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Phosphorus and naphthalene
acetic acid increased the seed
yield by regulating carbon and
nitrogen assimilation of flax

Yaping Xie1,2†, Huirong Duan3†, Limin Wang1, Jianping Zhang1*,
Kongjun Dong1, Xingrong Wang1, Yanjun Zhang1,
Yangchen Zhou2, Wenjuan Li1, Yanni Qi1, Wei Zhao1,
Zhao Dang1, Xingzhen Wang1, Wen Li1 and Lirong Zhao1

1Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China, 2College of
Agronomy, Gansu Agricultural University, Lanzhou, China, 3Lanzhou Institute of Husbandry and
Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
To evaluate the impact of phosphorus (P) combined with exogenous NAA on flax

yield, enhance flax P utilization efficiency and productivity, minimize resource

inputs and mitigate negative environmental and human effects. Therefore, it is

crucial to comprehend the physiological and biochemical responses of flax to P

and naphthylacetic acid (NAA) in order to guide future agronomic management

strategies for increasing seed yield. A randomized complete block design trial

was conducted under semi-arid conditions in Northwest China, using a factorial

split-plot to investigate the effects of three P (0, 67.5, and 135.0 kg P2O5 ha
–1) and

three exogenous spray NAA levels (0, 20, and 40 mg NAA L–1) on sucrose

phosphate synthase (SPS) and diphosphoribulose carboxylase (Rubisco) activities

as well as nitrogen (N) and P accumulation and translocation in flax. Results

indicated that the SPS and Rubisco activities, N and P accumulation at flowering

and maturity along with assimilation and translocation post-flowering, fruiting

branches per plant, tillers per plant, capsules per plant, and seed yield were 95,

105, 14, 27, 55, 15, 13, 110, 103, 82, 16, 61, 8, and 13% greater in the P treatments

compared to those in the zero P treatment, respectively. Moreover, those

characteristics were observed to be greater with exogenous spray NAA

treatments compared to that no spray NAA treatment. Additionally, the

maximum SPS and Rubisco activities, N and P accumulation, assimilation post-

flowering and translocation, capsules per plant, and seed yield were achieved

with the application of 67.5 kg P2O5 ha
–1 with 20 mg NAA L–1. Therefore, these

findings demonstrate that the appropriate combination of P fertilizer and spray

NAA is an effective agronomic management strategy for regulating carbon and

nitrogen assimilation by maintaining photosynthetic efficiency in plants to

increase flax productivity.
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Introduction

Flax (Linum usitatissimum L.), a C3 plant species, exhibits

versatility as a valuable source for food, industry, and bioenergy

(Zuk et al., 2015; Parikh et al., 2019; Xie et al., 2020). With the global

human population projected to continue growing in the coming

decades, current rates of crop productivity may not be sufficient to

meet future demand for food (Long et al., 2015). Additionally,

accelerating global warming poses a threat to crop production.

Hence, improving crop productivity under future climatic

conditions is a huge challenge (Suganami et al., 2021). One

promising strategy for achieving this goal is to enhance carbon

(C) and nitrogen (N) assimilation (Ren et al., 2020) and

photosynthetic efficiency (Makino, 2011; Ort et al., 2015).

Phosphorus (P), as the second macronutrient for plants, plays a

crucial role in various metabolic activities (Singh et al., 2018;

Yaakob et al., 2021). Numerous studies have focused on the effect

of P on photosynthesis (Singh et al., 2018; Taliman et al., 2019; Li

et al., 2022; Chai et al., 2023; Kayoumu et al., 2023). Photosynthesis

is primarily driven by sucrose, which serves as the main

photoassimilate transported from source to sink tissues and

storage in higher plants (Okamura et al., 2011; Chen et al., 2012).

Previous literature has documented that sucrose phosphate

synthase (SPS), a pivotal rate-limiting enzyme during the sucrose

biosynthesis process in plants (Liao et al., 2022), displays differential

expression patterns (Wang et al., 2018). Moreover, ribulose-1,5-

bisphosphate carboxylase/oxygenase (Rubisco) is considered a

crucial targets for enhancing photosynthetic capacity (Parry et al.,

2013; Carmo-Silva et al., 2015; Sharwood, 2017) and determining

the rates of CO2 assimilation in C3 leaves commonly (Lawlor, 2002).

Nitrogen is below required to sustain the protein synthesis, which is

inadequate for maximum CO2 assimilation (Lawlor et al., 1989).

Recently, the expression of SPS gene families has been studied in

various plant species, including rice (Oryza sativa L) (Okamura

et al., 2011; Mulyatama et al., 2022), litchi (Litchi chinensis Sonn)

(Wang et al., 2018), cassava (Manihot esculenta Crantz) (Huang

et al., 2020), and kiwi fruit (Actinidia chinensis Planch) (Liao et al.,

2022). Studies on Rubisco genes have also been performed in rice by

Suzuki et al. (2017). However, the relative expression levels of the

SPS gene family and Rubisco gene in flax have not been reported.

Furthermore, research has shown that P plays a significant role in

regulating N uptake (Güsewell, 2004), N and P accumulation

(Dordas, 2009) and translocation (Güsewell, 2004; Dordas, 2009).

Additionally, numerous studies have demonstrated that an

appropriate quantity P can significantly enhance the seed yield of

oilseed crops such as flax (Xie et al., 2020; Xie et al., 2022), soybean

(Glycine max) (Yin et al., 2016; Taliman et al., 2019), canola

(Brassica napus L.) (Gao and Ma, 2015), crambe (Crambe

abssynica Hoechst) (Rogério et al., 2013), and sunflower

(Helianthus annuus L.) (Abbadi and Gerendás, 2011).

Nevertheless, excessive application of P in agriculture not only

leads to poor yield and increases production cost, but also causes

severe environmental problems. Therefore, optimizing the

management of P fertilization is important for maximizing flax

productivity with minimal energy inputs and negative environment

effects in flax production.
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Auxin is a crucial plant growth promoter (Giannakoula et al.,

2012) that plays a vital role in various respects, including flowering,

fruiting, and seed formation (Giannakoula et al., 2012). The use of

auxin has opened up new possibilities for increasing seed

production in legume cultivation (Zhang et al., 2009). According

to Lorenzetti (1993), the use of synthetic growth regulators can

achieve seed yields in grasses similar to those obtained through

genetic manipulation in wheat (Triticum aestivum L.), rice (Oryza

sativa L.), and barley (Hordeum vulgare L.) by breeders. Study on

the effect of growth hormones on foliage has largely focused on

applications near the flowering stage due to the auxin’s crucial role

in seed development (Mousavi et al., 2022). In oil crops, there have

been reports demonstrated the positive effect of auxin on seed yield

and yield components of flax (Rastogi et al., 2013) and safflower

(Carthamus tinctorius L.) (Mousavi et al., 2022). In addition,

previous research (Giannakoula et al., 2012) has also suggested

that the application of indole-3-acetic acid (IAA) can improve the

seed yield of lentil (Lens culinaris). Only a limited number of

research papers have been published on the impact of plant

growth promoters on the mineral nutrition of specific crops. In a

study of wheat, Prasad et al. (1991) reported that the application of

small amount of plant growth promoter can aid in nutrient

absorption, resulting in increased yields. Evidence has

demonstrated that NAA positively regulates P translocation

within plants and accumulation in wheat grains (Peng et al.,

2007). Very little is known about the effect of P and NAA on N

and P accumulation and translocation within plants. In agriculture,

farmers occasionally apply NAA together with P fertilizers to

increase crop yields. Hence, more information is needed on how

P and exogenous spray NAA can affect SPS and Rubisco activities

and how it can affect N and P assimilation and translocation within

flax plants.

The objective of our study was to investigate the effect of P and

auxin on the relative expression level of LuSPSs gene family and

Rubisco gene using real-time quantitative PCR (RT-qPCR)

techniques, as well as SPS and Rubisco activities in flax leaves.

Additionally, we examined N and P accumulation at flowering and

maturity, post-flowering N and P assimilation, N and P

translocation, N harvest index (NHI) and P harvest index (PHI),

and seed yield in flax. Based on the results presented here, we aimed

to investigate the effects of different levels of P and NAA on flax

productivity, with a view to improving flax’s use of P and yield with

fewer inputs of fertilizer while reducing concerns for environmental,

ecological, and human health.
Materials and methods

Site description, experimental design
and treatments

The experiment was conducted at Oil Research Institute, Dingxi

Academy of Agricultural Science, Gansu Province, China (35°48′N,
104°49′ E, altitude of 2050 m) in both 2019 and 2020. The

experimental site has a continental climate. The soil type is

Arenosols (FAO, 2015), with wheat as the previous crop. During
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the growing season from March to August, monthly temperatures

ranged from −7 to 32°C in Dingxi, with the lowest temperature

recorded in March and the highest value in July. The mean monthly

temperatures each year were close to the long-term average (30 yr).

In summary, the total precipitation during the growing season from

March to August was between 309 and 317 mm in both 2019

and 2020.

The experiment was designed as a split-plot randomized

complete block design with three replicates. The plot size was

5.0m×4.0m. Flax cultivar Lunxuan 2 was sown on 2 and 9 April

in 2019 and 2020, at a seeding rate of 1050 viable seeds m–2 for

targeting 750 plants m–2. The main plots were assigned three P rates

(0, 67.5, and 135.0 kg P2O5 ha
–1), while the subplots included three

rates of naphthalene acetic acid (NAA) (a synthetic auxin) (0, 20,

and 40 mg NAA L–1), which were prepared with distilled deionized

water. After 5 days of flax budding, each plot was sprayed with a

low-pressure hand-wand sprayer on the leaves, applying 50 mLm–2.

Nitrogen fertilization was applied at a rate of 120 kg N ha–1 as urea,

with 70% was applied as basal fertilization and the remaining 30% at

the budding stage just before a significant rainfall occurred.

Potassium sulfate was applied at 75 kg ha–1 for potassium

fertilization, while calcium super-phosphate served as the basal

fertilizer for P fertilization. No irrigation was provided to the crop.

Manual weeding took place between sowing and harvesting. Flax

was harvested by hand.
Preplant soil sampling and analysis

Soils were collected from the upper 30 cm prior to sowing of the

experiment and analyzed according to the methodology of Bao

(2000). Specifically, pH was measured using potentiometry, soil

organic matter content was determined by potassium dichromate
Frontiers in Plant Science 03
volumetry, alkali-hydrolysable N was quantified using the alkali

hydrolysis diffusion method, available potassium was obtained via

flame photometry, and available P in soil was determined using the

colorimetric Molybdenum-Blue method. The soil pH, organic

matter, alkali-hydrolyzable N, available K, and available P at the

experimental site were of 7.14 and 7.68, 12.8 and 13.4 g kg–1, 52.1

and 58.3 mg kg–1, 129.3 and112.6 mg kg–1, and 9.7 and 9.9 mg kg–1

in 2019 and 2020, respectively.
Sampling and analysis

After 24 h of NAA spray on leaves during budding, 30 flax

plants were chosen from the two central rows of each plot and

separated into leaves and other parts (O'Neill et al., 2010; Xing et al.,

2018; Cai et al., 2022). Once detached from the plants, leaf samples

were frozen in liquid N at −80°C to measure the activities and

relative expression levels of SPS and Rubisco. At flowering

(approximately 7 days after initial flowering) (Figure 1), total

aboveground dry matter, stem dry matter, leaf dry matter, and

flower dry matter were determined. At maturity, the stem, leaves,

non-seed reproductive structures (including peduncle, flower bud,

sepal, carpopodium, and pericarp), and seeds were assessed. On the

sampling date, a 1-m length of plant rows was randomly selected

from the two central rows of each plot, recorded numbers of fruiting

branches, tillers (the secondary basal stems of flax are referred to as

tillers) and capsules per plant, as well as and seeds per capsule

(Hocking and Pinkerton, 1993). Plant height was measured from

the base to the highest bud and then separated into leaves, stems,

non-seed reproductive structures, and seeds. The various vegetative

organs were individually dried at 105°C for 2 hours followed by

drying at 80°C until constant weight (Xie et al., 2014).
FIGURE 1

Morphology of plant at flowering (A), leaf (B), and the length of fully prolonged leaf (C) and width of fully prolonged leaf (D) of flax.
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On the day of harvest, each plot’s crop was harvested separately

using a sickle to determine its seed yield.
Measurements

The N concentrations in the various organs were measured

using micro-Kjeldahl method, as described by Lithourgidis et al.

(2007). The P concentrations in the different plant organs were

determined by the Colorimetric Molybdenum-Blue method

(Lithourgidis et al., 2007). In the present study, the following

formulae were computed according to the methods outlined by

Dordas (2009) and de Oliveira Silva et al. (2020), as follow:

Nitrogen translocation (kg  ha−1) 

= N  accumulation at flowering   −  ½leaf   +  stem  +  non

− seed� N  accumulation at maturity (1)

Phosphorus translocation (kg  ha−1) 

= P accumulation at flowering   −  ½leaf   +  stem  +  non

− seed� P accumulation at maturity (2)

Nitrogen harvest index (NHI) 

=  N  accumulation in seed=N  accumulation at maturity (3)

Phosphorus harvest index (PHI) 

=  P accumulation in seed=P accumulation at maturity (4)

Additionally, the calculation of N and P assimilation post-

flowering was determined using the following formula:

Post − flowering  N  assimilation (kg  ha−1) 

=  seed N  accumulation atmaturity − N  translocation (5)

Post − flowering  P assimilation (kg  ha−1) 

=  seed P accumulation atmaturity − P translocation (6)

Activity of SPS was determined using the methods described by

Mulyatama et al. (2022). In brief, the extract samples were

incubated for 0, 5 and 10 min at 25°C and the reactions were

terminated using 1 M NaOH. After addition of 0.25 mL resorcinol

(1%) and 0.75 mL of 30% HCl, the sample was measured using

spectrophotometer (U-5100 UV/VIS Hitachi HIgh-Tech Science

Corporation Tokyo Japan) at 520 nm. Rubisco activity was

measured following the protocol outlined by Wang et al. (2022).

Leaves were homogenized in 9 mL pre-cooled (4°C) phosphate-

buffered saline solution (pH 7.4). The resulting supernatant was

collected after centrifugation at 5000 rpm for 25 min at 4°C.

Rubisco activity was quantified using an enzyme-linked

immunosorbent assay (ELISA) kit from Shanghai Guduo

Biotechnology Co., Ltd., Shanghai, China, according to the

manufacturer’s instructions. The absorbance of the sample was
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measured at a wavelength of 450 nm using a microplate reader

(SpectraMax CMax Plus; Molecular Devices, San Jose, CA, USA).

Total RNA of leaves of flax samples as described above was

extracted using the TransZol Up Plus RNA Kit (ER501-01,

TransGen Biotech Co., Ltd.). The PrimeScript™ RT reagent Kit with

gDNA Eraser (Perfect Real Time) (RR047A, Takara, Biotech Co., Ltd.,

Beijing, China) was used to reverse transcribe total RNA into cDNA

and remove genomic DNA mixed in the cDNA, according to the

manufacturer’s protocol. The reverse transcribed cDNAs were used for

real-time quantitative PCR (RT-qPCR), which was performed on an

Applied Biosystems Quant-Studio™ 5 platform (Thermo Fisher

Scientific, Waltham, MA, USA). Four LuSPS genes and 1 LuRBCL

gene were obtained from the genome database of L. usitatissimum

(GenBank number: QMEG00000000) (Zhang et al., 2020). The primers

were designed with the Primer premier 5.0 software and synthesized by

TsingKe Biological Technology Co., Ltd. (Xi’an, China) (Table S1).

LuGADPHwas used for internal control (Huis et al., 2010; Zhang et al.,

2020). Heiff® qPCR SYBR® Green Master Mix kit (Low Rox Plus)

(Yeasen Biotech Co., Ltd.) was used for 20 mL PCR reactions as follow:

95°C for 30 s, and 40 cycles of 95°C for 5 s and 60°C for 34 s. Three

independent bio-logical replicates were performed and triplicate

technical quantitative assays were per-formed. The relative

expression level (REL) of each sample was estimated according to

the following equation as described by Livak and Schmittgen (2001):

REL = 2– DDCt, where the DDCt value was the DCt value of the target
gene in each sample minus the DCt value of the calibrator. The DCt
value of the target gene came from the difference between the Ct value

of the target gene and the Ct value of LuGADPH in each sample. The

DCt value of the calibrator was the mean value from the difference

between the Ct value of the target gene and the Ct value of LuGADPH

in a sample under control conditions. The Ct value of the target gene

and LuGADPH in samples was obtained from the Applied Biosystems

Quant-Studio™ 5 platform.
Data analysis

The data were subjected to analysis of variance (ANOVA) using

SPSS (version 19, Inc., Chicago, IL, USA). Means were compared

using the Tukey test with a significance level of 0.05. All RT-qPCR

data were presented as means ± SE (n = 3).
Results

Phosphorus and NAA on the RT-q PCR of
LuSPS and LuRubisco

We examined the expression of LuSPS1, LuSPS2, LuSPS3,

LuSPS4, and LuRubisco in flax leaves under various P and NAA

treatments (Figures 2, 3). The expression level of LuSPS1 was

significantly induced by P, NAA, and their interaction (Table 1).

Specifically, P treatments increased the expression of LuSPS1 by an

average of 154% (in 2019) and 138% (in 2020), compared to no

application of P. Meanwhile, NAA treatments led to a significant

increase in the expression level of LuSPS1 by an average of 111%
frontiersin.org

https://doi.org/10.3389/fpls.2023.1228755
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xie et al. 10.3389/fpls.2023.1228755
across both years, as compared with no NAA treatments. The

highest level of LuSPS1 expression was achieved when application

of 67.5 kg P2O5 ha
–1 and 20 mg NAA L–1 in both years (Figures 2A,

B), approximately 634% higher than that observed under control

conditions (0 kg P2O5 ha
–1 with 0 mg NAA L–1).

Phosphorus significant influenced the expression of LuSPS2,

with an increase of 93 and 69% in 2019 and 2020, respectively,

compared to no P treatment. The expression of LuSPS3 was also

affected by both P and NAA treatments, resulting in increase of 128

and 129% with P treatments in both years, respectively, compared

with no P, while NAA application led to respective increases of 72

and 52% in 2019 and 2020 compared to no spray NAA. The

expression of LuSPS4 significantly decreased with the application

of NAA, exhibiting a decrease of 72 and 52% in 2019 and 2020,

respectively, compared to no NAA treatment. Furthermore, the

interaction between P and NAA as well as the year, P, and NAA

interaction had an influenced on LuSPS4 expression (Table 1). The

highest level of LuSPS4 expression was observed at 0 kg P2O5 ha
–1

with 0 mg NAA L–1 in two years. The lowest value of LuSPS4

expression level was observed at 135.0 P2O5 ha
–1 with 40 mg NAA

L–1 in 2019 (0.09) and at 135.0 P2O5 ha
–1 with 20 mg NAA L–1 in

2020 (0.22) (Figures 3C, D).

The expression level of LuRubisco was influenced by year, P,

NAA, and the between P and NAA interaction (Table 1). As the P

rate increased, there was a corresponding increase in the expression

level of LuRubisco. Compared to the zero P control, fertilized flax

showed an increase of 41 and 73% in LuRubisco expression level

when averaged over 67.5 and 135.0 kg P2O5 ha
–1, respectively. The

expression level of LuRubisco initially increased but then decreased

with increasing NAA rate. The maximal expression values of

LuRubisco were 2.2 (in 2019) and 3.0 (in 2020) across three P
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rates, with the highest expression level being 4.8 (in 2019) and 5.4

(in 2020) at a rate of 67.5 kg P2O5 ha–1 with 20 mg NAA L–1

(Figures 3E, F). Notably, the expression levels in NAA treatments

exceeded those in zero NAA treatments by up to 114% in 2019 and

88% in 2020.
Phosphorus and NAA on SPS and
Rubisco activity

The activity of SPS was affected by year, P, NAA, and the

interaction between P and NAA (Table 1). Compared to zero P, SPS

activity increased by 118 and 71% with P treatments in 2019 and

2020, respectively. Additionally, the application of NAA resulted in

an average increase of SPS activity by 65 and 55% in 2019 and 2020,

respectively, compared with zero NAA. The maximum value of SPS

activity was achieved with the application of 67.5 kg P2O5 ha
–1 with

20 mg NAA L–1; however, the lowest level of SPS activity was

observed at 0 kg P2O5 ha
–1 with 0 mg NAA L–1 (Figures 4A, B).

The activity of Rubisco in flax leaves was affected by P (Table 1).

Consistent with the trend of LuRubisco expression level, Rubisco

activity increased as P increased. Compared to zero P, an average

increase in Rubisco activity was 108% (in 2019) and 102% (in 2020) in

the P treatments. Additionally, NAA application had an impact on

Rubisco activity. The trend of Rubisco activity change was consistent

with the response of LuRubisco expression level to NAA. Compared to

zero NAA treatments, there was an average increase in Rubisco activity

of 81% in 2019 and 64% in 2020. The peak Rubisco activity was

obtained at 67.5 kg P2O5 ha–1 combined with 20 mg NAA L–1;

however, the lowest value was observed under conditions of zero P

and NAA conditions (Figures 4C, D).
B

C D

A

FIGURE 2

Effect of phosphorus and naphthalene acetic acid levels on the relative expression levels of LuSPS1 (A) (2019) and (B) (2020) as well as LuSPS2 (C)
(2019) and (D) (2020). P stands for phosphorus; NAA refers to naphthalene acetic acid. P0, P1, and P2 represent 0, 67.5, and 135.0 kg P2O5 ha−1,
respectively. NAA0, NAA20, and NAA40 represent 0, 20, and 40 mg NAA L−1, respectively. Different letters indicate means that are markedly different
at p<0.05 based on the Tukey test.
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Phosphorus and NAA on N accumulation
and translocation

Nitrogen accumulation in aboveground plant parts at flowering

and maturity, as well as post-flowering N assimilation significantly

increased by the application of P fertilizers in 2019 and 2020 years.

Compared to zero P, the application of P fertilization resulted in an

average increase of 12% in 2019 and 16% in 2020 in N accumulation at

flowering. Furthermore, N accumulation at maturity showed a

significant increase of 24% (in 2019) and 30% (in 2020) in P

treatments compared with zero P. Moreover, N assimilation post-

flowering improved by 51 and 59% in the P treatments in 2019 and

2020, respectively, compared to zero P. Additionally, the application of

P resulted in an average increase of 15% in N translocation compared

to without P treatment. As shown in Table 1, P had an influence on

NHI. In this study, the NHI increased by 11 and 14% with the P

treatments in 2019 and 2020, respectively.

The application of NAA had a significant effect on N

accumulation at flowering and maturity, post-flowering N

assimilation, and N translocation. Compared to the zero NAA

treatment, the use of NAA increased N accumulation at flowering

and maturity, N assimilation post-flowering, N translocation, and

NHI by 11, 17, 28, 10, and 5% in 2019, respectively. In addition,

compared to zero NAA, there was a significant increase in N

accumulation at flowering and maturity, N assimilation post-

flowering, N translocation, and NHI, by 12, 18, 30, 16, and 6% in

the year of 2020 with the application of NAA.
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The interaction between P and NAA had a significant effect on

N accumulation at maturity, post-flowering N assimilation, N

translocation, and NHI (Table 1). In both years, the maximum

values of those indexes were observed when applying 67.5 kg P2O5

ha–1 combined with 20 mg NAA L–1; conversely, the lowest values

were recorded under no application of P or NAA (Table 2).

Compared with the lowest values, the maximum of these indexes

increased by an average of 54, 50, 105, and 22%, respectively.
Phosphorus and NAA on P accumulation
and translocation

Phosphorus accumulation at flowering, maturity, and assimilation

post-flowering, as well as P translocation in aboveground plant parts

and PHI increased significantly with the application of P fertilizers in

both years. The P accumulation at flowering, maturity, and assimilation

post-flowering, P translocation aboveground plant parts of flax as well

as PHI were 113, 106, 88, 258, and 15% greater compared to the zero P

application in 2019, and were 108, 99, 76, 274, and 14% greater in 2020.

The application of NAA significantly increased P accumulation

at flowering, maturity, and assimilation post-flowering, as well as P

translocation in aboveground plant parts and PHI in both years.

Similarly, the P accumulation at flowering, maturity, and

assimilation post-flowering, P translocation as well as PHI were

16, 16, 16, 29, and 6% greater compared to the zero NAA

application in 2019, and were 17, 23, 46, 16, and 5% greater in 2020.
B

C D

E F

A

FIGURE 3

Effect of phosphorus and naphthalene acetic acid levels on the relative expression levels of LuSPS3 (A) (2019) and (B) (2020), LuSPS4 (C) (2019) and
(D) (2020) as well as LuRubisco (E) (2019) and (F) (2020). NAA refers to naphthalene acetic acid. P0, P1, and P2 represent 0, 67.5, and 135.0 kg P2O5

ha−1, separately. NAA0, NAA20, and NAA40 represent 0, 20, and 40 mg NAA L−1, respectively. Different letters indicate significant differences at p<0.05
according to the Tukey test.
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The interaction between P and NAA significantly affected P

accumulation at maturity, assimilation post-flowering, P

translocation, and PHI (Table 1). The peak of P accumulation at

maturity, assimilation post-flowering, P translocation, and PHI

were obtained at 67.5 kg P2O5 ha–1 combined with 20 mg NAA

L–1 in both years, while the lowest were observed when application

0 kg P2O5 ha–1 and 0 mg NAA L–1 in both years (Table 3). On

average, the maximum of these indexes were 143, 117, 557, and 29%

greater compared to the lowest in 2019, and were 176, 183, 394, and

25% greater in 2020.
Phosphorus and NAA on the growth
phenotype of flax

In the present study, there was no significant difference in flax plant

height among P, NAA, and their interaction (Table 1). However, the

interaction among the year, P, and NAA affected plant height. The
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numbers of fruiting branches and tillers per plant were affected by P,

NAA, and their interaction as shown in Table 1. The application of P

fertilizer resulted in a significant increase in the number of fruiting

branches per plant, with an average improvement of 15 and 17%

observed in 2019 and 2020, respectively, compared to plants that did

not receive any P treatment. Similarly, the use of sprayed NAA led to

an average increase of 11% (in 2019) and 10% (in 2020) in the number

of fruiting branches per plant when compared to plants that were not

treated with NAA spray. The number of fruiting branches per plant

was impacted by the year, P, and NAA interaction (Table 1). The

highest number of fruiting branches per plant was recorded at 67.5 kg

P2O5 ha
–1 and 40 mg NAA L–1 in 2019, and at 67.5 kg P2O5 ha

–1 and

20 mg NAA L–1 in 2020 (Table 4).

The number of tillers per plant increased with increasing P supply.

Compared to no application of P, the use P treatments resulted in an

average increase of 68% in 2019 and 55% in 2020. Furthermore, the

application of NAA led to an average increase in the number of tillers per

plant by 33 and 35% in 2019 and 2020, respectively, compared to zero
TABLE 1 Analysis of variance of various parameters that were measured in this study according to year, phosphorus and naphthalene acetic acid.

Parameters Year (Y) P NAA Y×P Y×NAA P×NAA Y×P×NAA

Relative expression level of LuSPS1 ns * ** ns ns * ns

Relative expression level of LuSPS2 ns * * ns * ns ns

Relative expression level of LuSPS3 ns ** ** ns ns ns ns

Relative expression level of LuSPS4 ns * * * * * ns

Relative expression level of LuRubisco * * * ns ns * ns

Sucrose phosphate synthase (SPS) activity * * * ns ns ** ns

Ribulose-1,5-bisphosphate carboxylase/oxygenase
(Rubisco) activity

* ** ** ns * ** ns

Nitrogen accumulation at flowering * ** * ns ns ns ns

Nitrogen accumulation at maturity ** ** ** ns ns * ns

Nitrogen assimilation post-flowering ** ** ** * * ** ns

Nitrogen translocation ns * * ns ns * ns

Nitrogen harvest index ns ** ** ns ns ** ns

P accumulation at flowering ns ** * ns ns ns ns

P accumulation at maturity * ** * ns ns * ns

P assimilation post-flowering ns ** * ns ns * ns

P translocation * ** * * ns * ns

P harvest index ns * ** ns ns ** ns

Plant height * ns ns * ns ns *

Number of fruiting branches per plant ns ** * ns ns * *

Number of tillers per plant * * ** ns ns ** ns

Seed yield ** ** ** ns ns ** ns

Number of capsules per plant * ** ** ns * ** ns

Number seeds of per capsule ns ns ns * ns ns ns

1000-seed weight ns * ns ns ns * ns
f

P stands for phosphorus. NAA refers to naphthalene acetic acid. * and ** represent significance at the 0.05 and 0.01 level of probability, respectively. ns represent not significant.
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TABLE 2 Effect of phosphorus and naphthalene acetic acid levels on nitrogen accumulation, translocation, nitrogen assimilation post-flowering, and
nitrogen harvest index of flax in 2019 and 2020 years at Dingxi, China.

Year P
rate

NAA
rate

Nitrogen accu-
mulation

at flowering (kg
ha−1)

Nitrogen accu-
mulation at
maturity (kg

ha−1)

Nitrogen assimi-
lation post-flow-
ering (kg ha−1)

Nitrogen
translocation (kg

ha−1)

Nitrogen
harvest index

2019 P0 NAA0 60.36b† 84.30g 23.94f 12.06d 0.43c

NAA20 65.94b 91.33f 25.39f 13.70c 0.43c

NAA40 66.83b 100.73e 33.90e 14.25b 0.48b

P1 NAA0 63.89b 96.90e 33.00e 13.50c 0.48b

NAA20 77.96a 126.96a 49.01a 15.75a 0.51a

NAA40 72.15a 116.52c 44.37b 14.24b 0.50a

P2 NAA0 69.38ab 106.60d 37.22d 13.84c 0.48b

NAA20 74.73a 121.19b 46.46b 14.38b 0.50a

NAA40 73.26a 115.03c 41.77c 14.74b 0.49b

2020 P0 NAA0 60.17b 88.37e 27.02e 10.04d 0.43d

NAA20 65.41b 92.43e 28.20e 13.91c 0.44d

NAA40 68.48b 105.17d 36.69d 13.79c 0.48c

P1 NAA0 67.80b 103.19d 35.39d 15.07b 0.49c

NAA20 81.66a 139.78a 58.12a 17.50a 0.54a

NAA40 76.03a 127.35bc 51.32b 15.28b 0.52b

P2 NAA0 70.83b 113.96c 43.13c 14.18c 0.50c

NAA20 78.37a 130.54b 52.17b 15.71b 0.52b

NAA40 75.32a 126.49bc 51.17b 14.86b 0.52b
F
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P stands for phosphorus. NAA refers to naphthalene acetic acid. P0, P1, and P2 represent 0, 67.5 and 135.0 kg P2O5 ha
−1, respectively. NAA0, NAA20, and NAA40 represent 0, 20, and 40 g l−1,

respectively. † Means in the same column followed by the same letter do not differ significantly according to the Tukey test (p = 0.05).
B

C D

A

FIGURE 4

Effect of phosphorus and naphthalene acetic acid levels on the SPS (A) (2019) and (B) (2020) as well as Rubisco (C) (2019) and (D) (2020) activities. P
refers to phosphorus; NAA stands for naphthalene acetic acid. P0, P1, and P2 represent 0, 67.5, and 135.0 kg P2O5 ha

−1, respectively. NAA0, NAA20,
and NAA40 represent 0, 20, and 40 mg NAA L−1, respectively. Different letters indicate significant differences at p<0.05 based on the Tukey test.
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NAA. Additionally, the highest values were observed at a combination of

135 kg P2O5 ha
–1 and 40 mg NAA L–1 in both years (Table 4).
Phosphorus and NAA on seed yield and
yield components

Phosphorus significantly impacted the seed yield of flax, with an

increase in seed yield as P supply rate increased. Notably, no difference

was found between 67.5 and 135.0 kg P2O5 ha
–1. The application of P

fertilizer resulted in an average increment in seed yield of 12% (2019)

and 14% (2020) when compared to zero P. Furthermore, both capsules

per plant and 1000-seed weight were influenced by P fertilizer

(Table 1). Capsules per plant showed an average improvement of 6

and 9% in the P treatments in 2019 and 2020, respectively, compared to

no application of P. Additionally, the addition of P resulted in a 3%

increase (in both years) in 1000-seed weight when compared to no

application of P.

Seed yield was significantly impacted by the application of NAA.

Compared to the zero NAA treatment, the application of NAA led to

an average increase in seed yield of 8% in 2019 and 9% in 2020,

respectively. Furthermore, the application of NAA significantly affected
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the capsules per plant of flax, with an average increase of 12%, when

compared to the zero NAA treatment. Moreover, the interaction

between P and NAA had a significant influence on the seed yield,

capsules per plant, and 1000-seed weight of flax (Table 1). The highest

seed yield of 1891 kg ha–1 in 2019 and 2029 kg ha–1 in 2020 was

achieved with an application of 67.5 kg P2O5 ha
–1 and 20 mg NAA L–1

(Table 5). On average, the maximum seed yield was 36% greater than

the lowest value in both years. Additionally, the maximum capsules per

plant were observed at 67.5 kg P2O5 ha
–1 and 20 mg NAA L–1 in both

2019 and 2020; whereas the highest 1000-seed weight was observed at a

rate of 135.0 kg P2O5 ha–1 and 40 mg NAA L–1. On average, the

maximum values increased by an average of 3% compared with the

lowest 1000-seed weight (Table 5).

Discussion

Effect of P

Our research indicated the application of P fertilizer enhanced

SPS activity in flax by up-regulating the relative expression level of

LuSPS1-3 while down-regulating that of LuSPS4. In addition, this

study has also revealed that the relative expression level of
TABLE 3 Effect of phosphorus and naphthalene acetic acid levels on phosphorus accumulation, translocation, phosphorus assimilation post-
flowering, and phosphorus harvest index of flax in 2019 and 2020 years at Dingxi, China.

Year P
rate

NAA
rate

P accumulation
at flowering (kg

ha−1)

P accumulation
at maturity (kg

ha−1)

P assimilation
post-flowering

(kg ha−1)

P translocation
(kg ha−1)

P
harvest index

2019 P0 NAA0 6.21d† 8.63e 2.42c 0.63d 0.35e

NAA20 6.68c 9.28d 2.60c 0.93d 0.38d

NAA40 7.52c 9.97d 2.45c 1.34c 0.38d

P1 NAA0 12.52b 16.32c 3.80b 2.96b 0.41c

NAA20 15.70a 20.97a 5.26a 4.14a 0.45a

NAA40 14.46a 18.90b 4.44b 3.47a 0.42b

P2 NAA0 13.51b 17.96b 4.46b 3.05b 0.42b

NAA20 15.37a 20.53a 5.17a 3.54a 0.42b

NAA40 15.28a 20.18a 4.89ab 3.66a 0.42b

2020 P0 NAA0 6.22d 8.37e 2.15e 0.89d 0.36d

NAA20 7.85c 10.84d 2.99e 1.06c 0.37d

NAA40 8.22c 11.52d 3.30d 1.17c 0.39c

P1 NAA0 13.56b 17.03c 3.47d 3.67b 0.42b

NAA20 16.99a 23.06a 6.08a 4.40a 0.45a

NAA40 15.26a 21.01b 5.75a 3.54b 0.44a

P2 NAA0 14.66b 18.80c 4.14c 3.43b 0.40c

NAA20 16.30a 21.54b 5.24ab 4.28a 0.44a

NAA40 15.86a 20.87b 5.01b 4.01a 0.43a
P stands for phosphorus. NAA refers to naphthalene acetic acid. P0, P1, and P2 represent 0, 67.5 and 135.0 kg P2O5 ha
−1, respectively. NAA0, NAA20, and NAA40 represent 0, 20, and 40 g l−1,

respectively. † Means in the same column followed by the same letter do not differ significantly according to the Tukey test (p = 0.05).
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LuRubisco in flax leaves significantly increased under P fertilization

treatments. Furthermore, we observed a similar trend between

Rubisco activity and the relative expression level of LuRubisco in

response to P application. In a study of wheat, the function of SPS

was initially discovered by Leloir and Cardini (1955). Subsequently,

many studies have demonstrated that SPS is the pivotal enzyme in

sucrose biosynthesis, which is associated with crop growth and yield

(Castleden et al., 2004). Recent research has shown that P fertilizer

up-regulates the activity of SPS in citrus fruit (Wu et al., 2021). This

finding aligns with our study results, which demonstrate P fertilizer

increased flax leaves SPS activity. In cotton, the addition of P has

been shown to enhance SPS activity in cottonseed kernel (Wang

et al., 2023). Moreover, numerous studies have revealed that plant

species possess multiple SPS genes and their expression varies

depending on developmental stages, t issue types and

environmental cues (Lutfiyya et al., 2007; Ma et al., 2020).

Obviously, the application of P fertilizer can promote

photosynthetic C metabolism, as judged from the relative

expression levels of LuSPS1-3 and LuRubisco, as well as SPS and

Rubisco activities. This was related to higher photosynthesis

efficiency. Li et al. (2022) demonstrated that Pi deficiency

regulated photosynthesis-related genes at the transcriptional level,
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thereby inhibiting photosynthesis. Moreover, Kayoumu et al. (2023)

reported that appropriate P enhanced the photosynthesis of cotton.

Previous study found that P treatments significantly increased N

and P accumulations at flowering and maturity as well as post-

flowering N and P assimilations and translocations on durum wheat

(Dordas, 2009). These findings were in agreement with our current

results. In addition, Xie et al. (2023) have found that the P fertilized flax

enhanced the N uptake in aboveground parts. Those results showed

that P enhanced N transport, reduction and assimilation. At the

meantime, Dordas (2009) also reported that the application of P did

not affect the NHI and PHI of durum wheat, this result is at odds with

our studies. These differences were probably attributable to species, soil

types, and sink capacity.

To meet the demand for food from the fast-growing global

population, crop production will need to increase by approximately

60% (Muhie, 2022). The flexible management practice of P

fertilization can enhance crop productivity. Application of P

treatments significantly increased the numbers of fruiting

branches and tillers per plant. In this respect, our results agreed

with those of Hocking and Pinkerton (1993). Moreover, this study

found that P application improved flax seed yield, which is

consistent with previous reports (Muhammad et al., 2020; Xie
TABLE 4 Effect of phosphorus and naphthalene acetic acid levels on plant height, number of fruiting branches per plant, and number of tillers per
plant of flax in 2019 and 2020 years at Dingxi, China.

Year P rate NAA rate Plant
height (cm)

Number of fruiting
branches per plant

Number of tillers
per plant

2019 P0 NAA0 71.70b† 18.13d 1.46d

NAA20 75.86a 19.17c 2.04c

NAA40 72.68ab 19.96c 2.20c

P1 NAA0 69.54b 20.85b 2.21c

NAA20 60.46c 22.87a 2.86b

NAA40 70.22b 23.68a 3.23b

P2 NAA0 68.28b 19.52c 3.15b

NAA20 77.92a 21.85b 3.73a

NAA40 78.00a 22.85a 4.02a

2020 P0 NAA0 75.26b 19.47d 1.80d

NAA20 81.22a 20.01d 2.53c

NAA40 85.26a 21.12c 2.58c

P1 NAA0 78.62ab 22.76b 2.84c

NAA20 76.76b 25.91a 3.36b

NAA40 67.50c 25.23a 3.91a

P2 NAA0 64.52d 20.91c 3.01b

NAA20 70.18c 23.78b 3.83a

NAA40 75.54b 23.41b 4.47a
P stands for phosphorus. NAA refers to naphthalene acetic acid. P0, P1, and P2 represent 0, 67.5 and 135.0 kg P2O5 ha
−1, respectively. NAA0, NAA20, and NAA40 represent 0, 20, and 40 g l−1,

respectively. † Means in the same column followed by the same letter do not differ significantly according to the Tukey test (p = 0.05).
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et al., 2020; Xie et al., 2022). Similar results have been observed in

other species, such as soybean (Yin et al., 2016; Taliman et al., 2019),

pea, canola (Yin et al., 2016), wheat (Škarpa et al., 2021), maize

(Škarpa et al., 2021), and rice (Škarpa et al., 2021). In this study, the

application of P fertilizer had a significant influence on both 1000-

seed weight and the number of capsules per plant in flax, which is

consistent with previous research findings (Hocking and Pinkerton,

1993; Xie et al., 2016). In the present study, the increase in seed yield

due to P fertilization may be a result of improvement fruiting

branches per plant, capsule per plant and the 1000-seed weight. The

rise in seed yield with fertilizer P application is likely linked to

enhance C and N assimilation (Lawlor, 2002; Ren et al., 2020) and

photosynthesis efficiency (Li et al., 2022).
Effect of NAA

Previous studies have demonstrated that exogenous auxin can

stimulate root system growth in plants, thus improving their ability to

absorb nutrient and metal ion (Ji et al., 2015; Zaid et al., 2020; Chen

et al., 2021). However, there has been limited research on the effects of

application exogenous NAA to crops for increasing N uptake. In the

current study, spray of NAA resulted in an increase in N and P
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accumulation at flowering and maturity, N and P assimilation post-

flowering, N and P translocation, and NHI and PHI. Previous research

has reported that exogenous application of IAA significantly promoted

uranium (U) and cadmium (Cd) translocation from roots to shoots in

sunflowers (Chen et al., 2021).

In this study, the application of NAA resulted in a significant

increase in seed yield of flax. Previous studies on alfalfa and faba bean

have also reported similar results, with a 23% increase in seed yield

observed after NAA application (Zhang et al., 2009). Additionally,

research on rice has identified that auxin can improve grain yield

(Aryan et al., 2023). In our study, we found that NAA increased the

number of fruiting branches per plant, tillers per plant, and capsules per

plant and 1000-seed weight. The reasons for this may be adequate C

and N assimilation after NAA application. In another study, Mousavi

et al. (2022) observed that foliar application of IAA had a significantly

positive effect on seed yield and yield components in safflower.

However, it should be noted that Giannakoula et al. (2012) reported

no significant effect of NAA on 1000-seed weight in lentil. The

inconsistency among various studies may be attributable to

differences in genotypes, type of auxin, and climate conditions.

Additionally, the application of NAA increased the number of

capsules per plant and seed yield. This can be attributed to NAA

enhancing C and Nmetabolism in plants by up-regulating the SPS and
TABLE 5 Effect of phosphorus and naphthalene acetic acid levels on seed yield and yield components of flax in 2019 and 2020 years at Dingxi, China.

Year P rate NAA rate Seed yield
(kg ha−1)

Number of
capsules per plant

Number of seeds
per capsule

1000-seed
weight

2019 P0 NAA0 1396.11e† 16.67d 6.82a 6.01c

NAA20 1511.66d 18.23c 6.91a 6.06bc

NAA40 1485.00d 19.60b 7.12a 6.12b

P1 NAA0 1487.34d 17.84c 7.05a 6.12b

NAA20 1890.67a 21.26a 7.12a 6.13b

NAA40 1491.34d 20.22b 7.20a 6.24b

P2 NAA0 1633.35c 17.86c 7.12a 6.31a

NAA20 1700.33b 19.78b 7.05a 6.35a

NAA40 1677.00bc 18.09c 7.31a 6.43a

2020 P0 NAA0 1480.67e 15.41e 6.86a 6.05c

NAA20 1789.33d 20.46c 7.09a 6.12c

NAA40 1786.34d 22.04b 7.05a 6.14c

P1 NAA0 1837.66c 19.88d 7.15a 6.12c

NAA20 2028.67a 23.47a 7.13a 6.33b

NAA40 1886.69b 20.92c 7.22a 6.45a

P2 NAA0 1904.34b 20.50c 6.94a 6.27b

NAA20 1981.01a 21.21bc 6.99a 6.32b

NAA40 1909.03b 20.82c 7.05a 6.51a
P stands for phosphorus. NAA refers to naphthalene acetic acid. NAA refers to naphthalene acetic acid. P0, P1, and P2 represent 0, 67.5 and 135.0 kg P2O5 ha
−1, respectively. NAA0, NAA20, and

NAA40 represent 0, 20, and 40 g l−1, respectively. † Means in the same column followed by the same letter do not differ significantly according to the Tukey test (p = 0.05).
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Rubisco activities as well as N absorption, translocation, and

assimilation, which promote photosynthesis resulting in seed

production as well as flowering and seed formation. Further research

is required to validate the mechanism for increasing seed yield through

P and NAA application.

This is the first report demonstrating that the supply of P andNAA

affects the relative expression of LuSPS1, LuSPS2, LuSPS3, LuSPS4, and

LuRubisco as well as SPS and Rubisco activities, N and P accumulation,

assimilation, and translocation in flax.
Effect of the interaction

In this study, the interaction between NAA and P led to

increasing SPS and Rubisco activities as well as N translocation

and assimilation probably due to coordinating regulation of C and

N assimilation (Lawlor, 2002; Ren et al., 2020), maintain a higher

relatively stable C and N metabolism (Ren et al., 2020), and sustain

C/N balance (Gong et al., 2020; Liu et al., 2022), and improve

photosynthesis (Li et al., 2022). As a result, the P and NAA

interaction increased significantly seed yield of flax, probably due

to (i) with sufficient NO3
− and CO2 assimilation, the supply of

assimilates from C and N assimilation to developing meristems is

adequate to maintain their growth, resulting in an increase in tillers,

fruiting branches, capsules per plant, and seed production; and (ii)

the capacity of seeds to grow is enhanced, possibly partly explained

by increase in cells with greater enzyme capacity. Given adequate

assimilates during seed filling, more seeds are filled and they are

larger. These factors collectively contribute to large yield (Lawlor,

2002). Furthermore, the complex mechanism of involved in others
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enzymes activities on C and N metabolites of flax with the

combination of P and NAA for increasing seed yield need further

to explore in the future.

Moreover, the interaction between year and P affected the relative

expression level of LuSPS4, plant height, and seeds of per capsule offlax.

The year and NAA interaction influenced Rubisco activity, and capsules

per plan. Moreover, the interaction among the year, P, and NAA

impacted plant height and number of fruiting branches per plant of flax.
Conclusion

Effective management practices are critical for the economic viability

of crop production and environmental sustainability. To estimate the

effect of P andNAA rates on seed yield, we first elaborate on the response

of LuSPS1, LuSPS2, LuSPS3, LuSPS4, and LuRubisco genes’ relative

expression levels as well as SPS and Rubisco activities, N and P

accumulation and translocation in flax under different P and NAA

rates. Our study reveals that application of P and NAA significantly

increased the relative expression levels of LuSPS1, LuSPS3, and

LuRubisco genes, SPS and Rubisco activities, N and P accumulation at

flowering and maturity, post-flowering N and P assimilation, N and P

translocation, NHI, fruiting branches per plant, tillers per plant, capsules

per plant, 1000-seed weight, and seed yield of flax.

The highest seed yield (1891 kg ha−1 in 2019 and 2029 kg ha−1

in 2020) were recorded with the application of 67.5 kg P2O5 ha
–1

and 20 mg NAA L–1. It appears that an appropriate combination of

P and NAA can be applied in flax production to increase seed yield

by maintaining higher C and N assimilation under rain-fed

conditions as shown in Figure 5.
FIGURE 5

Appropriate combination of P and NAA increase seed yield of flax by maintaining higher C and N assimilation.
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