79 0.88 0.76 0.63 0.92

36 0.74 0.71 0.75 0.99 0.68 0.78 0.84 0.74 0.52 0.88

37 0.70 0.71 0.75 0.99 0.65 0.77 0.80 0.70 0.44 0.84

38 0.70 0.71 0.74 0.99 0.65 0.77 0.80 0.70 0.44 0.84

39 0.70 0.71 0.73 0.99 0.65 0.77 0.80 0.70 0.44 0.84

40 0.71 0.68 0.75 0.98 0.66 0.77 0.82 0.71 0.48 0.87
fr
1Number of SNPs included in the model in each iteration. The highest classification accuracy (0.79) was obtained with 12 SNPs as predictors, including ss715593866, ss715600920, ss715594836,
ss715592728, ss715635403, ss715627948, ss715579081, ss715588076, ss715582179, ss715608720, ss715586851, ss715634898, and ss715616396. 2Overall classification accuracy calculated based on
Eq. 1. 3Class Accuracy calculated based on Eq. 2. 4Precision calculated based on Eq. 3. 5Specificity calculated based on Eq. 4.
The bold values indicate the iteration which conferred the highest classification accuracy.
ontiersin.org

https://doi.org/10.3389/fpls.2023.1230068
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Canella Vieira et al. 10.3389/fpls.2023.1230068
TABLE 3 Summary of RF model classification accuracy metrics based on the number of predictors.

# SNPs Overall Accuracy
Tolerant Moderate Susceptible

Accuracy Precision Specificity Accuracy Precision Specificity Accuracy Precision Specificity

1 0.65 0.61 0.67 0.98 0.54 0.69 0.97 0.50 – 1.00

2 0.66 0.56 0.67 0.99 0.52 0.68 0.99 0.50 – 1.00

3 0.67 0.63 0.50 0.95 0.55 0.70 0.88 0.49 0.14 0.93

4 0.67 0.63 0.56 0.96 0.59 0.72 0.93 0.56 0.60 0.98

5 0.67 0.63 0.56 0.96 0.62 0.74 0.91 0.63 0.60 0.96

6 0.69 0.68 0.75 0.98 0.65 0.75 0.91 0.61 0.46 0.92

7 0.70 0.67 0.67 0.97 0.64 0.75 0.92 0.63 0.60 0.96

8 0.70 0.64 0.63 0.97 0.61 0.73 0.88 0.64 0.54 0.93

9 0.72 0.61 0.67 0.98 0.61 0.73 0.92 0.65 0.64 0.96

10 0.73 0.61 0.67 0.98 0.63 0.74 0.93 0.65 0.64 0.96

11 0.74 0.62 0.80 0.99 0.66 0.76 0.96 0.68 0.73 0.97

12 0.73 0.62 0.80 0.99 0.65 0.75 0.96 0.69 0.80 0.98

13 0.72 0.58 0.60 0.98 0.61 0.73 0.92 0.68 0.67 0.96

14 0.74 0.63 0.71 1.00 0.63 0.74 0.93 0.67 0.62 0.94

15 0.71 0.59 0.74 1.00 0.61 0.73 0.91 0.66 0.66 0.92

16 0.75 0.69 0.75 1.00 0.66 0.74 0.93 0.67 0.70 0.94

17 0.76 0.68 0.86 0.99 0.67 0.75 0.93 0.70 0.78 0.96

18 0.75 0.65 0.83 0.99 0.65 0.75 0.93 0.68 0.76 0.96

19 0.75 0.68 0.75 0.98 0.67 0.76 0.92 0.70 0.72 0.96

20 0.75 0.65 0.83 0.99 0.65 0.75 0.93 0.68 0.67 0.96

21 0.72 0.61 0.67 0.98 0.61 0.73 0.92 0.65 0.64 0.96

22 0.72 0.61 0.67 0.98 0.61 0.73 0.92 0.65 0.64 0.96

23 0.71 0.61 0.67 0.98 0.60 0.72 0.92 0.63 0.60 0.96

(Continued)
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FIGURE 5

Graphical confusion matrix based on the precision of each predicted class in the Random Forest and Support Vector Machine models.
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accuracy was observed with the inclusion of more predictors

(Figure 6). The overall classification accuracy was computed for

each iteration from 1 SNP to 2,000 SNPs. A pronounced negative

trend was observed with the increase in SNPs, indicating the

negative impact of overfitting and the importance of filtering

SNPs on overall model performance (Figure 6).
Frontiers in Plant Science 10
4 Discussion

The development of DT soybean and cotton (Gossypium

hirsutum L.) was a major biotechnology breakthrough grounded

on diversifying strategies of herbicide-based weed management as

well as overcoming weeds resistant to glyphosate at a time when GT
TABLE 3 Continued

# SNPs Overall Accuracy
Tolerant Moderate Susceptible

Accuracy Precision Specificity Accuracy Precision Specificity Accuracy Precision Specificity

24 0.70 0.61 0.67 0.98 0.60 0.73 0.89 0.64 0.54 0.93

25 0.70 0.61 0.67 0.98 0.60 0.73 0.89 0.64 0.54 0.93

26 0.72 0.65 0.71 0.98 0.62 0.74 0.91 0.65 0.58 0.94

27 0.70 0.61 0.67 0.98 0.61 0.73 0.88 0.66 0.53 0.92

28 0.74 0.68 0.86 0.99 0.64 0.75 0.92 0.65 0.58 0.94

29 0.71 0.61 0.67 0.98 0.61 0.73 0.89 0.67 0.57 0.93

30 0.70 0.65 0.83 0.99 0.60 0.73 0.89 0.61 0.46 0.92

31 0.70 0.61 0.67 0.98 0.61 0.73 0.88 0.66 0.53 0.92

32 0.71 0.65 0.83 0.99 0.62 0.74 0.88 0.66 0.50 0.91

33 0.69 0.62 0.80 0.99 0.59 0.72 0.88 0.63 0.47 0.91

34 0.69 0.65 0.83 0.99 0.59 0.72 0.88 0.61 0.43 0.91

35 0.71 0.65 0.71 0.98 0.62 0.74 0.88 0.66 0.53 0.92

36 0.70 0.65 0.83 0.99 0.61 0.74 0.86 0.65 0.47 0.90

37 0.70 0.62 0.80 0.99 0.60 0.73 0.89 0.64 0.50 0.92

38 0.67 0.59 0.75 0.99 0.57 0.71 0.86 0.63 0.44 0.90

39 0.69 0.65 0.83 0.99 0.60 0.73 0.86 0.63 0.44 0.90

40 0.69 0.65 0.83 0.99 0.59 0.72 0.88 0.61 0.43 0.91
fr
1Number of SNPs included in the model in each iteration. The highest classification accuracy (0.76) was obtained with 17 SNPs as predictors, including ss715593866, ss715635403, ss715588076,
ss715592728, ss715600920, ss715582179, ss715633252, ss715626266, ss715583058, ss715582533, ss715610029, ss715605561, ss715605251, ss715599209, ss715627948, ss715616396, ss715595654, and
ss715580115. 2Overall classification accuracy calculated based on Eq. 1. 3Class Accuracy calculated based on Eq. 2. 4Precision calculated based on Eq. 3. 5Specificity calculated based on Eq. 4.
The bold values indicate the iteration which conferred the highest classification accuracy.
FIGURE 6

Overall prediction accuracy of each model’s iteration from 1 to 2,000 SNPs as predictors. The decrease in prediction accuracy with the increment of
the number of SNPs is a result of model overfitting.
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was the only genetically-engineered herbicide tolerance system

available (Behrens et al., 2007). The discovery of metabolism of

dicamba to 3,6-dichlorosalicylic acid (DCSA) (Taraban et al., 1993;

Fogarty and Tuovinen, 1995; Herman et al., 2005), a compound

without herbicidal activity, by soil bacteria under both aerobic and

anaerobic conditions led to the development of DT plants by

inserting the bacterial gene dicamba monooxygenase (DMO) from

Pseudomonas maltophilia (Strain DI-6) (Behrens et al., 2007).

Genetically-engineered plants expressing the enzyme dicamba O-

demethylase convert dicamba to DCSA before it accumulates to

phytotoxic levels (Herman et al., 2005; Behrens et al., 2007; Wang

et al., 2016). In the United States, DT soybean seeds were first

commercialized in 2016 and were rapidly adopted on nearly 22.3

million hectares (Tindall et al., 2021).

The goal of this study was to detect genomic regions related to

various responses to prolonged off-target dicamba exposure in a

population consisting of advanced soybean breeding lines. A total of

551 non-DT advanced breeding lines derived from 232 unique bi-

parental populations were grown in environments surrounded by

DT soybean and cotton growing systems, thus being exposed to

prolonged unintentional off-target dicamba. Although each testing

environment showed homogenous off-target dicamba distribution

(Canella Vieira et al., 2022b), one limitation of this study was the

lack of precise data regarding the dosage of dicamba received by

each experimental plot during specific growth stages and during the

growing season. The various sources and dosages of dicamba

combined with fluctuating environmental factors make it

unfeasible to accurately quantify the exposure in a large-scale

field study (Kniss, 2018; Canella Vieira et al., 2022b). Experiments

in controlled environments with specific pre-determined dosages

should be conducted to further investigate thresholds at which the

identified genomic regions can maintain the observed responses.

A total of eight genomic regions related to various responses to

off-target dicamba were identified across chromosomes 6 (3), 8 (1),

9 (1), 10 (1), and 19 (2). Interestingly, several candidate genes co-

localized with significant SNPs have been reported to have

biological functions directly related to proteins participating in

the three phases of herbicide detoxification in plants (Riechers

et al., 2010). Thus, it can be hypothesized that non-DT soybean

genotypes with tolerance response to off-target dicamba may have

the capability to more rapidly detoxify low doses of the herbicide

compared to sensitive genotypes. For instance, the gene

Glyma.06g209600 is located within 50 kb of ss715593866 (LOD

scores of 19.8 and 30.3 in the FarmCPU and BLINK models,

respectively). This gene has been reported to be a Universal Stress

Protein with adenine nucleotide alpha hydrolase function. Phase I

of herbicide detoxification usually introduces a reactive functional

group for the subsequent metabolism and detoxification through

oxidation or hydrolysis by cytochrome P450s or carboxylesterases,

respectively (Kreuz et al., 1996; Barrett, 2000). Although the genetic

architecture of tolerance is complex and regulated by multiple small

and large effect loci, ss715593866 is a major effect SNP and resulted

in high classification accuracies in both RF and SVMwhen included

as the sole predictor. Therefore, further investigation of the role and
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effect of ss715593866 could better explain the physiological

mechanisms associated with tolerance to off-target dicamba

in soybean.

Glyma.06g286500 is a candidate gene located within 50 kb of

ss715594836 (LOD scores of 6.0 and 7.5 in the FarmCPU and

BLINK models, respectively) with glycosyltransferase-related

functions. Phase II of herbicide detoxification involves

conjugation reactions of herbicides with reduced glutathione

[catalyzed by glutathione S-transferases (GST)] or glucose

(catalyzed by UDP-dependent glycosyltransferases) (Riechers

et al . , 2010) . In chromosome 8, the candidate gene

Glyma.08g255800 located within 50kb of ss715600920 (LOD

scores of 6.1 and 4.3 for the FarmCPU and BLINK models,

respectively) expresses an S-adenosylmethionine decarboxylase.

This enzyme is key in the biosynthesis of polyamines (Majumdar

et al., 2017). Although the precise role of S-adenosylmethionine

decarboxylase in plants is still unknown, its up-regulation has been

reported in response to many abiotic stressors including salt (Hao

et al., 2005), drought (Urano et al., 2003; Alcázar et al., 2006),

temperature (Hao et al., 2005; Cheng et al., 2009), and oxidative

stress (Moschou et al., 2008). A consequence of exposure to auxinic

herbicides is the rapid increase in ethylene production by initiating

1-aminocyclopropane-1-carboxylic acid synthase and biosynthesis

of abscisic acid (Hansen and Grossmann, 2000; Grossmann et al.,

2001; Kraft et al., 2007). This reduces transpiration, carbon dioxide

assimilation, starch formation, and a substantial accumulation of

reactive oxygen species, which leads to chloroplast damage,

membrane destruction, and ultimately tissue damage and cell

death (Kraft et al., 2007; Grossmann, 2010).

S imilar to Glyma.06g286500 , the candidate genes

Glyma.09g224800 (co-localized with ss715604850, LOD scores of

4.9 and 6.4 for the FarmCPU and BLINK models, respectively) and

Glyma.10g010000 (co-localized with ss715608720, LOD scores of 4.6

and 6.3 for the FarmCPU and BLINK model, respectively) have

glycosyltransferase-related functions which are associated with

conjugation reactions of phase II of herbicide detoxification

(Riechers et al., 2010). Within the same genomic region of

chromosome 10, ss715608720 is also co-localized with

Glyma.10g010700, a candidate gene involved in oxidoreductase

activity. The expression of oxydoreductase enzymes acts as a

signal to the subsequential expression of GST, cytochrome P450

monooxygenases, and other proteins involved in herbicide

detoxification (Zhang et al., 2007; Riechers et al., 2010). This

genomic region was previously reported, and the candidate gene

Glyma10g01700, which encodes a multidrug resistance protein

(MRP), was co-localized with the significant SNP ss715605561

(Canella Vieira et al., 2022a). On chromosome 19, a genomic

region around 1,650,000 bp (ss715633252, LOD scores of 7.5 and

10.0 for the FarmCPU and BLINK models, respectively) harbors

two candidate genes (Glyma.19g016400 and Glyma.19g016600) that

belong to the ABC transporter family. Herbicide conjugates from

phase II are transported into the vacuole of plant cells by

transporters, concluding phase III of herbicide detoxification

(Riechers et al., 2010). Another genomic region on chromosome
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19 around 45,000,000 bp was detected and previously reported by

Canella Vieira et al. (2022a). This genomic region contains several

UDP-glycosyltransferase genes which are necessary for phase II

reactions of herbicide detoxification (Canella Vieira et al., 2022a).

One of the main challenges in analyzing high-dimensional

genomic data is the presence of multicollinearity and excessive

noise among predictors, which often leads to a substantial detection

of false-positive associations in GWAS (Ishwaran et al., 2010; Chen

and Ishwaran, 2012; Canella Vieira et al., 2022c). Given the

substantial imbalance between the number of predictors (SNPs)

and observations, traditional GWAS models frequently face the risk

of overfitting. In this scenario, the model overly captures

unintended noise in the training set, yielding low reproducibility

on the testing set (Austin and Steyerberg, 2015; Ying, 2019). An

approach to avoid overfitting and improve model reproducibility

and cost-effectiveness is feature selection, which is the process of

selecting relevant predictors from the original predictors set

(Akarachantachote et al., 2014). In this study, a supervised feature

dimension reduction based on VIP scores initially selected

predictors with high importance toward the aggregate index (De).

This was followed by a pair-wise correlation filtering step, resulting

in a subset of important, uncorrelated SNPs. In both RF and SVM

models, a pronounced decrease in prediction accuracy was observed

with the increment of SNPs as predictors. Therefore, identifying

fewer but relevant predictors (i.e. feature selection) yielded higher

prediction accuracies as compared to fitting the model with the

highest number of predictors available. Equivalent results were

observed by Canella Vieira et al. (2022c) when implementing a

similar methodology to predict soybean resistance to southern root-

knot nematode (Meloidogyne incognita (Kofold & White)

Chitwood). In their study, a more pronounced decrease in

prediction accuracy as a consequence of overfitting was observed.

In addition, a lower number of predictors was needed to achieve the

highest prediction accuracy, which could be explained by

the qualitative nature of the phenotype. In this study, although

the tolerance to off-target dicamba is substantially more complex

and quantitative than resistance to southern root-knot nematode,

less than 0.5% of total predictors were needed to achieve the highest

prediction accuracy in both RF (17 out of 4,970 SNPs) and SVM (12

out of 4,970 SNPs) models. Singer et al. (2022) observed decreased

prediction accuracies of proteinogenic methionine content in

soybean seeds as a consequence of overfitting. The study reported

a nearly 3-fold increase in prediction accuracy by using a subset of

SNPs significantly associated with the phenotype as opposed to

fitting the models with the entire set of 35,570 SNP (Singer et al.,

2022). Therefore, the combination of feature selection and

predictive classification algorithms may provide high accuracies

in the identification and selection of genotypes with desirable

phenotypes for both qualitative and quantitative traits. Further

validations including traits with higher genetic complexity such as

grain yield are needed and can broaden the application of genomic

data toward breeding decisions in a cultivar development pipeline.

Both RF and SVM models yielded high classification accuracies

using the best combination of predictors (0.76 and 0.79,
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respectively). Both prediction models resulted in high precision,

meaning that minimal extreme misclassifications (observed tolerant

predicted as susceptible, and vice-versa) were observed. Using a

nearly identical panel of soybean breeding lines, Canella Vieira et al.

(2022b) reported that visual assessment of off-target dicamba

tolerance is directly associated with seed yield under prolonged

off-target dicamba exposure. On average, a yield penalty of 8.8%

(confidence interval of 7.0 to 10.6%) was observed for each unit

increase in damage score on a similar 1-4 scale (Canella Vieira et al.,

2022b). Therefore, the identification and development of non-DT

soybean genotypes with superior tolerance to off-target dicamba can

help sustain the production of non-DT herbicide-tolerance systems,

which currently represent nearly 14.2 million hectares. In addition,

natural tolerance may improve the sustainability of niche markets

for food-graded non-GMO soybean. Genomic prediction models,

such as those reported in this study, can significantly speed up the

identification of genotypes with superior tolerance to off-target

dicamba. The understanding of the genetics and physiological

mechanisms underlying the differential responses to off-target

dicamba is critical to support soybean breeding programs

focusing on the development of non-DT soybean genotypes with

superior tolerance to off-target dicamba.
5 Conclusions

The widespread adoption of DT crops resulted in numerous

events involving off-target dicamba damage to non-DT vegetation.

Environmental conditions that exacerbate the likelihood of off-

target movement are often observed in soybean-producing regions

during the growing season, hence the reports of damage in most

states where the over-the-top use of dicamba is authorized. Soybean

is highly sensitive to dicamba exposure, critically compromising the

yield and quality of non-DT genetically engineered and non-GMO

growing systems. In this study, two genomic regions conferring

tolerance to off-target dicamba were confirmed from previous

studies, and six novel regions were identified. The genetic

architecture of tolerance is complex and regulated by multiple

small and large effect loci. However, ss715593866 is a major effect

SNP and resulted in high classification accuracies in both RF and

SVM when included as the sole predictor. Candidate genes with

biological functions associated with herbicide detoxification in

plants were co-localized with significant minor and major effect

SNPs. These genes need to be further confirmed through gene-

editing and controlled-environment experiments. Non-DT

genotypes with tolerance were previously shown to yield

significantly more than non-DT susceptible genotypes under

prolonged off-target dicamba exposure. Accurate genomic

prediction models have been proposed and can be implemented

in soybean breeding programs to speed up the identification and

development of non-DT genotypes tolerant to off-target dicamba.

In addition, the negative impacts of overfitting toward model

performance were reported and may guide the application of

genomic prediction models.
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