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A lightweight model for
efficient identification of
plant diseases and pests
based on deep learning

Hongliang Guan, Chen Fu, Guangyuan Zhang*, Kefeng Li,
Peng Wang and Zhenfang Zhu

School of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan, China
Plant diseases and pests have always been major contributors to losses that

occur in agriculture. Currently, the use of deep learning-based convolutional

neural network models allows for the accurate identification of different types of

plant diseases and pests. To enable more efficient identification of plant diseases

and pests, we design a novel network architecture called Dise-Efficient based on

the EfficientNetV2 model. Our experiments demonstrate that training this model

using a dynamic learning rate decay strategy can improve the accuracy of plant

disease and pest identification. Furthermore, to improve the model’s

generalization ability, transfer learning is incorporated into the training process.

Experimental results indicate that the Dise-Efficient model boasts a compact size

of 13.3 MB. After being trained using the dynamic learning rate decay strategy, the

model achieves an accuracy of 99.80% on the Plant Village plant disease and pest

dataset. Moreover, through transfer learning on the IP102 dataset, which

represents real-world environmental conditions, the Dise-Efficient model

achieves a recognition accuracy of 64.40% for plant disease and pest

identification. In light of these results, the proposed Dise-Efficient model holds

great potential as a valuable reference for the deployment of automatic plant

disease and pest identification applications on mobile and embedded devices in

the future.

KEYWORDS

plant diseases and pests, deep learning, lightweight model, dynamic decay strategy,
transfer learning
1 Introduction

Plant diseases and pests can severely disrupt the normal growth and development of

crops, leading to reduced crop yields and negatively impacting farmers’ income. Moreover,

they can have severe implications for the supply of grains and agricultural products in the

market, potentially resulting in a significant food crisis. Prioritizing the prevention and

control of plant diseases and pests is essential in agricultural production, as effective
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management of these issues holds significant importance for

ensuring food security, improving farmers’ income, and

promoting sustainable agricultural development (Elnahal et al.,

2022; Sehrawat et al., 2022).

Plant diseases and pests arise from a combination of

environmental factors and pathogen invasion. Pathogens, which

include fungi, bacteria, and viruses, are the fundamental cause of

plant diseases. They can enter plant organisms through different

transmission pathways, leading to the development of plant diseases

and pests (Barragán-Fonseca et al., 2022). Environmental changes

are also a critical factor in the onset and spread of plant diseases and

pests (Canassa et al., 2020). Most plant diseases and pests exhibit

distinct characteristics depending on the disease type, and

accurately identifying the disease type based on these

characteristics is crucial in effectively preventing and controlling

plant diseases and pests.

In the past, people relied on visual observation of plant leaves

and fruits to determine the presence of plant diseases and pests.

They identified the type of plant disease based on the distinctive

features exhibited by affected plants. However, this manual

identification method heavily relied on individual experience,

resulting in high labor costs and low efficiency. Subsequently,

with the advancement of computer technology, machine learning

techniques were introduced to aid in the identification of plant

diseases and pests. At first, machine learning utilized computer

vision to analyze the morphological changes in diseased leaves or

fruits and extract the pathological features of plant diseases. The

computer then made predictions about the disease type based on

the obtained features. However, machine learning-based methods

for automated plant disease and pest identification faced limitations

in terms of accuracy and generalizability. The use of rule-based

image processing techniques to extract disease features led to

sensitivity to image quality, as image noise could greatly affect the

final results (Behmann et al., 2015; Wani et al., 2022).

In recent years, deep learning has made significant

breakthroughs and has taken the forefront as become a research

direction in computer vision, particularly in the field of agriculture.

In this context, the use of deep learning for plant disease and pest

type identification has emerged as an important application and

research area (Liu and Wang, 2021). Currently, deep learning-based

models for plant disease and pest identification are exhibiting a

trend toward increased accuracy, smaller model sizes, faster training

speeds, and stronger transferability. In response to this trend, this

paper proposes a lightweight model for the efficient identification of

plant diseases and pests based on deep learning, called the Dise-

Efficient model.

The main contributions of this study are as follows:
Fron
1. Proposing the Dise-Efficient model, a novel deep learning-

based model for efficient and accurate identification of

plant diseases and pests.

2. Demonstrating how the number of convolutional layers

and the size of the convolution kernel affect the accuracy of

the Dise-Efficient model in identifying plant diseases and

pests.
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3. Training the Dise-Efficient model using the dynamic

learning rate decay strategy and experimentally

demonstrating that this strategy can significantly improve

the accuracy of the model.

4. Excrementally validating the Dise-Efficient model has a

good transfer learning ability.
2 Related work

The advancement of deep learning technology has led to rapid

progress in the field of plant pest detection. The research on the

automatic identification of plant pests and diseases has witnessed an

evolution of convolutional neural network (CNN) models from

small to large, resulting in continual improvement in accuracy rates.

More recently, however, there has been a shift toward developing

more lightweight models that maintain high accuracy rates while

having smaller model sizes.
2.1 Convolutional neural network models

Following the proposal of the AlexNet model by Krizhevsky

et al. (Krizhevsky et al., 2017), there has been rapid development of

CNNs in the field of computer image recognition. Subsequently,

CNNmodels began to be applied to the agricultural field. According

to the experimental results presented by Mohanty et al. (Mohanty

et al., 2016), the AlexNet model can achieve an accuracy rate of

99.28% in identifying plant diseases and pests on the Plant Village

public dataset. This indicates the effectiveness of CNN models in

identifying plant diseases and pests. He et al. (He et al., 2016)

proposed a ResNet model, which involved adding an increased

number of convolutional layers to a CNN model, as an

improvement to the accuracy of image recognition. Following

this, researchers have used the concept of the ResNet model to

design CNN models with deep convolutional layers across various

image recognition applications. The aim is to improve the accuracy

of CNN models in identifying different image types. Fuentes et al.

(Fuentes et al., 2019) used ResNet50 as the feature extractor in the

SSD target detection framework to identify potato diseases,

resulting in an accuracy rate of 85.98%. Similarly, Kumar et al.

(Kumar et al., 2020) implemented the ResNet34 model to identify

14 different crop diseases on the Plant Village dataset, with a high

accuracy rate of 99.40%.

As CNN models achieved high accuracy rates, researchers

started exploring the issue of making the model lightweight. The

emergence of lightweight CNN models such as MobileNet and

EfficientNet has led the research on plant disease image recognition

towards the development of lightweight CNN models (Howard

et al., 2019; Tan and Le, 2019). Lightweight CNNmodels usually use

depthwise (DW) separable convolution (DW) to replace ordinary

convolution, reducing model and parameter size. However, this

approach may result in a decline in recognition accuracy. To deal

with this problem, a common approach is to add a squeeze and
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excitation (SE) block (Hu et al., 2018) to lightweight models to

improve their accuracy in identifying image types. Many

lightweight CNN model structures, such as the EfficientNetV2

model (Tan and Le, 2021), have been proposed based on this

concept. SE blocks are often added to ensure the accuracy of the

model. Kamal et al. (Kamal et al., 2019) used the original MobileNet

model to train their proposed model on the Plant Village dataset,

achieving an accuracy rate of 98.65%. However, when compared to

traditional CNN models such as AlaxNet and VGG, there was a

decrease in the accuracy rate by approximately 1%. Chen et al.

(Chen et al., 2021) embedded the SE block into MobileNet and

trained it on the Plant Village dataset, achieving an accuracy rate of

99.78%, which surpassed those obtained by many traditional CNN

models trained on this dataset for plant disease type identification.
2.2 Learning strategies

Initially, researchers used a fixed learning rate to train the CNN

model, which caused the accuracy of the model to be heavily

dependent on the learning rate parameter. Later, many

researchers improved the training speed and identification

accuracy of the model by proposing strategies for adjusting the

learning rate parameter. These strategies can be categorized into

two main groups: adaptive learning rate and learning rate decay.

Among them, the Adam optimizer, which utilizes an adaptive

learning rate strategy, is widely used in deep learning and is

known for its effectiveness. Loshchilov et al. (Loshchilov and

Hutter, 2017) proposed a cosine processing strategy to

dynamically adjust the learning rate. He et al. (He et al., 2019)

applied the cosine learning rate decay strategy to train the ResNet50

model, resulting in an improvement of approximately 2% in

model accuracy.

Inspired by the successful application of dynamic learning rate,

this paper applies the cosine-type progressive learning rate decay

strategy to the Dise-Efficient model to improve the model’s accuracy

in identifying plant diseases and pests. Formula (1) outlines the

dynamic learning rate decay strategy proposed in this paper:

lr = (1 + cos
px
n

) · (1 − lrf ) + lrf (1)

where lr represents the learning rate of the next round; lrf

represents the learning rate of the last round; x represents the

learning rate of the current round; n represents the maximum

number of iterations.
2.3 Transfer learning

Recent CNN models have shown high accuracy rates of over

95% on the Plant Village plant disease dataset (Ahmad et al., 2022).

However, the performance of these CNN models on the IP102

large-scale plant pest dataset is lower than expected, with traditional

CNN models achieving an accuracy rate of around 50% (Ren et al.,

2019; Wu et al., 2019; Nurfauzi et al., 2023). Despite the

improvements made to the CNN models, their accuracy on this
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dataset is only slightly over 60% (Nanni et al., 2020). This can be

explained by the fact that the IP102 dataset is a plant pest dataset

that reflects the actual environment, with images possessing more

complex backgrounds and fewer samples for each pest category.

Therefore, conducting deep learning model training utilizing

transfer learning is an effective solution to address the issue of

limited data samples for certain pest categories in the IP102 dataset.

Transfer learning involves transferring the knowledge or

patterns learned from existing labeled training data to improve

learning in a new target field (Weiss et al., 2016). Incorporating

transfer learning in the deep learning model training process not

only accelerates the model training process but also facilitates the

acquisition of a more accurate deep learning model through the

fine-tuning of the pre-trained model (Zhu et al., 2023). In current

research on plant disease and pest identification, many researchers

have applied transfer learning to CNN models to improve both the

training speed of the model and the accuracy of identification

(Thenmozhi and Reddy, 2019; Liu et al., 2022).
3 Experiments

3.1 Dataset and environment

Plant Village is a public plant disease dataset (Hughes and

Salathé, 2015), containing 54,303 images of healthy or diseased

leaves categorized into 38 different groups from 9 crop species.

Researchers often utilize this dataset in studies related to the

identification of plant diseases and pests, as well as for developing

models aimed at identifying various types of plant pests.

IP102 is a large-scale dataset developed for identifying pests

(Wu et al., 2019), comprising more than 75,000 images categorized

into 102 types, exhibiting a natural long-tail distribution. IP102 has

a hierarchical taxonomy that groups pests that primarily affect one

particular agricultural product into the same upper category. This

dataset is often used in research aimed at identifying plant pests and

is implemented in this study as a training dataset for the plant pest

identification model.

The Mini-ImageNet dataset (Satorras and Estrach, 2018)

comprises 100 common categories selected from the ImageNet

dataset, with each category containing 600 images and a total of

60,000 images. Given that this dataset is often used in the pre-

training of small sample learning models, it is employed as the

dataset for the pre-trained model in the present study.

Before it is applied for model training, the dataset must be split

into different sets. In this study, we divided the Plant Village and

IP102 datasets into a training set, a validation set, and a test set at a

ratio of 3:1:1. Meanwhile, the Mini-ImageNet dataset was used for

the pre-training model, so it was divided into a training set and a

validation set at a ratio of 4:1. Table 1 shows the number of images

present in the different sets of each divided dataset.

During the training phase of this experimental model, we

employed the Tencent Cloud GN7-8-core 32G cloud server that

supports GPU computing tasks. The GPU model used was Nvidia

Tesla T4, featuring 16 GB video memory and 32 GB internal
frontiersin.org
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memory, and the operating system was Ubuntu Server 20.04 LTS

64-bit with a Cuda version of 11.2.
3.2 Model

Drawing upon our previous research experience, we thoroughly

studied the structures and principles of the classic ResNet model

and the lightweight EfficientNetV2 model. After careful

consideration, we decided to use the residual block of ResNet to

replace a portion of the MBConv block and Fused-MBConv block

in the EfficientNetV2 model. Finally, we managed to design a

lightweight CNN network model that can efficiently identify

various types of plant diseases and pests: the Dise-Efficient model.

The framework of this model is shown in Figure 1.

The Residual block is regarded as the basic residual block of

ResNet18. It features three convolution kernels with a size of

3×3, along with a shortcut connection. The residual block can

add the original feature map to the feature map resulting from the

convolution process to obtain a new feature map. Because the image

feature distribution of diseased crop leaves is relatively simple, issues

of gradient explosion and gradient disappearance may arise due to

the continuous deepening of the convolutional layer. These problems
Frontiers in Plant Science 04
can be addressed by incorporating a Residual layer, which allows for

the extraction of deep features from diseased crop leaf images. A

detailed illustration of the Residual block’s structure is provided

in Figure 2.

The MBConv block represents an improvement based on the

residual block. First, the ordinary convolution operation was replaced

with a DW separable convolution operation. This involved adding

two convolution kernels with a size of 1×1 into the residual structure,

thereby realizing a DW separable convolution operation.

Subsequently, a compression and excitation layer was added to

enhance the self-attention mechanism of the model and mitigate

the reduction in accuracy caused by a decrease in the number of

parameters. As a result of these adjustments, the prediction accuracy

of the model was improved. A detailed illustration of the MBConv

block’s structure is provided in Figure 3.

The Fused-MBConv block is a modified version of the MBConv

block, which involves removing the first convolutional layer for

dimensionality increment and the data squeezing and excitation

layer in the MBConv module. The block was used to determine

whether DW separable volumes are to be performed based on the

expansion coefficient point-by-point operations of the product. A

detailed illustration of the Fused-MBConv block’s structure is

provided in Figure 4.
TABLE 1 Number of images in different sets of each divided dataset.

Dataset Training set/sheet Validation set/sheet Test set/sheet Total/sheet

Plant Village 36,892 12,297 12,297 61,486

IP102 45,132 15,043 15,043 75,218

Mini-ImageNet 48,000 12,000 / 60,000
FIGURE 1

Framework of the Dise-Efficient model.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1227011
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Guan et al. 10.3389/fpls.2023.1227011
FIGURE 2

Structure of the Residual block.
FIGURE 3

Structure of the MBConv block.
FIGURE 4

Structure of the Fused-MBCov block.
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3.3 Experimental design

3.3.1 Experimental comparison of convolutional
layers of different models

To verify the effect of different convolutional layers on the

accuracy of the Dise-Efficient model in identifying plant disease

types, we designed a baseline model called Dise-Efficient-B0-N, also

referred to as B0-N. In this baseline model, each convolutional layer

consists of two layers. In addition, we developed the B0-S model,

which is smaller than the B0-Nmodel, and the B0-L model, which is

larger than the B0-N model.

In the experiment, we trained the B0-N, B0-S, and B0-L models

on the Plant Village dataset. After the training, we compared the

accuracy of the three models in identifying plant disease types. The

main parameters of the three models are presented in Table 2.

3.3.2 Experimental comparison of different
learning strategies

The learning strategy designed in this study is comprised of a

stochastic gradient descent (SGD) optimizer, which utilizes

momentum to improve the model training process. Additionally,

we implemented a cosine dynamic decay strategy for the learning

rate, which started at 0.01 and decayed in a cosine manner as the

number of training rounds increased. Formula (1) illustrates the

dynamic decay strategy for the learning rate, with the final learning

rate being 0.001. The learning rate decay result is depicted in the

form of a curve in Figure 5.

Generally, the Adam optimizer provides better optimization

performance for model training than the SGD optimizer combined

with the momentum learning strategy. However, our experiments

revealed that the model generally achieved higher accuracy in

identifying disease types when the SGD optimizer was implemented

in combination with the cosine dynamic decay strategy, as designed in

this paper, compared to when the Adam optimizer was used.

To verify whether the cosine dynamic decay learning strategy

can improve the accuracy of the automatic plant disease and pest

identification model, we conducted experiments on the Plant

Village dataset, using the B0-N, B0-S, and B0-L models for

comparative analysis. In experimental group 1, we implemented

the Adam optimizer commonly used in CNN model training, while
Frontiers in Plant Science 06
setting the learning rate parameter to a fixed value of 0.001. In

experimental group 2, we utilized the SGD optimizer with a fixed

learning rate. In the control group, we employed the SGD optimizer

with a cosine dynamic decay strategy that gradually reduced the

learning rate from 0.01 to 0.001 based on formula (1). The specific

experimental parameters are listed in Table 3.

3.3.3 Experimental comparison of convolution
kernel sizes of different models

Generally, smaller convolution kernels tend to capture finer-

grained features, while larger ones are better suited for capturing

more macroscopic features (Szegedy et al., 2015). Therefore, by

changing the size of the convolution kernel and observing how the

accuracy of the model accordingly, we can understand the effect of

different feature scales on the performance of the model. With this

in mind, we changed the size of the module convolution kernel to

investigate the effect of replacing a small convolution kernel with a

large one on each module’s performance.

In this experiment, we constructed models from Dise-Efficient-

B1 to Dise-Efficient-B7, all based on the Dise-Efficient-B0-N

(abbreviated as B0) model. Specifically, the B1 to B7 models were

designed with 5x5 large convolution kernels to replace the 3x3 small

convolution kernels of different modules. Table 4 shows the details

of the convolution kernel replacements, and other parameters

remain unchanged from the B0 model.

3.3.4 Experimental comparison of transfer
learning abilities of different models

The migration learning process consists of two phases: pre-

training and migration learning. In the pre-training phase of this

experiment, we used the cosine dynamic learning rate decay

strategy designed in this study to train the B0 and B2 models, as

shown in Table 4, on the Mini-ImageNet dataset, generating pre-

training models for B0 and B2. Finally, the pre-trained model

weights were uploaded in the IP02 dataset for use in the transfer

learning process, as illustrated in Figure 6.

In this study, two transfer learning methods were used to

compare the experimental results. The first one involved freezing

the feature layer of the pre-trained model before performing

transfer learning. The second one involved using the full set of
TABLE 2 Parameters of the B0-N, B0-S, and B0-L models.

Block B0-N
Layers

B0-S
Layers

B0-L
Layers Stride Number of convolution kernels Dropout Expansion

ConvBNAct 1 1 1 2 32 0 –

Fused-MBConv1 2 1 3 1 32 0 1

Fused-MBConv2 2 1 3 2 64 0 4

Residual1 2 1 3 2 64 0 –

Residual2 2 1 3 2 128 0 –

MBConv1 2 1 3 1 160 0.25 6

MBConv2 2 1 3 2 256 0.25 6
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parameters for direct transfer learning. Details of the specific

experimental design are shown in Table 5.
4 Results and analysis

4.1 Validity of the model

To evaluate the performance of the proposed Dise-Efficient

model in identifying plant pest types, we trained the baseline model

Dise-Efficient-B0 on the Plant Village dataset. This experiment was

conducted under the experimental conditions and parameters for

the experimental groups in Table 3. We compared the accuracy rate

obtained by the final model on the test set with the accuracy rates of

other CNN models used for agricultural pest detection. The

comparison results are presented in Table 6.

From the results in Table 6, it can be seen that the Dise-

Efficient-B0 model achieved the highest accuracy rate in identifying

plant disease types on the Plant Village dataset, reaching 99.71%.
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The model delivered a 61.84% accuracy rate in identifying plant pest

types on the IP102 dataset, which was only lower than the accuracy

rate of a previously proposed model (Nanni et al., 2020). These

findings demonstrated that the Dise-Efficient model has a strong

ability in identifying various types of plant diseases and pests.

Therefore, this model holds substantial research and practical

value for the identification of plant diseases and pests.
4.2 Effect of the number of convolutional
layers on model performance

To investigate the effect of the number of convolutional layers

on the accuracy of plant disease and pest identification models, we

experimentally implemented the B0-N, B0-S, and B0-L models

presented in Table 1 under the experimental conditions and

parameters for the experimental groups in Table 3. Finally, we

obtained the indexes of the models in the experimental groups, as

shown in Table 7.
TABLE 3 Experimental conditions and parameters.

Experimental group 1 Experimental group 2 Control group

Learning strategy Fixed learning rate Fixed learning rate Cosine dynamic attenuation

Optimizer Adam SGD SGD

Momentum / 0.9 0.9

Initial learning rate (lr) 0.001 0.001 0.01

Final learning rate (lrf) 0.001 0.001 0.001

Epochs 60 60 60

Batch size 64 64 64
FIGURE 5

Learning rate decay result.
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The above results indicate that the B0-N model is the most

accurate in identifying plant disease types, achieving an accuracy

rate of 99.71%. Furthermore, the B0-S model is the smallest in size,

at only 5.86 MB, but delivers a 0.16% lower accuracy rate than the

B0-N model. In contrast, the B0-L model has the largest size,

measuring 20.80 MB.
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Through an analysis of the above results, we found that the B0-S

model has one less convolutional layer in each module when

compared to B0-N, so the model size of B0-S is smaller than that

of B0-N; the B0-L model has one more layer convolutional layer in

each module when compared to B0-N, so the model size of B0-L is

larger than that of B0-N. Hence, the number of convolutional layers
FIGURE 6

Flowchart of transfer learning.
TABLE 4 Number of model layers and convolution kernel size.

Block B0 B1 B2 B3 B4 B5 B6 B7

BNConvAct 3x3

Fused-Conv1 3x3 5x5 3x3 3x3 5x5 5x5 3x3 5x5

Fused-Conv2 3x3 5x5 3x3 3x3 5x5 5x5 3x3 5x5

Residual1 3x3 3x3 5x5 3x3 5x5 3x3 5x5 5x5

Residual2 3x3 3x3 5x5 3x3 5x5 3x3 5x5 5x5

MBConv1 3x3 3x3 3x3 5x5 3x3 5x5 5x5 5x5

MBConv2 3x3 3x3 3x3 5x5 3x3 5x5 5x5 5x5
fr
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will directly affect the model size – the more convolutional layers,

the larger the model size.
4.3 Effect of dynamic learning strategy on
model performance

Based on the experimental design in Table 3, we obtained the

accuracy and model size of the Dise-Efficient model used for

identifying plant disease types in experimental group 1,

experimental group 2, and the control group on the Plant Village

test set. The results are shown in Table 8.

We implemented the Adam optimizer with a fixed learning rate

for experimental group 1 and the SGD optimizer with a fixed

learning rate for experimental group 2. From Table 8, it can be seen

that for the same model trained under a fixed learning rate strategy,

using the Adam optimizer for training leads to higher accuracy rates

compared to using the SGD optimizer. In the control group, we

used the SGD optimizer in combination with the cosine dynamic

learning decay strategy to train the model, resulting in a higher

accuracy in identifying plant disease types than the model trained

under the conditions and parameters for experimental group 1. It

can be concluded that incorporating a cosine dynamic learning rate
Frontiers in Plant Science 09
decay strategy into the model training process can improve the

model’s accuracy in identifying plant diseases and pests.
4.4 Effect of convolution kernel size on
model performance

The experiment was conducted based on the B0-N model (B0

for short), which had its convolution kernel replaced according to

the design in Table 3, resulting in the creation of models B1 to B7.

Models B0 to B7 were trained on the IP102 plant pest dataset

utilizing the experimental conditions and parameters for the control

group outlined in Table 3. The trained model’s accuracy and other

indexes of these models are presented in Table 9.

Based on the abovementioned experimental findings, it is

evident that replacing a small-sized ordinary convolution kernel

with a larger one usually improves the accuracy of the Dise-Efficient

model in identifying plant pest types. However, replacing a small-

sized DW separable convolution kernel with a larger one negatively

affects the model’s accuracy in identifying plant pest types.

It can be seen from Figure 1 that the Residual block of the Dise-

Efficient model is the only one utilizing a common convolution

kernel, while the MBConv and Fused-MBConv blocks use a DW
TABLE 6 Comparison between Dise-Efficient and other plant disease and pest identification models.

Dataset Research paper Model name Accuracy (%) Dataset Research paper Model name Accuracy (%)

Plant
Village

Sladojevic et al., 2016 CaffeNet 98.21

IP102

Nurfauzi et al., 2023 EfficientNetV2-B0 51.00

Gokulnath, 2021 LF-CNN 98.93 Ren et al., 2019 FR-ResNets 55.24

Ganatra and Patel,
2020

Inception V4 98.30
Lin et al., 2023 GPA-Net 56.90

Bedi and Gole, 2021
Models in the
research

99.38
Nanni et al., 2020 Models in the

research
61.93

Ours Dise-Efficient-B0-N 99.71 Ours Dise-Efficient-B0 61.48
Bold values mean the line with the best model evaluation index.
TABLE 7 Indexes of different models in the experimental groups.

Index Dise-Efficient-B0-N Dise-Efficient-B0-S Dise-Efficient-B0-L

Accuracy/% 99.71 99.55 99.60

Model size/MB 13.30 5.86 20.80
Bold values mean the line with the best model evaluation index.
TABLE 5 Experimental design of transfer learning.

Model name Original model Feature layer freezing Full parameter transfer

B0 B2 √

B0-Freeze-TF B2-Freeze-TF √

B0-TF B2-TF √
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separable convolution kernel. From the convolution kernel sizes set

for the different blocks of each model in Table 4, it can be seen that

Dise-Efficient-B2 only replaces the small convolution kernel with a

larger one in its Residual block. Consequently, this model

experiences a substantial improvement in identifying plant pest

types, which is evidenced by a peak accuracy rate of 61.84%. As for

models B1 and B3, they only replace the DW convolution kernel in

their Fused-MBConv and MBConv blocks. As a result, both of these

models experience varying degrees of reductions in accuracy.

Table 8 shows that the Dise-Efficient-B5 model delivers the

lowest accuracy rate, likely due to its use of a larger DW convolution

kernel in the place of a smaller one in its Fused-MBConv and

MBConv blocks. This replacement caused the model’s accuracy in

identifying plant pest types to experience the largest drop.

Additionally, models B4, B6, and B7 all replace smaller DW

convolution kernels with larger ones, leading to varying degrees

of reductions in the accuracy in identifying plant pest types.

In terms of the number of parameters, a DW convolution kernel

of the same specification has fewer parameters than the ordinary

convolution kernel. Therefore, replacing the ordinary convolution

kernel with a larger one will increase the size of the model compared

to replacing a DW convolution kernel. As a result, as illustrated in

Table 8, B2 experiences a more significant increase in model size

when compared to B1 and B3. This can be explained by the fact that

B2 replaces the ordinary convolution kernel with a larger one, while

B1 and B3 replace simply DW convolution kernels. Similarly, model

B4 only replaces DW convolution kernels in the Fused-MBConv

and MBConv blocks without replacing the ordinary convolution

kernel, leading to a smaller increase in model size compared to B4,

B6, and B7.
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Through the above analysis, it can be concluded that in the

application of the Dise-Efficient model for identifying plant pests,

replacing the convolution kernel in the Residual module with a

larger one can improve the model’s accuracy in plant pest type

identification, although this improvement comes at the cost of

increased model size. In contrast, while replacing a smaller DW

convolution kernel with a larger one only causes a small increase in

model size, it results in a reduction in accuracy. Therefore,

sacrificing a lightweight cost for greater accuracy improvement

could be a meaningful research direction to explore.
4.5 Application of transfer learning

Based on the experimental design in Table 5, the accuracy of the

model during the transfer learning process on the IP102 dataset is

depicted in Figure 7, and the experimental results are summarized

in Table 10.

It can be seen from Figure 7 that at the beginning of training,

the transfer learning model for plant pest identification delivered a

higher accuracy rate than the original model. After the model

training was completed, the transfer learning model with a frozen

special feature layer significantly outperformed the prototype in

terms of accuracy when it comes to identifying plant pests. In other

words, the transfer learning training process gave the model a much

stronger ability to identify plant pests accurately.

According to Table 10, the transfer learning effect of B0 is

superior to that of B2. When under the same transfer learning

conditions, the transfer learning model obtained through B0

exhibited higher accuracy rates and faster training speeds than
TABLE 8 Model indexes for comparison of experimental results.

Index B0-N B0-S B0-L

Accuracy for experimental group 1 (%) 99.71 99.55 99.60

Accuracy for experimental group 2 (%) 99.27 99.19 99.51

Accuracy for control group (%) 99.81 99.77 99.82
Bold values mean the line with the best model evaluation index.
TABLE 9 Indexes of Dise-Efficient-B0 to B7 models.

Model Accuracy (%) Increase in accuracy (%) Model size (MB) Increase in size (MB)

Dise-Efficient-B0 61.48 0 13.3 0

Dise-Efficient-B1 61.24 -0.24 15.0 +1.7

Dise-Efficient-B2 61.84 +0.36 16.1 +2.8

Dise-Efficient-B3 61.39 -0.09 13.9 +0.6

Dise-Efficient-B4 61.32 -0.16 17.5 +4.2

Dise-Efficient-B5 60.75 -0.73 15.3 +2.0

Dise-Efficient-B6 61.32 -0.16 16.4 +3.1

Dise-Efficient-B7 61.45 -0.03 17.8 +4.5
Bold values mean the line with the best model evaluation index.
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the one obtained through B2. Moreover, freezing the feature layer

and then performing transfer learning resulted in a significant

improvement of over 30% in the model’s training speed. Direct

transfer learning was performed on both groups of models, leading

to accuracy improvements of over 2% compared to the

original model.

Therefore, in practical applications, it is desirable for the Dise-

Efficient model to make more precise judgments about the types of

plant pests, thereby achieving accurate pest and disease prevention.

Therefore, full-parameter migration holds great importance in

enhancing the accuracy of the Dise-Efficient model in identifying

plant pest types.
5 Conclusions

This present study introduces a novel Dise-Efficient model

based on previous related research, capable of identifying various

types of plant diseases and pests. A series of experiments were

conducted to evaluate how the number of convolutional layers,

learning strategy, and convolution kernel size affect the model’s

performance and how transfer learning can be applied to train the
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model. The following conclusions have been drawn from

the experiments.

The Dise-Efficient-B0-N model achieved 99.71% accuracy in

identifying plant disease types on the Plant Village plant disease

dataset, with a model size of 13.3 MB. In addition, the model size

decreases with fewer convolutional layers, leading to a slight

reduction in accuracy. In contrast, more convolutional layers

result in larger model size, but there is no obvious effect on

accuracy improvements.

Also on the Plant Village plant disease dataset, implementing a

cosine dynamic learning rate decay strategy during the training of

the Dise-Efficient-B0-N model resulted in an accuracy rate of

99.80% in identifying plant disease types, higher than that of the

B0-Nmodel. The accuracy rate of the B0-L reached 99.81%, without

any overfitting. Therefore, using a cosine dynamic learning rate

decay strategy can effectively improve the accuracy of the model in

identifying plant disease types.

The effect of convolution kernel size on the performance of the

Dise-Efficient model on the IP102 plant pest dataset was

investigated through experiments. Results indicate that the

accuracy rates of the Dise-Efficient-B0 and Dise-Efficient-B2

models in identifying plant pest types on this dataset were 61.48%
FIGURE 7

Comparison of the accuracy of the transfer learning process.
TABLE 10 Comparison of model accuracy.

Model Accuracy (%) Total time spent (h) Model Accuracy (%) Total time spent (h)

B0 61.48 2.49 B2 61.84 2.73

B0-Freeze 43.67(-17.81) 1.63 B2-Freeze 43.58(-18.26) 1.67

B0-TF 64.40(+2.92) 2.50 B2-TF 64.02(+2.18) 2.73
Bold values mean the line with the best model evaluation index.
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and 61.84%, respectively, exceeding those of other advanced models

in this field. Furthermore, the experimental results suggest that

replacing small convolution kernels with larger ones in the Residual

layer of the Dise-Efficient model is effective in improving the

model’s accuracy in identifying plant pest types.

The results obtained through the transfer learning experiment

conducted on the IP102 plant pest dataset demonstrate that freezing

the feature layer of the pre-trained model during transfer learning

training increases the model training speed by more than 30%,

which, however, comes at the cost of greatly reduced accuracy.

Conversely, performing full-parameter transfer learning training on

the pre-trained model keeps the model training speed unchanged

while increasing the accuracy of the obtained model by more than

2%. These findings demonstrate the strong transfer learning ability

of the Dise-Efficient model and suggest full-parameter transfer

learning as an effective approach to improve the model’s accuracy

in identifying plant pest types.

In summary, our proposed Dise-Efficient model can effectively

identify various types of plant diseases and pests, thereby

contributing to preventing them in agricultural production. The

baseline model Dise-Efficient-B0 exhibits the most comprehensive

performance and boasts a compact size of only 13.3MB, making it

ready for deployment in almost all kinds of lightweight mobile

device applications. Specifically, the Dise-Efficient-B0 model

achieves an accuracy rate of 99.80% for plant disease

identification on the Plant Village dataset and an accuracy rate of

64.40% for plant pest type identification on the IP102 pest dataset

after full-parameter transfer learning training. Consequently, it is

anticipated that the Dise-Efficient-B0 model will be one of the top-

performing models for plant disease and pest identification.
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