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Genome-wide association
studies using multi-models and
multi-SNP datasets provide
new insights into pasmo
resistance in flax

Liqiang He1,2*†, Yao Sui2†, Yanru Che2†, Huixian Wang2,
Khalid Y. Rashid1, Sylvie Cloutier1* and Frank M. You1*

1Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada,
2School of Tropical Agriculture and Forestry, School of Tropical Crops, Hainan University,
Haikou, China
Introduction: Flax (Linum usitatissimum L.) is an economically important crop

due to its oil and fiber. However, it is prone to various diseases, including pasmo

caused by the fungus Septoria linicola.

Methods: In this study, we conducted field evaluations of 445 flax accessions

over a five-year period (2012–2016) to assess their resistance to pasmo A total of

246,035 single nucleotide polymorphisms (SNPs) were used for genetic analysis.

Four statistical models, including the single-locus model GEMMA and the multi-

locus models FarmCPU, mrMLM, and 3VmrMLM, were assessed to identify

quantitative trait nucleotides (QTNs) associated with pasmo resistance.

Results: We identified 372 significant QTNs or 132 tag QTNs associated with

pasmo resistance from five pasmo resistance datasets (PAS2012–PAS2016 and

the 5-year average, namely PASmean) and three genotypic datasets (the all SNPs/

ALL, the gene-based SNPs/GB and the RGA-based SNPs/RGAB). The tag QTNs

had R2 values of 0.66–16.98% from the ALL SNP dataset, 0.68–20.54%from the

GB SNP dataset, and 0.52–22.42% from the RGAB SNP dataset. Of these tag

QTNs, 93 were novel. Additionally, 37 resistance gene analogs (RGAs)co-

localizing with 39 tag QTNs were considered as potential candidates for

controlling pasmo resistance in flax and 50 QTN-by-environment interactions

(QEIs) were identified to account for genes by environmental interactions. Nine

RGAs were predicted as candidate genes for ten QEIs.

Discussion: Our results suggest that pasmo resistance in flax is polygenic and

potentially influenced by environmental factors. The identified QTNs provide

potential targets for improving pasmo resistance in flax breeding programs. This

study sheds light on the genetic basis of pasmo resistance and highlights the

importance of considering both genetic and environmental factors in breeding

programs for flax.
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Introduction

Flax (Linum usitatissimum L.) is a valuable economic crop that

provides linseed and stem fiber to humans (Singh et al., 2011; You

et al., 2017). However, flax production is often constrained by

pasmo, a disease caused by the fungus Septoria linicola, which

reduces seed yield and fiber quality (Halley et al., 2004; He et al.,

2018; Islam et al., 2021). The fungus infects flax from the seedling to

the ripening stages. At the flowering stage, despite the application of

fungicide, susceptible varieties have been reported to experience up

to a 75% seed yield loss (Hall et al., 2016; Islam et al., 2021).

Therefore, developing resistant varieties is a cost-effective and

environmentally-friendly approach to protect flax from pasmo

and its effects on yield.

Disease resistance in plants is typically quantitatively inherited

and influenced by the environment. It is primarily governed by

major resistant genes called R genes, which have been the topic of

many studies (Marone et al., 2013; Yang et al., 2017). Most cloned R

genes in plants belong to the nucleotide-binding site-leucine-rich

repeat domain (NBS-LRR) class, also known as NLRs. For example,

a cluster of NLR receptor-encoding genes confers durable resistance

to Magnaporthe oryzae in rice (Deng et al., 2017), and the rp1 gene

in maize and its homolog in barley confer race-specific resistance to

rust fungal diseases (Collins et al., 1999; Ayliffe et al., 2000).

Receptor like kinase (RLK) genes also account for a significant

proportion of R genes. For instance, the RLK-encoding barley Rpg1

gene confers resistance to stem rust (Brueggeman et al., 2002), and

rice Pi-d2 gene confers resistance against rice blast (Chen et al.,

2006). Transmembrane coiled-coil proteins (TM-CC) are another

essential type of R gene-encoded proteins. The Rph3 gene,

originating from wild barley, is a TM-type R gene that encodes a

protein that differs from all known plant disease resistance proteins

and can significantly enhance barley leaf rust resistance (Dinh et al.,

2022). The mutation-induced recessive mlo allele of the barley Mlo

gene also encodes a TM domain protein, and confers broad-

spectrum resistance to the fungal pathogen Erysiphe graminis

(Buschges et al., 1997). Resistance gene analogs (RGAs) are key

resistance gene candidates and have been well-characterized in flax

(Sekhwal et al., 2015; You et al., 2018b). A total of 1327 RGAs have

been categorized into 11 types: RLK (receptor-like protein kinase),

TM-CC (transmembrane coiled-coil protein), RLP (receptor-like

protein), TNL (TIR-NBS-LRRs), TX (TIR-unknown), NL (NBS-

LRR), CNL (CC-NBS-LRR), TN (TIR-NBS), NBS (NBS domain

only), CN (CC-NBS), and OTHERS.

Genome-wide association studies (GWAS) have emerged as a

powerful and efficient approach for unraveling the genetic basis of

complex traits in flax. Compared to traditional linkage mapping,

GWAS can achieve higher resolution and more accurate mapping of

quantitative trait nucleotides (QTNs) (He et al., 2018; You et al., 2018a;

Soto-Cerda et al., 2021; You et al., 2022). However, GWAS has some
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limitations, including a higher risk of false-positive associations and a

lower effectiveness in detecting quantitative trait loci (QTL) associated

with rare alleles than biparental populations. Single-locus GWAS

models, such as GEMMA and MLM, have proven to be effective in

controlling spurious associations using the stringent Bonferroni

correction but they are not suited to detecting minor QTL (Yu et al.,

2006; Zhou and Stephens, 2012). To enhance the power of polygenic

loci detection, multi-locus GWASmodels have been developed (Segura

et al., 2012; Zhang et al., 2019b). For instance, FarmCPU improves

statistical power and reduces confounding associations (Liu et al.,

2016), and mrMLM increases power, reduces the false positive rate,

and has a shorter running time (Wang et al., 2016). However, these

models do not fully assess the effects of QTN-by-environment

interactions (QEIs) and QTN-by-QTN interactions (QQIs). To

address these, a new multi-locus GWAS model called 3VmrMLM

was proposed (Li et al., 2022b). This model estimates the genetic effects

of three marker genotypes (AA, Aa and aa) while controlling all

possible polygenic backgrounds. It is designed to detect QEIs and

QQIs. Our previous study has shown that pasmo resistance in flax is

controlled by polygenes (He et al., 2018). However, the small

proportion of resistant accessions in the original core collection was

limiting and additional research is warranted to detect main-effect

QTNs and their corresponding causal genes. Furthermore, the QEIs

associated with flax pasmo resistance are still largely unknown.

Therefore, the newly released 3VmrMLM model to identify main-

effect QTNs and QEIs is expected to improve our understanding of

pasmo resistance in flax towards the better design of breeding solutions.

Our previous study has identified a total of 500 QTL associated

with pasmo resistance in flax, including 67 stable and large-effect

QTL and many additional small effect and environment-specific

QTL (He et al., 2018). Here only 8.3% of the flax core collection was

found to be resistant or moderately resistant to pasmo, based on the

average pasmo severity over five consecutive years (2012–2016). To

increase the proportion of resistant lines in the collection while

simultaneously improving genetic diversity, 75 sequenced breeding

lines were added to the core collection. Pasmo resistance data for

these new lines, were collected between 2012 and 2016, alongside

data from the existing 370 original accessions of the flax core

collection (You et al., 2022; Zheng et al., 2023).

To gain a deeper understanding of pasmo resistance in flax at

the genetic level, we conducted a GWAS on a diverse panel of 445

flax accessions, which included 370 accessions of the core collection

and 75 selected breeding lines (SBLs). Compared to GWAS that use

all SNPs (ALL) as genotypic data, gene-based SNPs (GB) and RGA-

based SNPs (RGAB) GWAS have demonstrated higher power and

resolution in QTL detection and candidate gene identification

(Zhang et al., 2021; You et al., 2022). Thus, three genotypic

datasets consisting of 246,035 SNPs (ALL), 65,147 SNPs within

genes (GB), and 3,510 SNPs within RGAs (RGAB) were used in the

analysis, along with four different GWAS models. These models
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included one single-locus model (GEMMA) and three multi-locus

models (FarmCPU, mrMLM, and 3VmrMLM), employed to detect

quantitative trait nucleotides (QTNs) and QTN-by-environment

interactions (QEIs) associated with pasmo resistance across five

individual years (2012–2016). Our goal was to identify potential

candidate genes conferring pasmo resistance in flax.
Materials and methods

Genetic panel for GWAS

A genetic panel of 445 flax accessions was used for GWAS. The

panel included 370 accessions from the flax core collection, which

was previously assembled from a worldwide collection of 3,378 flax

accessions (Diederichsen et al., 2012; Soto-Cerda et al., 2013; He

et al., 2018), and 75 breeding lines that were selected based on their

resistance to pasmo, Fusarium wilt and powdery mildew diseases

(You et al., 2022). The flax core collection included accessions from

11 geographical origins, and were classified based on their

morphotype into 80 fibre and 290 linseed accessions. This panel

included 17 landraces, 85 breeding lines, 232 cultivars, and 36

accessions of unknown improvement status (Figure 1A) (You et al.,

2017). By adding the 75 SBLs to the core collection, the statistical

power of the GWAS was increased. This diverse genetic panel

allows for a more comprehensive analysis of the genetic variation
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within flax, and can provide insights into the genetic basis of

resistance to pasmo disease and other traits of interest.
Phenotyping of pasmo resistance and
statistical analysis

The 445 accessions of the diversity panel were evaluated for field

resistance to pasmo over a period of five years (2012–2016) at

Agriculture and Agri-Food Canada, Morden Research and

Development Center’s farm in Morden, Manitoba, Canada. A

Type-2 modified augmented design (MAD2) was employed for

the field experiments as described by You et al. (2017). The seeds

were sown in mid-May each year, and 30-centimeter tall flax plants

were inoculated with approximately 200 grams of pasmo-infected

chopped straw from the previous growing season. To ensure disease

infection and development, a spray system was operated for 5

minutes every half hour for 4 weeks.

Pasmo resistance was evaluated at the early brown boll stage

(21–30 days after the flowering) by assessing the leaves and stems

of all plants (~300) in a single row plot using a pasmo severity

scale of 0–9. Ratings of 0–2 were classified as resistant (R), 3–4 as

moderately resistant (MR), 5–6 as moderately susceptible (MS),

and 7–9 as susceptible (S). Pasmo severity data were recorded for

five individual years (PAS2012, PAS2013, PAS2014, PAS2015, and

PAS2016). These five datasets and the five-year average
A

B C

FIGURE 1

Geographic distribution and phenotyping for pasmo resistance in flax accessions. (A) Geographic distribution of 445 flax accessions. (B) Distribution
and correlation matrix of pasmo severity in five consecutive years (2012–2016), mean, BLUP and BLUE pasmo severity over years. *** indicates
significant correlation at the 0.1% probability level. (C) Violin plot of pasmo severity for the 80 fibre and 290 linseed accessions of the core collection
and the 75 selected breeding lines. PAS2012, PAS2013, PAS2014, PAS2015, PAS2016, PASmean, PASBLUP and PASBLUE represent pasmo severity
datasets for 2012, 2013, 2014, 2015, 2016, the 5-year average, the best linear unbiased prediction values and the best linear unbiased estimation
values of pasmo severity over five years. *** and **** indicate statistical significance at the 0.1% and 0.01% probability level, respectively.
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(PASmean) were used as the phenotypic data for all analyses in

this study.

To account for environmental variation, the R package lme4

was used to generate the best linear unbiased prediction (BLUP)

and best linear unbiased estimate (BLUE) datasets for the pasmo

severity of the five years (Bates et al., 2015). A mixed linear model

that treated accessions and years as random effects was used to

calculate the BLUP values, while another mixed linear model that

treated accessions as fixed effects and years as random effects was

employed to obtain the BLUE values. The R package

PerformanceAnalytics was used to analyze the correlations

between the pasmo severity datasets, and to generate histograms

and scatter plots (https://cran.r-project.org/web/packages/

PerformanceAnalytics/index.html).
Re-sequencing for SNP discovery of the
diversity panel

Genome re-sequencing was performed to obtain the genetic

variation of 445 flax accessions. As previously described in He et al.

(2018), the Illumina HiSeq 2000 platform (Illumina Inc., San Diego,

USA) was used to generate 100-bp paired-end reads with an average

coverage of ~15.5X of the reference genome. All raw reads were

mapped to the flax reference genome using the BWA v0.6.1

mapping tool with a base-quality Q score in Phred scale > 20 and

other default parameters (Jo and Koh, 2015). The mapped files were

processed using SAMtools and an improved AGSNP pipeline for

SNP calling (Li et al., 2009; You et al., 2011; You et al., 2012). The

detected SNPs were further filtered with a minor allele frequency

(MAF) > 0.05 and a SNP genotyping call rate ≥ 60% using PLINK

(https://zzz.bwh.harvard.edu/plink/). After linkage disequilibrium

(LD) filtering with pairwise correlation coefficients (r2) among

neighboring SNPs within 200kb > 0.8 and Beagle imputation with

default parameters (Browning and Browning, 2007), a total of

246,035 high-quality SNPs were retained for further analysis. The

genetic variant annotation and functional effect prediction of each

SNP were characterized by snpEff software (Cingolani et al., 2012)

based on the reference genome and corresponding annotation (You

et al., 2018b).
Population structure analysis

To dissect the genetic structure and variation of the 445 flax

accessions, principal component analysis (PCA) was performed

using the obtained high-quality SNPs. The analysis was carried out

with the PLINK software (Elhaik, 2022). For the SNP-based

phylogenetic analysis, MEGA-CC was employed, using a pairwise

gap deletion method for 1,000 bootstrap replicates (Kumar et al.,

2012). The resulting phylogenetic tree was visualized using the

Interactive Tree of Life (iTOL) tool (Letunic and Bork, 2021). The

population stratification was estimated using ADMIXTURE

(Alexander et al., 2009). The genome-wide LD decay was assessed

using PopLDdecay v3.42 software to the squared correlation

coefficient (r2) between SNPs (Zhang et al., 2019a).
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Genome-wide association study

The GWAS analysis for pasmo resistance was conducted using

the five individual year (PAS2012, PAS2013, PAS2014, PAS2015,

and PAS2016) and the five-year average (PASmean) datasets with

four GWAS models. The models used included the single-locus

model GEMMA and the multi-locus models FarmCPU (Liu et al.,

2016), mrMLM (Wang et al., 2016) and 3VmrMLM (Li et al.,

2022b). The kinship matrices were estimated using the protocol

suggested by each GWAS software package. The genotypic data for

the association panel comprised 246,035 high-quality SNPs (ALL)

obtained from 445 flax accessions. Of these, the 65,147 SNPs that

mapped to the genic regions constituted the gene-based (GB) SNP

dataset, and the 3,510 SNPs that mapped to RGAs formed the RGA-

based (RGAB) SNP dataset. These datasets were used in sequential

analyses. The GEMMA software and R package GAPIT were

employed to detect QTNs using default settings (Zhou and

Stephens, 2012; Wang and Zhang, 2021). The R package mrMLM

was applied to detect QTNs using parameters SearchRadius = 20,

CriLOD = 3, and Bootstrap = FALSE (Zhang et al., 2020). The R

package IIIVmrMLM implementing the 3VmrMLM model was

used to detect main-effect QTNs and the QEIs (Li et al., 2022a). For

the detection of the main-effect QTNs, the R package IIIVmrMLM

was used with the following parameters: method = “Single_env”,

SearchRadius = 20, and svpal = 0.01. For QEI detection, the

parameters used were method = “Multi_env”, SearchRadius = 20,

and svpal = 0.01. The association signals of the 3VmrMLM model

were detected using a LOD score ≥ 3 (Li et al., 2022a). The threshold

of significant association of GEMMA and FarmCPU was

determined using a critical P-value at the 5% significant level that

was subjected to Bonferroni correction (P-value = 2.03 × 10−7 for

the ALL dataset, P-value = 7.67 × 10−7 for the GB dataset, and P-

value = 1.42 × 10−5 for the RGAB dataset). Manhattan plots were

generated using the IIIVmrMLM package with default settings.
QTN identification, candidate gene
prediction, allele and haplotype analysis

In order to identify QTNs associated with pasmo resistance in

flax, a GWAS was performed using individual year datasets

(PAS2012–PAS2016) and a five-year average dataset (PASmean)

in combination with the ALL, GB and RGAB genotypic datasets.

QTNs detected in different genotypic datasets were analyzed

independently and common QTNs were identified based on

detection by two or more models or detection in two or more

phenotypic datasets. Mann-Whitney U tests were used to validate

significant differences between QTN alleles associated with pasmo

severity. The significant QTNs were represented by tag QTNs for

downstream analyses. R2 values were calculated to determine the

proportion of total variation explained by the pasmo resistance

associated QTNs/QEIs. A total of 1,327 RGAs have previously been

identified in the flax reference genome (You et al., 2018b). The co-

localized RGAs within an estimated 4 kb distance of the averaged

whole genome LD decay and local LD block defined flanking
frontiersin.org
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regions of the detected QTNs/QEIs were considered as candidate

genes. LDBlockShow v1.40 (Dong et al., 2021) was utilized to

estimate the local LD block regions on the chromosomes. For

allele analysis, the single SNP with HIGH functional effect

prediction on the coding region (CDS) of each candidate gene

were selected and tested for significant differences in pasmo severity

using the Wilcox non-parametric test at the 5% probability level.

Likewise, for haplotype analysis, all the SNPs within each candidate

gene that were predicted with HIGH or MODERATE functional

effect were considered. Subsequently, these SNPs underwent testing

using the Wilcox non-parametric test at the 5% probability level to

identify significant differences. A SNP with a HIGH functional

effect prediction is assumed to have a disruptive impact on the

protein, while a SNP with a MODERATE functional effect

prediction is expected to be non-disruptive but could possibly

change the protein’s effectiveness.
Results

Evaluation of pasmo resistance

Pasmo resistance was evaluated in 445 flax accessions over five

consecutive years (PAS2012–PAS2016). The geographic

distribution and morphotypes of these accessions are shown in

Figure 1A. Correlation coefficients were calculated among PAS2012,

PAS2013, PAS2014, PAS2015, PAS2016, PASmean, pasmo best

linear unbiased prediction (PASBLUP) and pasmo best linear

unbiased estimation (PASBLUE) datasets, and ranged from 0.33

to 1.00, with the highest correlation observed between PASmean

and PAS2014 (r = 0.83) (Figure 1B). PASmean was further analyzed

due to its almost identical correlation coefficients with PASBLUP

and PASBLUE (r = 1.00). The coefficient of variation (CV) of

PAS2012–PAS2016 and PASmean datasets ranged from 24.17% to

39.24% (Supplementary Table S1). Significant differences in pasmo

severity were observed between linseed, fibre accessions, and SBLs

in this flax genetic panel. High resistance (low severity) to pasmo

was observed in the 75 SBLs compared to the 370 accessions from

the flax core collection (Figure 1C). The average pasmo severity

over five years was 6.56 ± 1.05 for the 290 linseed accessions, 4.98 ±

1.50 for the 80 fibre accessions, and 4.13 ± 1.35 for the 75 breeding

lines (Figure 1C). The data distribution and correlation analysis

indicated that resistance against pasmo in flax is controlled by

polygenes and potentially genetic by environment interactions.
Population structure

To analyze the genetic structure of the 445 flax accessions, a

population structure analysis was performed using the ALL SNP

dataset of 246,035 SNPs. The results indicated the 445 accessions

were divided into five populations (Figure 2A). Population one

consisted of 19 linseed accessions and 75 SBLs; population two was

composed of 67 fibre accessions and 51 linseed accessions;

population three contained 11 fibre accessions and 72 linseed

accessions; population four comprised 39 linseed accessions, while
Frontiers in Plant Science 05
population five consisted of only two fibre accessions and 109

linseed accessions. PCA and phylogenetic analysis by neighbor-

joining (NJ) (Chen et al., 2014) also showed identical classification

of the flax genetic panel into five groups (Figures 2B–D and

Supplementary Figure S1). Therefore, a population structure Q

matrix with K = 5 was adopted for downstream GWAS analyses.

The linkage disequilibrium (LD) analysis showed that the LD

decayed rapidly before 4 kb and subsequently became flat for this

flax genetic panel (Figure 2E). Therefore, the 4 kb flanking region of

each QTN was used for putative candidate gene prediction in

subsequent analyses.
Identification of QTNs associated with
pasmo resistance

A total of 372 significant QTNs were identified using six pasmo

resistance datasets (PAS2012–PAS2016 and PASmean) and three

genotypic datasets (ALL, GB and RGAB) using the single-locus

model GEMMA and the multi-locus models FarmCPU, mrMLM

and 3VmrMLM (Figure 3 and Supplementary Table S2). When the

ALL genotypic dataset was used, 3VmrMLM detected the most

QTNs (149), followed by mrMLM (89), FarmCPU (25), and

GEMMA (4) (Table 1). Forty-seven QTNs were detected by both

3VmrMLM and mrMLM, two by 3VmrMLM, mrMLM, and

FarmCPU, and another two by mrMLM, FarmCPU, and

GEMMA (Figure 3A). Only one QTN (QTN-Lu4-14738243) was

detected in three out of the six phenotypic datasets (PAS2012–

PAS2016 and PASmean) (Figure 3B and Supplementary Table S2).

For the GB genotypic dataset, 3VmrMLM detected the most

QTNs (105), followed by mrMLM (90), and GEMMA detected a

single QTN (Table 1). Among these, 67 were detected by both

3VmrMLM and mrMLM, four by 3VmrMLM, mrMLM, and

FarmCPU, and one by mrMLM, FarmCPU, and GEMMA

(Figure 3C). Moreover, the same common QTN (QTN-Lu4-

14738243) was detected in three out of the six phenotypic

datasets (Figure 3D and Supplementary Table S2).

Similarly, 3VmrMLM detected the most QTNs (55) in the

RGAB genotypic dataset, followed by mrMLM (28), FarmCPU

(10), and GEMMA (2) (Table 1). Interestingly, QTN-Lu10-

11656889 was detected by all four models (Figure 3E and

Supplementary Table S2). Besides, three common QTNs (QTN-

Lu8-23634276, QTN-Lu10-11656889, and QTN-Lu15-14719354)

were detected in three out of six phenotypic datasets (Figure 3F and

Supplementary Table S2). Notably, QTN-Lu14-2333894 was

detected by all three genotypic datasets (Supplementary Figure

S2A and Supplementary Table S2).

In summary, 3VmrMLM detected the highest number of total

QTNs and common QTNs in the six phenotypic datasets regardless

of the genotypic dataset. The largest number of QTNs detected in

multiple environments (three out of six phenotypic datasets) was

identified using the RGAB genotypic dataset.

All significant QTNs were evaluated for consistency across

multiple phenotypic datasets and models, and those detected in ≥

two datasets or ≥ two models were retained for further analysis. A

total of 55, 80, and 32 QTNs were thus identified from the ALL, GB,
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and RGAB genotypic datasets, respectively (Supplementary Table

S2). In agreement with the total number of QTNs detected, the

majority of the retained QTNs were detected by 3VmrMLM across

all three genotypic datasets, with 52 QTNs in ALL, 75 QTNs in GB,

and 32 QTNs in RGAB (Table 1 and Supplementary Table S2).

Allelic test of significance for these QTNs were performed using the

Mann-Whitney U test for the dataset from which the QTNs were

detected. A total of 82 non-significant QTNs (U test at the 5%

probability level) were removed, leaving 132 significant QTNs used

as tag QTNs in subsequent analyses (Figure 4 and Supplementary

Tables S2, S3). The majority of the tag QTNs were detected by

3VmrMLM across all three genotypic datasets, with 41 in ALL, 62 in

GB, and 30 in RGAB (Table 1). The R2 values of the 132 tag QTNs

ranged from 0.52% to 22.42% (Table 1 and Supplementary Table
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S3), and varied across the four models due to the differences in

statistical models. For example, the R2 of 3VmrMLM-detected tag

QTNs in the ALL genotypic dataset ranged from 0.66% to 16.98%,

while the R2 of GEMMA-detected tag QTNs ranged from 1.11% to

10.00%. Similar results were observed in the GB and RGAB

genotypic datasets (Table 1). Of note, eight tag QTNs were

identified in both ALL and GB genotypic datasets, and explained

1.06% to 12.72% of the total variation for pasmo severity

(Supplementary Table S3 and Supplementary Figure S2B). The

position of all tag QTNs for pasmo severity are illustrated on a

CIRCOS map (Figure 4). A total of eight tag QTNs were considered

large-effect QTNs, i.e., R2 ≥ 10% (Table 2 and Supplementary Table

S4). Based on these QTNs, significant negative correlations were

observed between the number of favorable alleles (NFAs) in an
A

B

D E

C

FIGURE 2

Population structure of 445 flax accessions. (A) Population structure estimated by ADMIXTURE. (B, C) Scatter plots of the first three principal
components (PCs) of 445 flax accessions. (D) Phylogenetic analysis of 445 flax accessions based on 246,035 single nucleotide polymorphisms
(SNPs). Accessions of clades one, two, three, four and five are indicated in blue, green, yellow, mauve and red, respectively. (E) Genome-wide LD
decay analysis of the genetic panel.
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accession and the six pasmo severity datasets (PAS2012–PAS2016

and PASmean) (r = −0.39 ~ −0.71) (Supplementary Figure S3A–F),

with the strongest correlation observed in the PASmean dataset

(r = −0.71) (Supplementary Figure S3F).
Candidate genes for pasmo resistance

To identify the genes putatively involved in pasmo resistance in

flax, we scanned resistance gene analogs (RGAs) within the

estimated 4 kb flanking region of the QTNs identified from the

ALL genotypic dataset, and identified the tag QTNs located within
Frontiers in Plant Science 07
RGAs as candidate genes for the QTNs identified from the GB or

RGAB genotypic dataset. The 37 RGAs that co-localized with 39 tag

QTNs were considered candidates for pasmo resistance in flax

(Supplementary Table S4). These RGAs were mainly classified into

eight types, including receptor-like protein (RLP), receptor-like

kinase (RLK), TIR-NBS-LRRs (TNL), TIR-unknown (TX), NBS-

LRR (NL), TIR-NBS (TN), transmembrane-coiled coil protein

(TM-CC), CC-NBS-LRR (CNL), and others. The majority of

these RGAs were RLK (19) followed by TM-CC (5) (Figure 5).

Out of the 132 tag QTNs, QTN-Lu10-11656889 was identified by

four models from the RGAB genotypic dataset, and explained 22.42%

of the total variation. This QTN was located within the NL gene
A B

D

E F

C

FIGURE 3

Venn diagrams of QTNs detected using four GWAS models (GEMMA, FarmCPU, mrMLM, and 3VmrMLM) for the three single nucleotide
polymorphism (SNP) datasets: ALL (A), GB (C), and RGAB (E), and QTNs detected using six different phenotypic datasets (PAS2012–PAS2016 and
PASmean) for the three SNP datasets: ALL (B), GB (D), and RGAB (F). ALL, all SNPs; GB, gene-based SNPs; RGAB, resistance gene analog (RGA)
-based SNPs.
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TABLE 1 Comparison of quantitative trait nucleotide (QTN) identification for different GWAS models and genotypic datasets.

Statistical
model

Genotypic
dataset

NO. of detected
QTNs

NO. of common QTNs by models
or datasets

NO. of non–
significant QTNs

NO. of tag
QTNs

R2 range
(%)

GEMMA ALL 4 2 0 2 1.11–10.00

FarmCPU ALL 25 6 0 6 1.11–12.11

mrMLM ALL 89 51 10 41 0.66–12.72

3VmrMLM ALL 149 52 12 41 0.66–16.98

GEMMA GB 1 1 0 1 1.11

FarmCPU GB 17 8 1 7 1.11–13.30

mrMLM GB 90 74 12 62 0.68–20.54

3VmrMLM GB 105 75 13 62 0.68–20.54

GEMMA RGAB 2 2 0 2 9.34–22.42

FarmCPU RGAB 10 9 2 7 0.54–22.42

mrMLM RGAB 28 25 4 23 0.52–17.40

3VmrMLM RGAB 55 32 3 30 0.52–17.40
F
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ALL, all SNPs: GB, gene SNPs: RGAB, resistance gene analog (RGA) based SNPs.
FIGURE 4

Circos map of quantitative trait nucleotides (QTNs) and QTN-by-environment interactions (QEIs) for pasmo severity in flax. Track A: 15 flax
chromosomes. Track B: Heatmap of SNP density with bin sizes of 0.1 Mb for the ALL dataset (246,035 SNPs). Track C: Heatmap of SNP density with
bin size of 0.1 Mb for the GB dataset (65,147 SNPs). Track D: Heatmap of SNP density with bin size of 0.1 Mb for the RGAB dataset (3,510 SNPs).
Track E: QTNs detected using four statistical models: GEMMA, FarmCPU, mrMLM, and 3VmrMLM. Track F: QTNs identified using all four statistical
models. Track G: QEIs detected using the 3VmrMLM model. ALL, all SNPs; GB, gene-based SNPs; RGAB, resistance gene analog (RGA)-based SNPs.
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Lus10032759 (Supplementary Figure S4A and Supplementary Table

S4) which had four haplotypes Hap1 (AAAA, n = 336), Hap2

(TTAA, n = 18), Hap3 (TTGG, n = 89), and Hap4 (AAGG, n = 2)

(Figure 6A). Significant differences in pasmo severity were observed

between accessions with the Hap1 and Hap3 in all six phenotypic

datasets, with accessions carrying Hap3 exhibiting lower pasmo

severity than those carrying Hap1 (Figure 6A). QTN-Lu5-1715943

also had a relatively large effect (R2 = 16.77%) in the RGAB genotypic

dataset. The candidate gene for this QTN was the RLK-type RGA

Lus10008486 (Supplementary Figure S4B and Supplementary Table

S4). The accessions with Hap2 (TTGG, n = 83) showed significantly

lower pasmo severity than those with Hap1 (TTAA, n = 333), Hap3

(GGGG, n = 26), and Hap4 (GGAA, n = 3), again in almost all six

phenotypic datasets (Figure 6B) In addition, the TM-CC type RGA

Lus10025565, identified by the QTN-Lu14-2333894, also had a
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relatively large effect (R2 = 13.77%), as detected from the GB

genotypic dataset (Supplementary Figure S4C and Supplementary

Table S4). The pasmo severity of accessions with Hap2 (CCAA,

n = 283) was significantly different from those with other two

haplotypes, with lower pasmo severity observed in Hap2

accessions than in Hap1 (CCCC, n = 125) and Hap3 (TTAA,

n = 37) accessions (Figure 6C).
QEI detection and candidate genes

Using the 3VmrMLM model, a total of 50 QEIs underlying

pasmo resistance in flax were identified from the ALL, GB, and

RGAB genotypic datasets across the five individual year phenotypic

datasets (PAS2012–PAS2016), as shown in Figures 4, 7A–C, and
TABLE 2 Large-effect quantitative trait nucleotides (QTNs) and QTN-by-environment interactions (QEIs) detected in two genotypic datasets.

GD R2 (%) QTN/QEI Chr Pos Gene ID Annotation

RGAB 10.79 QTN-Lu4-14335180 4 14335180 Lus10041466 TM-CC

RGAB 27.34 QEI-Lu5-1569144 5 1569144 Lus10004719 TNL

RGAB 16.77 QTN-Lu5-1715943 5 1715943 Lus10008486 RLK

RGAB 13.34 QTN-Lu5-15543693 5 15543693 Lus10024053 TM-CC

RGAB 11.88 QEI-Lu5-15543693 5 15543693 Lus10024053 TM-CC

RGAB 10.07 QTN-Lu10-11256857 10 11256857 Lus10032735 RLK

RGAB 22.42 QTN-Lu10-11656889 10 11656889 Lus10032759 NL

RGAB 17.40 QTN-Lu10-11657307 10 11657307 Lus10032759 NL

RGAB 15.77 QTN-Lu12-5214501 12 5214501 Lus10018309 TN

GB 13.77 QTN-Lu14-2333894 14 2333894 Lus10025565 TM-CC
GD, genotypic dataset: Chr, chromosome: Pos, position: TM-CC, transmembrane coiled-coil protein: TNL, TIR-NBS-LRRs: RLK, receptor-like protein kinase: NL, NBS-LRR. GB, gene-based
SNPs: RGAB, resistance gene analog (RGA)-based SNPs.
FIGURE 5

Distribution of candidate resistance gene analogs (RGAs) associated with tag quantitative trait nucleotides (QTNs) and QTN-by-environment
interactions (QEIs). RLP, receptor like protein: RLK, receptor like kinase: CNL, CC-NBS-LRR: TNL, TIR-NBS-LRRs: TX, TIR-unknown: NL, NBS-LRR:
TN, TIR-NBS: TM-CC,transmembrane-coiled coil protein.
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Supplementary Table S5. Overall, 27, 18, and nine QEIs were

identified from the ALL, GB, and RGAB genotypic datasets,

respectively. Four of these QEIs were detected in both the ALL

and GB genotypic datasets: QEI-Lu1-3346281, QEI-Lu3-4320878,

QEI-Lu4-14847340, and QEI-Lu9-17104439. Notably, no QEI loci

for pasmo resistance were detected on chromosomes 8 and 15

(Supplementary Table S5).

The following four QEIs located on genes and detected from the

GB or RGAB dataset were also identified as tag QTNs: QEI-Lu5-

15543693 (R2 = 11.88%), QEI-Lu11-19819154 (R2 = 5.10%), QEI-

Lu14-2333894 (R2 = 6.01%), and QEI-Lu14-1935665 (R2 = 2.85%)

(Supplementary Table S2, S5 and Supplementary Figure S5).

The nine RGAs predicted as candidate genes for ten QEIs were

further analyzed (Supplementary Table S6 and Figure 5). The TM-CC

type RGA Lus10024053was the candidate gene for the large-effect QEI-

Lu5-15543693, with Hap1 (GGAA, n = 301), Hap2 (GGTT, n = 9),

Hap3 (AATT, n = 54), and Hap4 (AAAA, n = 81). The severity of
Frontiers in Plant Science 10
pasmo infection in accessions with Hap4 was significantly lower than

that of accessions with the other three haplotypes in the PAS2012,

PAS2013, PAS2014, and PAS2016 datasets (Figure 8A; Supplementary

Figure S4D; Supplementary Table S6). Additionally, the RLK type RGA

Lus10025492 was identified as the candidate gene of QEI-Lu14-

1935665, with Hap1 (AAAA, n = 53), Hap2 (AAGG, n = 269),

Hap3 (CCGG, n = 122), and Hap4 (CCAA, n = 1). A significantly

lower pasmo severity of Hap2 was observed in PAS2013, PAS2014, and

PAS2016 compared to Hap3 (Figure 8B; Supplementary Figure S4E;

Supplementary Table S6). Similarly, the RLK RGA Lus10040160 was

identified as the candidate gene of QEI-Lu7-4573781. Lus10040160

hasHap1 (TTTT, n = 271), Hap2 (GGTT, n = 88), and Hap3 (TTCC,

n = 86), and significant differences in pasmo severity were observed

between the Hap1 and Hap3 in the PAS2013, PAS2014, and PAS2016

datasets. The pasmo resistance level of accessions with Hap3 was

significantly higher than that of accessions with Hap1 in those years

(Figure 8C; Supplementary Figure S4F; Supplementary Table S6).
A

B
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FIGURE 6

Analyses of the candidate genes Lus10032759, Lus10008486 and Lus10025565 for pasmo resistance for the five individual years and the mean over
years. (A) Haplotype and pasmo severity analysis of Lus10032759 in 445 flax accessions. (B) Haplotype and pasmo severity analysis of Lus10008486
in 445 flax accessions. (C) Haplotype and pasmo severity analysis of Lus10025565 in 445 flax accessions. Letters indicate significant differences at
the 5% probability level.
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Discussion

Comparison across GWAS models

The detection of QTNs in GWAS can vary depending on the

statistical algorithms implemented in the models. In this study,

three genotypic datasets (ALL, GB, and RGAB) were evaluated

across six phenotypic datasets for pasmo resistance. The results

showed that the 3VmrMLM model detected the most QTNs,

followed by mrMLM and GEMMA. Most of the QTNs detected

by at least two models were identified by 3VmrMLM. These

findings support previous studies indicating that multi-locus

models outperform single-locus models in QTN detection, and

suggest that 3VmrMLM high statistical power and low false positive

rate are advantageous (Cui et al., 2018; Hou et al., 2018; Zhong et al.,

2021; He et al., 2022; Li et al., 2022b; Liu et al., 2022; Yu et al., 2022;

Zhang et al., 2022).

After removing non-significant QTNs, the most tag QTNs were

also identified by 3VmrMLM, followed by mrMLM and FarmCPU.

The largest R2 ranges were also observed in 3VmrMLM identified

tag QTNs in all four models used, indicating its ability to identify

tag QTNs with either large or small effects. Taken together, the

3VmrMLM model seems a good alternative to other single-locus

and multi-locus models in GWAS. The 3VmrMLM model was

developed to effectively detect main-effect QTNs, QEIs, and QQIs

while providing unbiased estimates of their effects through an

analysis of variance (ANOVA) model. This model builds upon
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the framework of compressed variance component mixed model

(Li et al., 2022a) and presents technical improvements. One key

reason for the superior performance of the 3VmrMLM model is its

ability to consider all genetic effects in the mixed genetic model

while simultaneously controlling for all polygenic backgrounds

(Li et al., 2022a; Li et al., 2022b).
Evaluation of QTNs associated
with pasmo resistance

Flax pasmo resistance is a quantitative trait, characterized by

features of quantitative genetics. The challenge of visually

measuring the resistance prompted us to adopt the pasmo

severity scale (0–9) as a means to assess the severity of pasmo

disease symptoms in our experimental genotypes. This severity

scale provides a practical and standardized approach for

quantitatively representing pasmo disease symptoms, despite its

categorical appearance in scoring pasmo resistance. By utilizing this

scale, we were able to capture the gradation in the expression of the

trait among different genotypes, enabling a more comprehensive

evaluation of the potential genetic factors influencing pasmo

severity. Notably, this method has been commonly used for

evaluating powdery mildew resistance in flax (You et al., 2022).

Using the multiple years’ flax pasmo severity data, a total of the

132 tag QTNs were detected in this study, out of which 29 were

previously reported in a study of the flax core collection consisting of
A
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FIGURE 7

Manhattan plots for pasmo resistance associated QTN-by-environment interactions (QEIs) identified using the 3VmrMLM model for three single
nucleotide polymorphisms (SNPs) datasets: ALL (A), GB (B), and RGAB (C). Black horizontal lines in the Manhattan plots represent the genome-wide
significant threshold. The red arrows indicate the QEIs co-detected in ALL (A) and GB (B) SNP datasets. The green and blue arrows indicate the
candidate genes detected in ALL, GB, and RGAB SNP datasets. ALL, all SNPs; GB, gene SNPs; RGAB, resistance gene analog (RGA)-based SNPs.
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370 accessions that utilized the same phenotyping method (He et al.,

2018). In the aforementioned study, which focused on the 370 flax

accessions, a subset of the current study, a total of 67 QTLs with large

effects were identified by GWAS using various models, including

GLM, MLM, FarmCPU, GEMMA, mrMLM, FASTmrEMMA, ISIS

EM-BLASSO, pLARmEB, pKWmEB and FASTmrMLM models (He

et al., 2018). Furthermore, four tag QTNs (QTN-Lu8-17271798,

QTN-Lu13-2007925, QTN-Lu15-974597, and QTN-Lu13-

14282050) were found to be situated within 1.01–16.97 kb

upstream/downstream of QTLs previously reported in He et al.

(2018) (Supplementary Table S3). To identify novel QTNs and their

corresponding candidate genes associated with pasmo resistance in

flax, multi-model and multi-environment GWAS were conducted

using the ALL, GB, and RGAB genotypic datasets. A total of 31 (ALL),

49 (GB), and 27 (RGAB) novel tag QTNs were identified using 445
Frontiers in Plant Science
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flax accessions (370 core accessions and 75 SBLs), which is an

improvement compared to our previous study. Eight tag QTNs

(R2 = 1.11%–12.72%) were identified in both the ALL and GB

datasets. Additionally, one and seven out of eight large-effect QTNs

(R2 ≥ 10.00%) were identified from the GB and RGAB datasets

respectively (Table 2 and Supplementary Table S3). Among the tag

QTNs with the top five R2 (16.98%–22.42%), two, two and one tag

QTNs were identified from the GB, RGAB, and ALL datasets,

respectively (Supplementary Table S3). These results are consistent

with previous studies suggesting that using gene-based or RGA-based

SNPs for GWAS is beneficial for detecting QTNs with large effects and

predicting key candidate genes (Huang et al., 2011; Zhu et al., 2018;

Deng et al., 2020; You et al., 2022; Zhang et al., 2022). Therefore, the

use of gene-based or RGA-based SNPs for GWAS is a powerful and

efficient approach for identifying QTNs with large and small effects.
A
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FIGURE 8

Analyses of the candidate gene Lus10024053, Lus10025492 and Lus10040160 for pasmo resistance associated QTN-by-environment interactions
(QEIs) for the five individual years. (A) Box plot of pasmo severity of Lus10024053 haplotypes. (B) Box plot of pasmo severity of Lus10025492
haplotypes. (C) Box plot of pasmo severity of Lus10040160 haplotypes. Letters indicate significant differences at the 5% probability level.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1229457
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2023.1229457
Candidate genes associated with pasmo
resistance and their effects on main-effect
QTNs and QEIs

Main-effect QTNs are QTNs with stable effects across different

environments, while QEIs represent loci that may be effective only

in some environments. Given the needs of global climate change

and phenotypic plasticity research, QEIs have the potential to be

exploited to dissect complex traits in future GWAS. In this study,

candidate gene prediction of QTNs and QEIs was based on well-

characterized RGAs in flax. RGAs have been identified as key

candidate genes underlying plant disease resistance in several

studies (Kassa et al., 2017; He et al., 2018; Fu et al., 2020; You

et al., 2022). A total of 37 RGAs were identified as potential

candidate genes of 39 tag QTNs and nine as candidates for ten

QEIs. They were summarized into RLK, TM-CC, and NBS-LRR

type RGAs. In general, the RLK, TM-CC, and NBS-LRR genes

account for a large proportion of R genes, playing important roles

in plant disease resistance against fungal pathogens. Well-known

examples include wheat leaf rust resistance conferred by the Lr21

(NBS-LRR) gene (Huang et al., 2003), resistance to the hemi-

biotrophic fungus Phytophthora infestans conferred by the potato

R7 (NBS-LRR) gene (Leister et al., 1996; Hammond-Kosack and

Jones, 1997), broad-spectrum mildew resistance conferred by the

Arabidopsis RPW8 (TM-CC) gene (Xiao et al., 2001), and rice blast

resistance conferred by the Pi-d2 (RLK) gene (Chen et al., 2006).

The RLK, TM-CC, and NBS-LRR type RGAs associated with pasmo

resistance in this study may contribute to a better understanding of

the genetic mechanisms underlying pasmo resistance in flax.

Furthermore, the molecular mechanisms of these candidate genes

warrant further validation.
Breeding applications of pasmo resistance
associated QTNs

The present study revealed significant differences in pasmo

resistance levels between linseed, fibre accessions, and SBLs

within a flax genetic panel. Interestingly, 75 SBLs exhibited higher

pasmo resistance levels than the flax core collection, which included

370 accessions (Figure 1C). Moreover, the number of favorable

alleles (NFA) in fibre accessions was greater than in linseed

accessions, and fibre accessions with more favorable alleles were

found to be more resistant to pasmo than linseed accessions

(Supplementary Figure S6), as demonstrated in a previous study

(He et al., 2018). Flax have obtained commercial importance due to

the utilization of the stem for high quality fiber (Oomah, 2001; You

et al., 2019; Rahman and Hoque, 2023). One of the major objectives

in the fiber flax breeding program is to improve fiber yield and

quality (Galinousky et al., 2020; Rahman and Hoque, 2023). The

productivity of fiber flax is severely affected by devastating fungal

disease pasmo, which causes yield loss and fiber quality reduction

(Yadav et al., 2022). Therefore, the 75 SBLs represent valuable

genetic resources for improving pasmo resistance in elite varieties

through direct hybridization.
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Negative correlations were observed between the NFA and

pasmo resistance of the five-year pasmo severity (PAS2012–

PAS2016) and PASmean datasets in Supplementary Figure S3A–F

(r = −0.39 ~ −0.71), with the highest correlation found in the

PASmean dataset (r = −0.71). This additive effect of identified tag

QTNs suggests that accessions carrying more favorable alleles are

suitable for high pasmo resistance breeding through the pyramiding

of loci. For example, SBL 8031 had 17 favorable alleles (PASmean =

2.2), SBL 8040 had 17 favorable alleles (PASmean = 2.4), and SBL

8032 had 18 favorable alleles (PASmean = 2.4).

Although large-effect tag QTNs, such as QTN-Lu10-11656889

(R2 = 22.42%) and QTN-Lu12-2992110 (R2 = 16.68%), may be

available for improving pasmo resistance through marker-assisted

selection (MAS), several tag QTNs with small effects would be

better captured through genomic prediction/selection with the aim

to transform flax breeding from a slow and labor-intensive mode

into an efficient and accurate one. The breeding values of complex

traits, such as pasmo resistance, are predicted by cross-validated

models, which are an alternative strategy to MAS (Lipka et al., 2015;

Poland and Rutkoski, 2016; He et al., 2019; You et al., 2022).

Marker-assisted backcrossing and genomic selection/prediction

strategies have already significantly enhanced disease resistance in

many crops (Buerstmayr et al., 2008; Buerstmayr et al., 2009; Poland

and Rutkoski, 2016; Crossa et al., 2017; He et al., 2019; Xu

et al., 2021).

The QEI loci identified in this study constitute an alternative

genetic information for improving flax pasmo disease, specifically to

cope with environmental changes. These QEI loci can be useful for

predicting the performance of flax varieties in specific

environments. By identifying specific genetic markers associated

with QEI loci, breeders can develop flax varieties that are better

adapted to specific environmental conditions. The combined

utilization of pasmo resistance-associated QTNs and QEIs holds

the promise of driving the molecular breeding of flax with broad-

spectrum and durable resistance against Septoria linicola.
Conclusion

Our study demonstrates that pasmo resistance in flax is a

complex trait, controlled by multiple genes, and influenced by

gene-environment interactions. The 3VmrMLM model, which

detected more QTNs and QEIs, is a promising alternative to

other multi-locus GWAS models. Gene-based and RGA-based

SNPs as genotypic datasets in GWAS proved to be efficient for

identifying QTNs with both large and small effects and predicting

candidate genes. Our research identified 372 significant QTNs and

50 QEIs, providing potential targets for improving pasmo resistance

in flax breeding programs. Furthermore, we identified 37 RGAs for

39 tag QTNs and nine RGAs for ten QEIs, suggesting the potential

involvement of RLK, TM-CC, and NBS-LRR genes in pasmo

resistance. Our findings on gene–environment interactions can

guide breeding strategies that account for environmental factors.

The 50 QEI loci identified in our study can help improve our

understanding of the genetic mechanisms involved in pasmo
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resistance and its interactions with environmental factors,

ultimately leading to the development of more resilient and better

adapted flax varieties. Our study has important implications for the

sustainable production of flax and provides valuable information

for developing improved flax varieties with enhanced pasmo

resistance, which is critical for ensuring the long-term viability of

this important oil and fiber crop. The large-effect QTNs and

candidate genes identified in this study can be used as molecular

markers for marker-assisted selection in future studies to accelerate

the breeding process for pasmo-resistant flax varieties.
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