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3School of Earth Science and Engineering, Hebei University of Engineering, Handan, Hebei, China
Global climate change and freshwater scarcity have become two major

environmental issues that constrain the sustainable development of the world

economy. Climate warming caused by increasing atmospheric CO2 concentration

can change global/regional rainfall patterns, leading to uneven global seasonal

precipitation distribution and frequent regional extreme drought events, resulting

in a drastic reduction of available water resources during the critical crop

reproduction period, thus causing many important food-producing regions to

face severe water deficiency problems. Understanding the potential processes and

mechanisms of crops in response to elevated CO2 concentration and temperature

under soil water deficiencymay further shed lights on the potential risks of climate

change on the primary productivity and grain yield of agriculture. We examined the

effects of elevated CO2 concentration (e[CO2]) and temperature (experimental

warming) on plant biomass and leaf area, stomatal morphology and distribution,

leaf gas exchange and mesophyll anatomy, rubisco activity and gene expression

level of winter wheat grown at soil water deficiency with environmental growth

chambers. We found that e[CO2] × water × warming sharply reduced plant

biomass by 57% and leaf photosynthesis (Pn) 50%, although elevated [CO2] could

alleviated the stress from water × warming at the amount of gene expression in

RbcL3 (128%) andRbcS2 (215%). At ambient [CO2], the combined stress of warming

and water deficiency resulted in a significant decrease in biomass (52%), leaf area

(50%), Pn (71%), and Gs (90%) of winter wheat. Furthermore, the total nonstructural

carbohydrates were accumulated 10% and 27% and increased Rd by 127% and 99%

when subjected to water × warming and e[CO2] × water × warming. These results

suggest that water × warming may cause irreversible damage in winter wheat and

thus the effect of “CO2 fertilization effect” may be overestimated by the current

process-based ecological model.
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Introduction

Atmospheric CO2 concentration ([CO2]) has currently exceeded

420 µmol mol−1 with an increase rate of 2 µmol mol−1 from 280 µmol

mol−1 at the beginning of the industrialization era and will continually

be over 800 µmol mol−1 by the end of 21st century (IPCC, 2021). As a

result, the increased atmospheric [CO2] has resulted in a rapid rise in

global surface temperature over the past decades (Barlow et al., 2015;

Jin et al., 2017), even the average global temperature is predicted to

rise 2 to 6 °C depending on the concentrations of greenhouse gases

such as CO2 in the atmosphere (IPCC, 2021). It has been estimated

that global precipitation may decline under future climatic warming,

and meanwhile the spatial and temporal patterns of global/regional

precipitation distribution may also become uneven (Chun et al., 2011;

Zhang et al., 2020), thus drought and elevated temperature may

constrain plant growth and crop yield alone or in combination (Yu

et al., 2012), although elevated [CO2] generally facilitates plant growth

and promotes plant adaptation to climate change (Kirkham, 2011; Xu,

2015; Li et al., 2021). Unfortunately, simultaneous drought stress,

elevated [CO2] and elevated temperature has already occurred in

summer in many regions throughout the world, which is even more

detrimental to plant growth than either stress alone. Nevertheless, the

underlying response mechanisms of elevated [CO2] and elevated

temperature on crops such as winter wheat at different soil water

status are still unclear (Abebe et al., 2016; Fan et al., 2020; Zheng et al.,

2020), and thus these uncertainties not only restrict the capacity to

accurately predict agricultural carbon sequestration, but also limit

understanding of the potential impacts of climate change on

agricultural productivity (Ainsworth and Long, 2020; Muluneh, 2020).

It has been well demonstrated that various physiological,

biochemical, and molecular processes of plants are sensitive to

water deficiency, elevated [CO2], and elevated temperature alone or

the combination (Mirwais et al., 2006; Yu et al., 2012; Bencze et al.,

2014; Xu, 2015; Zheng et al., 2018; Duan et al., 2019a; Zheng et al.,

2020; Li et al., 2021). Elevated [CO2] generally promotes leaf

photosynthesis, plant growth, and crop yield through the “CO2

fertilization” effect with enhancing the ribulose-1,5-bisphosphate

carboxylase oxygenase (Rubisco) carboxylation efficiency (Arndal

et al., 2014; Niaz et al., 2020) and inhibiting leaf respiration rates

(Yu et al., 2012; Xu, 2015). For example, Duan et al. (2019a) found

that elevated [CO2] from 400 mmol mol−1 to 640 mmol mol−1

increased plant biomass, leaf area, and leaf number of Eucalyptus

tereticornis, which attributed to the enhanced net photosynthetic rate

and the reduced dark respiration. However, several recent studies

have reported that soil water status could modify the CO2 fertilization

effect on crops such as winter wheat (Zheng et al., 2020) and green

pepper (Fan et al., 2020) with changing leaf photosynthesis, stomatal

traits, and non-structural carbohydrates, which are generally regulated

by soil water availability and plant water status (Yu et al., 2012; Duan

et al., 2019a). On the other hand, water deficiency often results in

obvious reduction in leaf photosynthesis and plant biomass, and

elevated [CO2] may mitigate the negative effects of water deficiency

with regulating leaf photosynthesis, stomatal conductance, and leaf

transpiration (Fan et al., 2020), which are coupled with stomatal traits

such as stomatal density, stomatal openness, and the distribution

pattern of stomata (Xu, 2015; Zheng et al., 2020). Nevertheless, the
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underlying mechanisms and processes of elevated [CO2] alleviates the

effect of water stress on crops is remain unknown, thus studies focus

on these topics will help to fill the knowledge gap, and meanwhile

allow us to fully understand the impacts of water stress on global

agriculture productivity in a higher atmospheric [CO2] world.

Due to the elevated atmospheric [CO2], climate models have also

projected that water deficiency may also be accompanied by elevated

temperature, namely climate warming. It is well demonstrated that

many physiological processes of plants such as leaf photosynthesis

and respiration are strongly dependent on growth temperature and

soil/plant water status (Hatfield et al., 2011; Zhang et al., 2015). As a

result, elevated temperature and drought stress usually decrease leaf

photosynthesis and increase leaf respiration (Parry et al., 2003; Kurek

et al., 2007; Bencze et al., 2014; Duan et al., 2019b), and limit plant

growth and reduce crop yields when growth temperature and soil

water content exceed the optimum for plant growth (Salvucci and

Crafts-Brandner, 2004; Zhao et al., 2017; Hao et al., 2019). In

addition, the negative effects of water deficiency and heat stress on

plant growth and crop yield can be mitigated with elevated [CO2]

(Mirwais et al., 2006; Wei et al., 2018). Mirwais et al. (2006) show that

higher temperatures or drought inhibited many processes, while

elevated [CO2] partially mitigated some of the adverse effects, such

as total dry matter mass, net photosynthetic rate, and abscisic acid.

Many previous studies have investigated the mitigating effects of

elevated [CO2] on crop drought or warming, but the effect of high

[CO2] on crop leaf structure, physiological processes, and

biochemical synergistic responses to water deficiency and warming

has rarely been reported (Mirwais et al., 2006; Yu et al., 2012).

Winter wheat (Triticum aestivum L.) in the North China Plain

accounts for about 40% of the total arable land area and is one of the

most important foodstuffs for humans (Wang et al., 2016).

However, previous work predicted that the global climate has

warmed in recent years and that groundwater resources are scarce

(Tao et al., 2006), so not only warming and water deficiency may

directly affect winter wheat growth and development by altering

physiological and biochemical processes (Farooq et al., 2011; Zheng

et al., 2020), but water deficiency and warming may also indirectly

and synergistically affect grain yield of winter wheat as crop

phenology and growth stages change (Hatfield et al., 2011). Wall

et al. (2006) has shown that elevated [CO2] can increase the net

photosynthetic rate in winter wheat, alleviate warming or water

deficiency by reducing stomatal conductance and transpiration rate,

and improve crop water use efficiency (Keshav et al., 2014).

Meanwhile, elevated [CO2] can also inhibit the respiration

process and Rubisco oxygenation reaction in winter wheat, which

in turn increases the net photosynthetic rate (Li et al., 2004; Xu,

2015). Understanding the impact of elevated [CO2] on the

physiology of winter wheat in response to water deficiency and/or

warming alone or simultaneously has great potential for the

development of stress-tolerant germplasm and new practices.

Therefore, the objectives of this study were to observe (1) the

interactive effect of elevated [CO2], experimental warming, and

water deficiency on morphological traits and physiological

processes; (2) the relationships between gas exchange, stomatal

characteristics, leaf anatomical characteristics, non-structural

carbohydrates, and Rubisco gene expression under e[CO2] ×
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water × warming; and (3) to investigate whether elevated [CO2]

could mitigate the negative effects of water deficiency or warming

on winter wheat.
Materials and methods

Plant materials and experimental design

In the current study, a commonly cultivated variety (Shimai 15)

of winter wheat (Triticum aestivum) in the North China Plain was

selected as the research material. We firstly sowed six wheat seeds in

each plastic pot, where the height was 27 cm and the top and

bottom areas were 531 cm2 and 380 cm2, respectively. This large

volume at the bottom of pot was enough for root growth of winter

wheat plants. The soil in pots for sustaining plant growth was the

mixtures of yellow loam and nutrient soil with a volume ratio of 2:1.

In addition, the field capacity was 24.5% and the bulk density was

1.28 g cm-3 of soil. Then, four pots were set up to each of eight

environmental growth chambers (Model BDP-2000, Ningbo Prandt

Instrument Co., Ltd, China) to sustain plant growth with a

temperature regime of 21/16°C (day/night) and 1000 mmol m−2

s−1 photosynthetic active radiation, and 60%-70% relative humidity

for 30 days for establishing plant canopy and roots. The space inside

these environmental growth chambers (1.83 m high × 1.79 m long ×

0.68 m wide) was large enough for the growth of winter wheat.

Wheat plants were treated with a split plot design consisting of

three environmental factors (water, CO2 concentration, and

temperature), where watering was treated as the main plot, and

temperature and CO2 concentration were treated as subplots.

Therefore, wheat plants in the eight environmental growth

chambers were subjected to two water conditions, namely plants

in four environmental growth chambers were well-watered with

75%-80% field capacity as full irrigation, and plants in the other four

environmental growth chambers were treated as water deficiency

with 45%-50% field capacity. The soil water content in all pots were

measured with a Time Domain Reflectometry (TDR). The CO2

concentrations were controlled at two levels of 400 mmol mol−1

(ambient CO2 concentration, a[CO2]) and 800 mmol mol−1

(elevated CO2 concentration, e[CO2]), and growth temperature

treatments were 21/16°C (day/night, optimal growth temperature)

and 26/21°C (day/night, elevated growth temperature). Therefore,

the four environmental growth chambers subjected to full irrigation

or water deficiency were randomly allocated to four treatments

including Control (growth temperature is 21/16°C and CO2

concentration is 400 µmol mol−1), e[CO2] (growth temperature is

21/16°C and CO2 concentration is 800 µmol mol−1), Warming

(growth temperature is 26/21°C and CO2 concentration is 400 µmol

mol−1), and e[CO2] × warming (growth temperature is 26/21°C and

CO2 concentration is 800 µmol mol−1). In the current study, the

four pots planted with winter wheats in each environmental growth

chamber were treated as the biological replicates (n=4). The

photosynthetic active radiation was 1000 mmol m−2 s−1 with a 12-

h photoperiod from 8:00 to 20:00, and relative humidity was

controlled at 60%-70% in the eight environmental growth

chambers. Wheat plants were fertilized once a week with half-
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strength Hoagland solution during the 90-day treatment period.

Additionally, in the current study, we randomly changed the [CO2]

of each growth chamber to reduce the confounding effects from the

various environmental growth chambers while concurrently

shifting the treated winter wheat to the environmental growth

chambers with appropriate [CO2] monthly.
Measurement on leaf area, plant biomass,
and leaf anatomy

All leaves of the winter wheat from each pot were sampled and

leaf area was measured with a leaf area meter (LI-3100, LICOR,

USA). Then, all the winter wheat tissues (leaves, stems and roots)

from each pot were collected separately into paper bags, and dried

at 80°C to constant weight. The dry weight of wheat plants was

weighed using a high-precision electronic balance to finally obtain

total biomass.

We obtained leaf cross-sections of the middle part of leaves on

winter wheat with the paraffin section method of Sage et al (1995).

The anatomical features of the leaves were observed and

photographed under a microscopy and measured using Image J

software (NIH, USA). We measured the thickness of the leaf

mesophyll layer between the epidermal layers at five points in

each cross-section. Twenty well-defined cells of the palisade layer

and 20 cells of the spongy layer were randomly selected from each

leaf cross-sectional image to measure cell length, cell width, cell

area, and cell perimeter using the Auto CAD software.
Measuring stomatal traits

Leaves of three winter wheat plants were randomly selected in

each pot and stomatal imprints were collected by applying colorless

and transparent nail varnish to the middle of the adaxial and abaxial

for measuring the morphological traits of individual stoma during

10:00-12:00 am after 90-day treatments in the environmental growth

chambers. The slides of stomatal imprints were placed under a

photographic microscope for observation and photograph three

microscopic fields were randomly selected and then four

microscope photographs were taken from each field. We counted

the number of stomata in each photograph and then calculated

stomatal density on leaves of winter wheat, stomatal length, stomatal

width, stomatal perimeter, stomatal area, and stomatal shape index

were also measured and calculated with the AutoCAD 2010 software.

In this study, the center of stomatal openings on the surface of

winter wheat leaves was used as the focal point to further determine

the spatial distribution pattern of stomata on the leaves of winter

wheat. The micrographs characterizing the distribution of stomata

on the leaves were digitized in the same coordinate system by Arc

GIS 10.0 software to obtain the spatial coordinate values of each

stoma. Next, the point pattern analysis was estimated with Ripley’s

K-function, a cumulative density function using the second

moment of all point-to-point distances to evaluate two-

dimensional distribution patterns at different scales (Xu, 2015;

Zheng et al., 2020; Li et al., 2021). The results were plotted as
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Lhat(d) values, calculated as:

Lhat(d) =

ffiffiffiffiffiffiffiffiffiffi
K(d)
p

r
− d (1)

where K(d), which represents the surface area of a circle with

radius d, is the Ripley’s exponential function. When the pattern is

Poisson random, the Lhat(d) is an expectation of zero for any value

of d (Li et al., 2021). By executing a random distribution 100 times,

we used the Monte Carlo simulation to estimate the 95% boundary.

At a given scale of d, the Lhat(d) value for stomata randomly

distributed on the leaf surface should be within the 95% boundary.

If the Lhat(d) value is greater than the upper 95% boundary, the

stomata follow a cluster distribution, otherwise, the stomata follow a

regular distribution at the scale (Xu, 2015).
Measuring leaf gas exchange

Five individual mature leaves (second fully expanded leaf from

the top) were randomly selected from each treatment for measuring

leaf gas exchange with a portable photosynthesis measurement

system (LI-6400XT; LI-COR, USA) during 9:00-11:00 am after 90-

day treatments. Leaves were firstly placed into the leaf chamber to

determine the net photosynthetic rates (Pn), stomatal conductance

(Gs), and transpiration rates (Tr) at the light level of 1000 mmol

photon m−2 s−1 from a red-blue light source, which is the light

saturation point for leaves of winter wheat. The temperature in the

leaf chamber was set to 21°C (Control) or 26°C(warming) and the

CO2 concentration was controlled at 400 µmol mol-1 (a[CO2]) or 800

µmol mol-1 (e[CO2]) during the leaf gas exchange measurements on

winter wheat. We also calculated the leaf-level instantaneous water

use efficiency (WUEI) with the ratio of leaf Pn and Tr (Zheng et al.,

2020). Then, leaf dark respiration rate (Rd) was also determined from

the same leaves for measuring Pn. After leaf Pn measurements, we

turned off the red-blue light source in the leaf chamber of LI-6400XT,

and then measured leaf Rd at the same temperature and CO2

concentration as the Pn measurements in the leaf chamber.
Analyzing biochemical compositions

The dried leaves of winter wheat were ground to powders using

a ball mill, and then analyzed the contents of glucose, fructose,

sucrose, and starch according to the method of Hedrix et al. (1994).

In addition to nonstructural carbohydrates, leaf total carbon (C)

and nitrogen (N) were also determined with an elemental analyzer

(VarioMax CN, Elementary Corp. Germany).
Measuring enzyme activity and genes
expression of Rubisco

The enzyme activity of Rubisco was measured by the method

of Jiang et al. (2012). Moreover, we also analyzed the expression of

Rubisco coding gene RbcL3 and RbcS2 according to the method of
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Livak et al. (2001). Specifically, total RNA was extracted using an RNA

purification kit (Shanghai Shenggong Bioengineering Technology

Service Co., Ltd.), and first-strand cDNA was synthesized according

to the instructions of AMV first-strand cDNA synthesis kit (Shanghai

Shenggong Bioengineering Technology Service Co., Ltd.). The primers

for RbcL3, RbcS2, and actin were designed separately for amplification

using Primer Premier 5.0 according to the sequences in the Genebank

database. Specifically, the primer sequences for Rubisco key coding

gene RbcL3 were 5’-TAAATCACAGGCCGAAAC-3’ and 5’-GGCAA

TAATGAGCCAAAGT-3’. The primer sequence of RbcS2 is 5’-AGCA

ACGGCGGAAGGAT-3’ and 5’-GCTCACGGAAGACGAAACC-3’.

Subsequently, the expression of Rubisco coding gene was determined

using a fluorescent quantitative PCR instrument.
Statistical analysis

In the current study, we used a split-plot experimental design

with three factors: water deficiency, [CO2] and warming. The split-

plot three-way ANOVA was used to test the main effects of water

deficiency, [CO2] and warming on plant biomass, stomatal traits,

leaf gas exchanges, and biochemical compositions of winter wheat.

The homogeneity and normal distribution of variances assumptions

were evaluated before we ran the ANOVA analysis, and all of our

data passed the assumptions. Results were considered significant if

P ≤ 0.05. All statistical analyses were used SPSS 13.0 software (SPSS

Inc., Chicago, IL, USA), with all graphs produced in sigmaplot 10.
Results

The main effects of water deficiency,
e[CO2], and warming

We found negative impacts of soil water deficiency on winter

wheat, where the plant biomass and leaf area were decreased by net

photosynthetic rate. Furthermore, water deficiency treatment (D)

had negative effects on some morphological traits, such as total

biomass and leaf areas, stomatal parameters, and spatial

distribution pattern of winter wheat, more specifically
TABLE 1 Interactive effects of elevated [CO2] and experimental warming
on the biomass and leaf area parameters at different water conditions of
winter wheat.

Treatments Total biomass Leaf area

[CO2] p=0.940 p=0.347

Water p<0.001 p<0.001

Warming p<0.001 p=0.030

[CO2] × water p=0.272 p=0.004

[CO2] × warming p=0.055 p=0.028

Water × warming p=0.027 p<0.001

[CO2] × water × warming p=0.674 p=0.260
Note that the bold values indicate a significant effect on the indicators.
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D decreased total biomass and leaf areas (all p<0.001) and stomatal

regular patterns on abaxial of winter wheat (Table 1; Figures 1, 2B).

By contrast, water deficiency significantly increased the stomatal

width (p<0.001), stomatal area (p<0.001), and stomatal shape index

(SSI) (p<0.001) on the adaxial leaf surface (Tables 2, 3). Moreover,

water deficiency substantially decreased the net photosynthetic rates

(Pn), transpiration rates (Tr), stomatal conductance (Gs) (all

p<0.001), and intercellular CO2 concentration (Ci) (p=0.046),

while drastically increased the leaf dark respiration rates (Rd) of

winter wheat (p<0.001; Figure 3; Table 4). Water deficiency

significantly reduced the total soluble sugar content of winter
Frontiers in Plant Science 05
wheat (p<0.05), which was mainly due to a significant decline in

sucrose content (p<0.05; Figure 4). Furthermore, water deficiency

enhanced the Rubisco activation state and soluble protein content

(Figure 5), but the initial Rubisco activity and total Rubisco activity

were markedly decreased by water deficiency. In addition, water

deficiency significantly increased the mesophyll cell perimeter

(p=0.002), mesophyll cell area (p=0.006), mesophyll cell length

(p=0.002), and leaf thickness (p<0.001; Table 7).

Elevated CO2 concentration (e[CO2]) increased stomatal

density on both leaf surfaces (all p<0.001) as well as enhanced the

stomatal area on the abaxial leaf surface (p=0.003) and the
B

A

FIGURE 1

Effects of elevated [CO2] and experimental warming on the biomass (A) and leaf area (B) at different water conditions of winter wheat. Note that the
black circle represents full irrigation, and the red circle represents water deficit. Values are means ± SD (n = 4). The symbol ** and *** indicate that the
significant difference between full irrigation and water deficit under e[CO2], warming, and e[CO2] × warming are p<0.01 and p<0.001, respectively.
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B

A

FIGURE 2

Effects of elevated [CO2] and experimental warming on the leaf spatial distribution pattern of stomata on the adaxial (A) and abaxial (B) surfaces at
different water conditions of winter wheat. (The upper 95% means the upper boundary of the 95% confidence envelope, the lower 95% means the
lower boundary of the 95% confidence envelope. The Lhat(d) value is the nearest neighbor distance, and stomata follow a regular distribution at the
scale when the Lhat(d) value is lower than the 95% boundary with the smaller the minimum Lhat(d) value, the more regular spatial distribution
pattern of stomata).
TABLE 2 Effects of elevated [CO2] and experimental warming on the stomatal density and morphological traits of individual stomata at different water
conditions of winter wheat.

Parameters Leaf
surfaces

Full irrigation Water deficiency
p-

valuesControl e[CO2] Warming e[CO2] ×
warming

Drought e[CO2] Warming e[CO2] ×
warming

Stomatal
density
(SD No. mm-2)

adaxial 29.2 ±
3.5

40.3 ±
8.1

38.5 ± 9.1 45.0 ± 10.1 32.5 ± 3.3 34.7 ±
3.4

38.5 ± 6.0 42.8 ± 4.5 p<0.001

abaxial 51.1 ±
5.4

64.8 ±
9.3

55.7 ± 6.1 60.4 ± 7.9 61.2 ± 5.4 60.1 ±
8.9

56.4 ± 7.6 47.6 ± 10.6 p<0.001

Stomatal
length
(SL mm)

adaxial 40.4 ±
4.0

38.0 ±
1.8

40.7 ± 3.1 38.9 ± 4.2 38.9 ± 5.2 40.3 ±
4.2

32.9 ± 4.7 38.1 ± 1.8 p=0.001

abaxial 37.0 ±
3.5

39.2 ±
6.0

39.1 ± 2.2 34.8 ± 1.8 38.9 ± 3.2 42.5 ±
2.6

34.9 ± 3.6 37.3 ± 2.4 p=0.001

Stomatal
width
(SW mm)

adaxial 4.1 ± 0.7 3.6 ± 0.5 5.1 ± 0.5 4.3 ± 0.4 4.7 ± 0.4 3.5 ± 0.1 3.4 ± 0.5 3.7 ± 0.9 p<0.001

abaxial 4.0 ± 1.3 4.1 ± 1.0 4.4 ± 0.3 3.9 ± 0.2 4.3 ± 0.5 3.5 ± 0.3 3.1 ± 0.6 3.4 ± 0.8 p=0.070

(Continued)
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regularity of stomatal distribution on the adaxial leaf surface

(Figure 2A), whereas decreased the stomatal width (p<0.001),

stomatal area (p=0.003) and stomatal shape index (p<0.001) on

the adaxial surface of leaves (Tables 2, 3). Furthermore, e[CO2]

substantially decreased leaf Gs (p=0.008) and Tr (p=0.014) mainly

due to the declines of stomatal area. As a result, the leaf-level

instantaneous water use efficiency (WUEI) was enhanced by e[CO2]

(p<0.001; Figure 3; Table 4), although Pn was barely affected under

e[CO2] (p>0.05; Figure 3; Table 4). Moreover, the soluble sugar

content was significantly reduced (p=0.015) under e[CO2], mainly

attributed to the decrease in fructose content (p=0.005), but e[CO2]
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marginally increased the leaf carbon content (p=0.017; Figures 4, 7;

Tables 5, 8). Meanwhile, Rubisco activation state and soluble

protein content of winter wheat under e[CO2] was obviously

higher than control (all p<0.05; Figure 5) due to the increase of

the amount of gene expression in RbcL3 and RbcS2 (all p<0.001;

Figure 6; Table 6). In terms of the anatomical traits, e[CO2] also

increased mesophyll cell length, but drastically decreased the leaf

thickness (all p<0.001; Table 7).

Our results also showed that experimental warming increased the

leaf area (p=0.030), stomatal length (p<0.001), stomatal perimeter

(p<0.001), and stomatal area (p=0.030), but decreased the total plant
TABLE 2 Continued

Parameters Leaf
surfaces

Full irrigation Water deficiency
p-

valuesControl e[CO2] Warming e[CO2] ×
warming

Drought e[CO2] Warming e[CO2] ×
warming

Stomatal
perimeter
(SP mm)

adaxial 85.2 ±
8.7

79.3 ±
4.0

86.6 ± 6.4 81.8 ± 8.5 82.5 ± 10.1 83.9 ±
8.4

69.9 ± 8.6 79.4 ± 6.4 p=0.001

abaxial 78.3 ±
8.3

83.1 ±
13.6

82.7 ± 4.3 73.4 ± 4.2 82.3 ± 6.6 88.8 ±
4.9

72.8 ± 8.4 78.6 ± 4.9 p=0.011

Stomatal area
(SA mm2)

adaxial 167.4 ±
54.0

129.5 ±
21.1

211.1 ±
29.2

162.8 ± 22.3 191.4 ±
34.3

129.1 ±
18.7

102.4 ±
30.3

122.9 ± 37.9 p<0.001

abaxial 146.4 ±
66.5

171.2 ±
68.2

174.1 ±
17.0

138.6 ± 16.1 167.9 ±
26.7

146.9 ±
10.2

111.5 ±
36.4

121.7 ± 26.2 p=0.123

Stomatal
shape
Index (SSI)

adaxial 0.15 ±
0.01

0.14 ±
0.01

0.17 ± 0.01 0.16 ± 0.01 0.17 ± 0.01 0.14 ±
0.01

0.14 ± 0.01 0.14 ± 0.01 p<0.001

abaxial 0.15 ±
0.02

0.15 ±
0.01

0.16 ± 0.01 0.16 ± 0.01 0.16 ± 0.01 0.14 ±
0.01

0.14 ± 0.01 0.14 ± 0.01 p=0.008
front
Note that the bold values indicate a significant effect on the indicators.
TABLE 3 Interactive effects of elevated [CO2] and experimental warming on stomatal parameters at different water conditions of winter wheat.

Stomatal traits SD SL SW SP SA SSI

[CO2] p<0.001 p=0.180 p<0.001 p=0.402 p=0.003 p<0.001

Water p=0.138 p=0.337 p<0.001 p=0.209 p<0.001 p<0.001

Warming p=0.142 p<0.001 p=0.120 p<0.001 p=0.030 p=0.313

Leaf surface p<0.001 p=0.360 p=0.156 p=0.404 p=0.462 p=0.881

[CO2] × water p<0.001 p<0.001 p=0.940 p<0.001 p=0.394 p<0.001

[CO2] × warming p=0.011 p=0.479 p=0.167 p=0.553 p=0.405 p=0.011

[CO2] × leaf surface p=0.042 p=0.724 p=0.026 p=0.427 p=0.027 p=0.006

Water × warming p=0.025 P=0.001 p<0.001 p=0.001 p<0.001 p<0.001

Water × leaf surface p=0.777 p=0.018 p=0.845 p=0.029 p=0.414 p=0.244

Warming × leaf surface p<0.001 p=0.343 p=0.221 p=0.227 p=0.148 p=0.824

[CO2] × water × warming p=0.297 P=0.069 p<0.001 p=0.040 p<0.001 p<0.001

[CO2] × water × leaf surface p=0.022 p=0.544 p=0.740 p=0.608 p=0.336 p=0.579

[CO2] × warming × leaf surface p=0.059 p=0.009 p=0.433 p=0.016 p=0.034 p=0.622

Water × warming × leaf surface p=0.019 p=0.565 p=0.020 p=0.483 p=0.046 p=0.051

[CO2] × water × warming × leaf surface p=0.450 p=0.605 p=0.837 p=0.505 p=0.984 p=0.557
Note that the bold values indicate a significant effect on the indicators.
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biomass of winter wheat (p<0.001; Figure 1; Tables 1–3). Moreover,

the stomatal distribution regularity on the adaxial surface was

enhanced by experimental warming (Figure 2). Similarly,

experimental warming increased the Pn (p<0.001), WUE (p=0.018),
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and Ci (p<0.001), while decreased the Tr (p<0.001), Gs (p=0.013), and

glucose content (p=0.042; Figures 3, 4; Tables 4, 5). The mesophyll cell

length, cell width, cell perimeter, cell area, and leaf thickness were also

magically reduced under experimental warming (all p<0.001; Table 7).
B

C D

E F

A

FIGURE 3

Responses of leaf net photosynthetic rates (A), transpiration rates (B), stomatal conductance (C), water use efficiency (D), respiration rates (E), and
intercellular CO2 concentration (F) to elevated [CO2] and experimental warming at different water conditions of winter wheat. Note that the black
circle represents full irrigation, and the red circle represents water deficit. Values are means ± SD (n = 4). The symbol *, **, and *** indicate that the
significant difference between full irrigation and water deficit under e[CO2], warming, and e[CO2] × warming are p<0.05, p<0.01, and p<0.001,
respectively; ns denote no significant differences in full irrigation and water deficit at 0.05 level.
TABLE 4 Interactive effects of elevated [CO2] and experimental warming on photosynthesis parameters at different water conditions of winter wheat.

Treatments Pn Tr Gs WUE Rd Ci

[CO2] p=0.361 p=0.014 p=0.008 p<0.001 p=0.946 p=0.917

Water p<0.001 p<0.001 p<0.001 p=0.551 p<0.001 p=0.046

Warming p<0.001 p=0.001 p=0.013 p=0.018 p=0.257 p<0.001

[CO2] × water p=0.021 p<0.001 p=0.001 p=0.108 p=0.007 p<0.001

[CO2] × warming p=0.185 p=0.774 p=0.343 p=0.170 p=0.049 p=0.091

Water × warming p=0.014 p=0.347 p=0.317 p=0.001 p=0.967 p<0.001

[CO2] × water ×warming p=0.197 p=0.195 p=0.423 p=0.274 p=0.268 p=0.081
Note that the bold values indicate a significant effect on the indicators.
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The interactive effects of water deficiency
and experimental warming

Experimental warming had a negative impact on plant

biomass (p=0.027), leaf area under water deficiency (all p<0.001;
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Figure 1; Table 1). Meanwhile, the stomatal density (p=0.025),

stomatal length (p=0.001), stomatal width (p<0.001), stomatal

perimeter (p=0.001), stomatal area (p<0.001), and stomatal

shape index (p<0.001) as well as the regularity of abaxial

stomatal spatial distribution pattern were also reduced under
B

C D

E F

A

FIGURE 4

Effects of elevated [CO2] and experimental warming on fructose (A), sucrose (B), glucose (C), starch (D), soluble sugar (E), and total NSC (F) at different
water conditions of winter wheat. Note that the black circle represents full irrigation, and the red circle represents water deficit. Values are means ± SD
(n = 4). The symbol *, **, and *** indicate that the significant difference between full irrigation and water deficit under e[CO2], warming, and e[CO2] ×
warming are p<0.05, p<0.01, and p<0.001, respectively; ns denote no significant differences in full irrigation and water deficit at 0.05 level.
TABLE 5 Interactive effects of elevated [CO2] and experimental warming on nonstructural carbohydrates at different water conditions of winter
wheat.

Treatments Fructose Sucrose Glucose Soluble sugar Starch TNC

[CO2] p=0.005 p=0.871 p=0.406 p=0.015 p=0.056 p=0.345

Water p=0.992 p<0.001 p<0.001 p=0.719 p=0.001 p<0.001

Warming p=0.042 p=0.067 p=0.114 p=0.346 p=0.405 p=0.639

[CO2] × water p=0.001 p<0.001 p=0.005 p<0.001 p=0.566 p=0.142

[CO2] × warming p=0.105 p<0.001 p=0.008 p=0.214 p=0.507 p=0.900

Water × warming p=0.314 p=0.008 p=0.053 p=0.590 p<0.001 p<0.001

[CO2] × water ×warming p=0.459 p<0.001 p=0.054 p=0.013 p=0.021 p=0.165
Note that the bold values indicate a significant effect on the indicators.
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experimental warming and water deficiency (Figure 2; Tables 2, 3).

Similarly, we also found negatively interactive effects of

experimental warming and water deficiency on leaf Pn

(p=0.014), WUE (p=0.001), and Rubisco activation state

(Figure 5) of wheat plants, although positive effects were

observed on leaf sucrose (p=0.008), starch (p<0.001), TNC

(p<0.001), and the amount of gene expression in RbcL3

(p<0.001) and RbcS2 (p<0.001) under experimental warming

and water deficiency condition. Moreover, experimental

warming significantly decreased the mesophyll cell length

(p=0.012), cell perimeter (p<0.001), cell area (p<0.001), and leaf

thickness (p<0.001) under water deficiency (Table 7).
The interactive effects of soil water
deficiency and elevated CO2 concentration

Our three-way ANOVA results showed interactive effects of

e[CO2] and water deficiency on the morphological traits of leaves

and stomata (all p<0.05). We found that e[CO2] significantly

increased the leaf area of winter wheat under water deficiency

(p=0.004; Figure 1; Table 1). Meanwhile, e[CO2] also increased the

stomatal density on the adaxial leaf surface, and the stomatal

length and perimeter on both leaf surfaces of winter wheat at

water deficiency condition (all p<0.001; Tables 2, 3). Moreover,
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e[CO2] substantially enhanced leaf Pn, Tr, and Gs by c. 30%

(p=0.021), 50% (p<0.001), and 20% (p=0.001) under water

deficiency, indicating the negative impacts of water deficiency

on winter wheat might be partially mitigated by e[CO2], which

could also be supported by the significantly interactive effects of

e[CO2] and water deficiency on leaf Pn (p=0.021), Tr (p<0.001),

and Gs (p=0.001) of winter wheat (Table 4). Furthermore, e[CO2]

and water deficiency also interactively affected leaf carbon

(p=0.007) and soluble sugar (p<0.001) with increasing leaf

fructose (p=0.001) and sucrose (p<0.001). In addition, the

expression amount of Rubisco coding genes were also

significantly affected by the interactions of e[CO2] and water

deficiency through enhancing the amount of gene expression in

RubcL3 (p<0.001; Figure 6; Table 6). Additionally, our ANOVA

results also showed significantly interactive effects on the

mesophyll cell width (p=0.017), cell perimeter (p<0.001), cell

area (p<0.001), and leaf thickness under [CO2] × water

(p<0.001; Table 7).
The interactive effects of elevated CO2
concentration and experimental warming

Our results showed that e[CO2] significantly decreased the leaf

area of winter wheat grown at experimental warming (p=0.028).
B

C D

A

FIGURE 5

Effects of elevated [CO2] and experimental warming on initial Rubisco activity (A), total Rubisco activity (B), Rubisco activity state (C), and soluble protein
(D) at different water conditions of winter wheat. Note that the black circle represents full irrigation, and the red circle represents water deficit.
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However, the stomatal density and regularity of stomatal

distribution pattern on the adaxial leaf surface was increased

under e[CO2] and experimental warming conditions (Figures 1, 2;

Tables 2, 3). Moreover, e[CO2] × warming reduced leaf sucrose

content (p<0.001; Figure 4; Table 5), but dramatically increased

leaf carbon (p=0.014; Figure 7; Table 8). Additionally, e[CO2]

decreased total Rubisco activity, mesophyll cell width (p=0.025)

and leaf thickness (p<0.001) under experimental warming

(Figure 5; Table 7).
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The interactive effects of elevated CO2
concentration, water deficiency and
experimental warming

We found significantly interactive effects of water deficiency,

e[CO2], and experimental warming on the morphological traits of

stomata such as stomatal width (p<0.001), stomatal perimeter

(p=0.04), stomatal area (p<0.001), and stomatal shape index (p<0.001;

Table 3). Meanwhile, the biochemical compositions in wheat leaves
B

A

FIGURE 6

Effects of elevated [CO2] and experimental warming on the amount of gene expression in RbcL3 (A) and RbcS2 (B) of Rubisco at different water
conditions in winter wheat leaves. Note that the black circle represents full irrigation, and the red circle represents water deficit.
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were also obviously changed under water deficiency, e[CO2], and

experimental warming as shown by their interactions on leaf sucrose

(p<0.001), starch (p=0.021), and soluble sugars (p=0.013; Figure 4;

Table 5) as well as leaf carbon (p<0.001; Figure 7; Table 8). In

addition to stomata and biochemical compositions, the expression

amount of Rubisco coding gene RbcL3 and RbcS2 as well as leaf

thickness were also interactively affected by water deficiency, e[CO2],

and experimental warming (all p<0.001).

Discussion

The interactive effects of water deficiency
and elevated [CO2]

The reduction in biomass and photosynthetic rate under water

deficiency may be due to stomatal limitation or non-stomatal
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limitation (Yu et al., 2012; Wang et al., 2017). The former is

typically caused by stomatal number, stomatal distribution

pattern, and stomatal opening (Fan et al., 2020; Zheng et al.,

2020), while the latter is attributed to metabolic disorders such as

imbalance of carbon sink and source or reduced carboxylation

efficiency due to reduced Rubisco activity (Parry et al., 2003;

Aranjuelo et al., 2011). In the current study, we found a c.29%

decrease in photosynthesis under water deficiency, mainly due to a

significant c.77% decrease in stomatal conductance, and the

increase in starch that inhibited the reduction phase of the Calvin

cycle (Figures 3, 4; Tables 4, 5) (Sheen, 1990). Significantly lower Gs

and Ci under water stress suggest that carboxylation efficiency may

be severely restricted by water deficiency, as reported by others

(Flexas et al., 2004; Yu et al., 2012).

Previous studies found that elevated [CO2] had a strong

“fertilization effect” on C3 plants because the current environment

did not reach the optimal CO2 concentration for photosynthetic

rates (Xu, 2015; Zheng et al., 2018), while Högy et al. (2013) showed

that increasing CO2 concentration by 150 mmol mol-1 barely affects

the growth and development of winter wheat. In the present study,

we found elevated [CO2] from 400 mmol mol-1 to 800 mmol mol-1

also did not affect biomass and Pn of winter wheat may be due to the

decrease of Gs. Nevertheless, elevated [CO2] did not interact with

water deficiency on plant biomass, elevated [CO2] alleviated Pn in

winter wheat under drought treatment, which was related to Gs,

metabolic activity, and anatomical structure. Results showed that

under e[CO2] × water, the reduction of Tr could suppress water loss

in winter wheat to ensure normal metabolism. Additionally, the

study found that elevated [CO2] allowed more photosynthetic

products to be stored in the form of soluble sugars when winter

wheat plants were subjected to water deficiency (Figure 3; Table 4),
TABLE 7 Effects of elevated CO2 concentration and experimental warming on leaf mesophyll cells at different water conditions of winter wheat.

Parameters Cell length Cell width Cell perimeter Cell area Leaf thickness

Full irrigation

Control 22.45 ± 2.10 17.47 ± 1.68 66.97 ± 6.65 332.16 ± 65.1 132.04 ± 9.00

e[CO2] 24.06 ± 2.54 15.94 ± 2.41 62.41 ± 8.97 286.88 ± 80.10 121.04 ± 5.83

Warming 20.78 ± 0.99 14.94 ± 1.28 64.13 ± 4.54 294.31 ± 37.78 102.10 ± 4.51

e[CO2]×Warming 22.23 ± 2.24 15.53 ± 1.22 63.01 ± 6.10 290.31 ± 61.50 125.67 ± 10.21

Water deficiency

Drought 24.18 ± 1.73 17.14 ± 1.7 71.51 ± 6.21 360.21 ± 54.40 157.60 ± 9.96

e[CO2] 26.66 ± 2.50 17.84 ± 1.94 77.16 ± 7.46 418.73 ± 75.31 130.62 ± 11.29

Warming 20.60 ± 1.15 14.54 ± 1.05 57.20 ± 3.55 236.72 ± 29.88 148.83 ± 9.70

e[CO2]×Warming 22.83 ± 2.37 15.92 ± 1.61 66.02 ± 5.30 313.16 ± 46.93 138.06 ± 8.98

[CO2] p<0.001 p=0.358 p=0.066 p=0.056 p<0.001

Water p=0.002 p=0.214 p=0.002 p=0.006 p<0.001

Warming p<0.001 p<0.001 p<0.001 p<0.001 p<0.001

[CO2]×water p=0.281 p=0.017 p<0.001 p<0.001 p<0.001

[CO2]×warming p=0.788 p=0.025 p=0.166 p=0.185 p<0.001

Water×warming p=0.012 p=0.207 p<0.001 p<0.001 p<0.001

[CO2]×water×warming p=0.955 p=0.245 p=0.956 p=0.599 p<0.001
Note that the bold values indicate a significant effect on the indicators.
TABLE 6 Interactive effects of elevated [CO2] and experimental warming
on the amount of gene expression of Rubisco at different water
conditions of winter wheat.

Treatments RbcL3 RbcS2

[CO2] p<0.001 p<0.001

Water p<0.001 p<0.001

Warming p<0.001 p=0.624

[CO2]×water p<0.001 p<0.001

[CO2]×warming p=0.178 p<0.001

Water×warming p<0.001 p<0.001

[CO2]×water×warming p<0.001 p<0.001
Note that the bold values indicate a significant effect on the indicators.
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which may indicate that elevated CO2 concentrations from 400

mmol mol-1 to 800 mmol mol-1 favored Rubisco carboxylation rather

than RuBP regeneration (Xu, 2015) may also partially explain that

the biomass was barely affected (Wong, 1990; Zheng et al., 2018).

Meanwhile, the nitrogen content in the leaves was not limited by

elevated [CO2] and water deficiency, which ensured photosynthesis

(Zong and Shangguan, 2016). Furthermore, we also found elevated

[CO2] concentrations alleviated photosynthesis probably associated

with elevated Rubisco activity as well as the amount of gene
Frontiers in Plant Science 13
expression in RbcL3 and RbcS2 when plant under water

deficiency (Parry et al., 2003; Hou et al., 2021). In addition to

physiological factors, under water deficiency conditions, elevated

[CO2] significantly enlarged the mesophyll cell area, which largely

determined photosynthesis, as more chloroplasts could be

accommodated (Zheng et al., 2018).

Previous results showed that drought significantly increased plant

Rd c.24%, which may result in greater carbohydrate consumption (Yu

et al., 2012), while Rd decreased by 20% by doubling ambient [CO2]
B

C

A

FIGURE 7

Effects of elevated [CO2] and experimental warming on leaf carbon (A), nitrogen (B), and carbon nitrogen ratio (C) at different water conditions of
winter wheat. Note that the black circle represents full irrigation, and the red circle represents water deficit. Values are means ± SD (n = 4). The
symbol * and *** indicate that the significant difference between full irrigation and water deficit under e[CO2], warming, and e[CO2] × warming are
p<0.05, and p<0.001, respectively; ns denote no significant differences in full irrigation and water deficit at 0.05 level.
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(Drake et al., 1997). Our study found that under water deficiency, the

respiration rate was downregulated by 24.4% at elevated [CO2],

which facilitated the development of drought tolerance in winter

wheat and thus stored more carbohydrates.
The interactive effect of experimental
warming and elevated [CO2]

Several studies have shown that experimental warming may

promote plant growth by increasing photosynthesis in leaves while

inhibiting plant growth at high temperatures (Hatfield et al., 2011).

For example, Liu et al. (2020) showed that maize significantly

increased Pn, but decreased total biomass at 31°C, mainly because

its growth temperature was still at its optimal temperature and the

increase in Rubisco activity due to warming while Pn and total

biomass decreased at 37°C, probably due to the accumulation of

potent reactive oxygen species (ROS) at high temperature (Chen

et al., 2022). The interactive effects of temperature and elevated [CO2]

on plant growth are complex and tend to be multivariate (Liu et al.,

2020; Yu et al., 2012; Duan et al., 2019a). For instance, Yu et al. (2012)

found that elevated [CO2] mitigated the negative effects of

experimental warming (30°C) on tall fescue by reducing Gs (20%),

Rd (7%). However, Liu et al. (2020) concluded that elevated [CO2]

could not alleviate Pn and total biomass of maize under experimental

warming (31°C), while significantly enhanced plants Pn under high

temperature stress (37°C). In the present study, the growth

temperature of winter wheat was raised from 21 to 26°C, and plant

biomass was barely affected by the experimental warming, which was

directly supported by the slight variation in leaf photosynthesis.

Interestingly, the significant decline in plant biomass of winter

wheat due to e[CO2] × warming implies that wheat may be more

affected under future climate change with warming and elevated

[CO2] (Yu et al., 2012; Duan et al., 2019a; Wang et al., 2021). Our

results showed that the decrease in plant photosynthesis (19.5%) was

associated with the decrease in Gs (73%) and mesophyll cell area

(12.6%) and the increase in C/N (10%), although the increase in

WUE was due to a decrease in transpiration. Many studies found that

elevated [CO2] reduced soluble protein content and increased C/N of

winter wheat, which is consistent with our results (Wang et al., 2013;

Xu, 2015). And we observed that e[CO2] × warming significantly
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increased Rd in winter wheat, which was mainly from TNC depletion.

Overall, these results suggest that CO2 fertilization effects can be

reduced by warming, and therefore the risk of climate change to

global wheat yields may be underestimated.
The interactive effect of water deficiency
experimental warming and elevated [CO2]

The interactive effect of drought and warming under ambient

[CO2] is more detrimental for plant growth than stress alone, which is

consistent with the study of Yu et al. (2012). Previous studies have

shown that elevated [CO2] can alleviate water stress or heat stress

(Jagadish et al., 2014; Xu, 2015; Duan et al., 2019a; Zheng et al., 2020),

but our results show that the biomass and Pn of winter wheat further

decreased and C/N increased under the combined effect of elevated

[CO2], experimental warming and water deficiency, implying that the

combination of long-term water deficiency and experimental warming

resulted in irreversible physiological damage in winter wheat. Yu et al.

(2012) concluded that elevated [CO2] further reduced tall fescue Fv :

Fm (33%), Vcmax (8%), and Jmax (13%) under the combined effect of

experimental warming and water deficiency, suggesting that elevated

[CO2] may have played an additional negative effect under water ×

warming. Furthermore, in the current study, we observed that

osmoregulation is reduced when plants are subjected to stress and

nonstructural carbohydrates are not properly converted into structural

carbohydrates for plant growth. (Zheng et al., 2014). However, elevated

[CO2] significantly increased amount of gene expression in RbcL3 and

Rbcs2 under water × warming deficiency but slightly affected Rubisco

activity of winter wheat, which may be due to the plants were subjected

to irreversible combined stress caused by experimental warming and

drought (Aranjuelo et al., 2005; Yu et al., 2012). Overall, plants adapt to

stress by adjusting their growth, physiology, cellular and molecular

activities (Ahuja et al., 2010). Since winter wheat lacks vernalization in

the environmental growth chamber, we did not conduct further studies

on the effect of e[CO2] × water × warming on crop yield. It is worth

noting that the combined effects of e[CO2] × water × warming

deficiency on growth, physiology, and molecular mechanisms of

winter wheat may also be confounded with other factors such as

nitrogen deposition, phosphorus deficiency and, ozone concentration.

Therefore, to better predict the effects of climate change on wheat
TABLE 8 Interactive effects of elevated [CO2] and experimental warming on leaf carbon (C) and nitrogen (N).

Treatments Carbon Nitrogen C/N ratio

[CO2] p=0.017 p=0.205 p=0.552

Water p=0.627 p=0.461 p=0.776

Warming p=0.343 p=0.007 p=0.013

[CO2] × water p=0.007 p=0.994 p=0.845

[CO2] × warming p=0.014 p=0.021 p=0.087

Water × warming p=0.051 p=0.702 p=0.924

[CO2] × water × warming p<0.001 p=0.064 p=0.306
Note that the bold values indicate a significant effect on the indicators.
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production, further multifactorial experimental studies are necessary to

fully understand the mechanisms and processes between plant growth

and environmental changes.
Conclusions

We found that water deficiency and experimental warming

decreased the leaf Pn and Gs, but increased the nonstructural

carbohydrates, and thus reduced the biomass of winter wheat. In

addition, elevated [CO2] partially alleviated the stress in winter

wheat at the molecular level but could not alleviate the irreversible

damage to the plant caused by water deficiency × warming. Overall,

our results suggest that the synergistic effects of elevated [CO2],

warming, and water deficiency may reduce plant biomass and leaf

photosynthesis, thereby the global grain yield of winter wheat may

be reduced under future climate change.
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