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Ectomycorrhizal (ECM) fungi play fundamental roles in host plant growth and

terrestrial ecosystems. Cedrus deodara is cultivated in several regions in China,

has high ecological, economic and medicinal value, for its afforestation and

providing timber and wood oil. Here, we investigated ECM colonization status of

four urban C. deodara forests in Nantong, East China. We also characterized soil

spore banks by conducting bioassay experiments using soils collected from

these forests. In total, we identified 19 ECM fungal species, of which 13 species

were found in mature forests and 9 species were identified in bioassay

experiments, with only 3 species shared. Soil pH and available P content had

significant effects on species occurrence in both mature trees and bioassay

seedlings on local scales. ECM communities clearly (A = 0.391, p = 0.006)

separated mature forests from spore banks. Thelephoracae was the richest

family we detected associated with C. deodara, while Trichophaea sp. was the

most dominant in mature forests, and Wilcoxina sp. was dominant in spore

banks. ECM richness affected the growth of bioassay seedlings, especially after

inoculation with 2 ECM species, promoting root growth, significantly (F = 3.028,

p = 0.050), but it had no effects on shoots (F = 1.778, p = 0.177). No effect of

inoculation rate was found on seedlings growth. To conserve this important tree

species, the ECM fungi that are associated with it should be considered.

KEYWORDS

ectomycorrhizal (EM) fungi, Cedrus deodara, community composition, soil properties,
seedlings growth
Introduction

As associations form between specialized soil fungi (Ectomycorrhizal fungi, ECM fungi)

and the roots of plants, ectomycorrhizae play an important role in the growth and survival of

many tree species in natural forest environments (Smith and Read, 2008). Host trees depend

largely on ECM fungi for nutrients absorption and cycling. In a stable forest system, tens of
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hundreds of ECM fungi coexist with their hosts (Miyamoto et al.,

2014), and their mycelia or spores are ubiquitous in forest soil,

especially in Pinaceae and Fagaceae (Marcel et al., 2015; Brundrett

and Tedersoo, 2018; Corrales et al., 2018). The ECM fungal

community is an essential component of forest ecosystems (Smith

and Read, 2008; Bennett et al., 2017), and correspondingly,

environmental factors can also affect their structures.

Recent studies have shown that deterministic and stochastic

processes can affect ECM fungal community structures. For

example, host phylogeny, as the most important deterministic

process, has been confirmed in the Betulaceae, Salicaceae, and

Fagaceae species (Tedersoo et al., 2012; Wu et al., 2018; Wang

et al., 2021a), even though some studies (Miyamoto et al., 2015;

Glassman et al., 2017) have shown that the host influence is minor.

Similarly, some abiotic environmental factors, such as other

deterministic processes, including soil and climatic variables, have

been discussed (Nickel et al., 2017; Castanão et al., 2018; Rosinger

et al., 2018; Wen et al., 2018; Arraiano-Castilho et al., 2021; Zhang

et al., 2021; Gong et al., 2022). However, fungal characteristics (such

as different species, spore size, and yield) (Peay et al., 2012; Kivlin

et al., 2014) and the geographic distance (Glassman et al., 2015; Wen

et al., 2015) stochastically contribute to the determination of the ECM

fungal community assembly. In particular, the soil spore banks of

some ECM fungi can, however, maintain their infectivity under

disturbance and form associations with the seedlings. Thus, in

recent years, soil spore bank communities have received increasing

attention, especially under adverse conditions (Chen et al., 2015;

Murata et al., 2017; Wen et al., 2018; Wen et al., 2022). Many studies

(Matsuda et al., 2009; Obase et al., 2009; Arai et al., 2017; Wang et al.,

2021b; Zhang et al., 2021) have shown that the diversity and

community of ECM fungi are of great significance for the

establishment of coastal forests. However, no study has focused on

the ECM fungi associated with Cedrus deodara in this particular

ecosystem in East China.

Cedrus deodara belongs to the family Pinaceae and is widely

distributed in southern Tibet, India, and Afghanistan and listed in

the International Union for Conservation of Nature (IUCN) Red List

(IUCN v. 3.1). C. deodara is one of the most useful tree species as

almost every part has good uses (Nishtha and Thakur, 2021). There is

only one type of this species of Cedrus, and it is cultivated in several

regions in China, with its high ecological, economic, and medicinal

value recognized due to its role in afforestation and providing timber

and wood oil. It is recorded in the dictionary of Chinese Crude Drugs

as an effective herbal drug for many indications, such as wind–cold–

dampness arthralgia, traumatic injury, sleeplessness, removing

dampness, and relieving itching (Pradeep et al., 2003; Kumar et al.,

2014; Nishtha and Thakur, 2021 and references therein). However,

little is known about the structure and composition of the ECM

community related to this important tree species. Our previous study

observed that C. deodara harbors less diverse ECM fungi; of 53 ECM

fungal species found, only 6 were associated with C. deodara (Zhang

et al., 2021). Hanif et al. (2012) characterized and identified some ECM

species (Peziza sp. MHSUC-01, Russula livescens, and three species of

Tomentella) associated with C. deodara for the first time using

morpho-anatomic and molecular methods targeting its rDNA. To

perform some comparative and statistical work in future, we used the
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same methods for sampling, ECM root-tips collection, molecular

identification, and data analysis, as in our previous studies (Wen

et al., 2015; Wen et al., 2018; Zhang et al., 2021).

In this research, we assessed the ECM community structure by

quantifying and comparing the colonization intensity (abundance and

frequency) and diversity of ECM fungal species in urban pure C.

deodara plantation forests in Nantong City (Jiangsu Province, China),

and we characterized soil spore banks by conducting bioassay

experiments using these important and useful tree seeds. In addition,

we tested soil chemical properties at the different points we sampled.

Specifically, our objectives were (1) to characterize whether C. deodara

has its own preference in ECM fungal associations and to compare the

ECM communities between mature trees and soil spore banks at the

same site; (2) to characterize abiotic variables and soil properties that

may play significant roles in determining ECM fungal communities;

and (3) to evaluate the effects of colonizing fungi on seedling growth.

Detailed information on ECM fungi associated with C. deodara forests

is crucial for forest research and planning, and this information can be

used for forest growth and ecosystem modeling.
Materials and methods

Study sites and sampling

Four isolated points of C. deodara forests were conducted in

Nantong (Jiangsu Province) in East China: (1) Langshan Park (31°

57’ 5”N, 120°53’ 6” E, LSP); (2) Binjiang Park (31°57’ 29”N, 120°52’

50” E, BJP); (3) the Green Expo Garden (32°1’ 50” N, 120°58’ 23” E,

GEG); and (4) a point of the provincial highway (32°2’ 55”N, 121°2’

49” E, PHW), where the annual average temperature is 15.1°C, and

the average rainfall is 1040 mm. Geological and climate information

and site conditions are described in Table 1. At each point, six to

eight C. deodara trees were selected for soil samples collection. The

distance between any two selected trees should be more than 10 m

to ensure the independence of the soil samples. In October 2021,

three soil sub-samples (10- × 10- × 20-cm, length × width × depth)

were collected within about 1 m from each selected tree and mixed

well as 1 sample. In total, 28 soil samples were collected and stored

at 4°C until analysis. Then, all roots were picked out from the soil

samples, and ECM tips were collected with a root-cutting knife. The

ECM samples, placed in an ice box, were transported to the

laboratory and stored at 4°C for molecular identification within

one week. In total, 4294 ECM root tips (out of 18783 root tips) were

collected and placed into 2.0-mL test tubes for DNA analysis.

After roots collection, all organic debris was carefully removed by

hand from the soil samples. Then, it was air-dried indoors, ground,

filtered through a 2-mm sieve, and mixed well. Each soil sample was

divided into two sub-samples: one for the bioassay experiments and

the other for the determination of the chemical properties.
Bioassay and sampling

Bioassay experiments were performed using an established

method (Miyamoto and Nara, 2016; Wen et al., 2018) to assess
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the soil spore banks of C. deodara forests. The bioassay containers

were made from 50-mL centrifuge tubes with two drainage holes at

the bottom. Each tube was filled with approximately 40 mL of the

air-dried soil collected previously. To prevent soil loss, a cotton ball

was placed at the bottom of the soil. A total of 84 (3 replicates × 28

soil samples) containers were prepared in total. To check exogenous

contamination, 3 negative control containers were used, which were

filled with autoclaved soil. Before germination, C. deodara seeds

were treated according to the method described by Wen et al.

(2018). Then, a single germinated seed was placed on the soil

surface of each bioassay container and grown at 25°C day/20°C

night temperatures under natural light conditions in a glass

greenhouse to induce ECM symbionts formation. The containers

were watered as needed, and no fertilization was performed.

After 9 months, bioassay seedlings were harvested. All roots and

ECM samplings were carefully counted and separated, as described

previously. Control seedlings were excluded from further analyses

as ECM inoculation was not detected. In total, 5539 ECM root tips

(out of 18700 root tips) were separated for molecular analysis.

Above- and belowground parts of the bioassay seedlings were dried

at 60°C for 72 h and used to determine the dry weight.
Soil chemical analysis

Soil pH, electric conductance (EC), total organic matter content

(OM), available P and K, and water-soluble K, Na, Mg, and Ca were

analyzed by standard methods using other soil subsamples.
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Molecular analysis

For molecular analysis, we generally followed the protocols

described in Wen et al. (2015; 2018) and Zhang et al. (2021) for

DNA extraction, polymerase chain reaction (PCR), and direct

sequencing. Internal transcribed spacer (ITS) regions of fungal rDNA

were amplified using the ITS 1F and ITS 4 primers. All clean sequences

were classified into molecular operational taxonomic units (mOTUs)

based on a 97% similarity threshold using the ATGC (GENETYX

Corp., Tokyo, Japan) program. After low-quality sequences were

discarded, individual mOTUs were compared to sequences in

GenBank using Megablast and assigned taxonomic identities.

Sequences belonging to known ECM fungal lineages (Tedersoo et al.,

2010; Tedersoo and Smith, 2017) were deposited at the NCBI under

accession numbers MZ144027–MZ144044 and MZ133282 (Table 2),

and those that did not were excluded from further analyses.
Data analysis

We used the Kruskal–Wallis test to check the significance of the

differences in soil properties among the four sampling sites. For an

ECM fungus, the inoculation rates were defined as the percentage of

ECM tips colonized by that fungus out of all tips in one soil sample or

one bioassay seedling. The frequency was defined as the number of soil

samples in which it occurred, and the relative abundance was defined

as the percentage of ECM tips colonized by that fungus out of the total

number of ECM tips observed. In the bioassay experiments, data from
TABLE 1 Geological, climate information, and soil properties of research sites.

Study sites LYP BJP GEG PHW Kruskal–Wallis test

c2 p

Mean annual temperature (°C) 15.1

Mean annual precipitation (mm) 1040

Altitude (m) 10-40 0-10 0-10 0-10

Latitude/Longitude N 31°57’ 5” N 31°57’ 29” N 32°1’ 50” N 32°2’ 55”

E 120°53’ 6” E 120°52’ 50” E 120°58’ 23” E 121°2’ 49”

Mean Diameter at Breast Height (cm) 39.63 ± 7.85 33.57 ± 4.28 34.14 ± 6.77 44.67 ± 3.78 9.99 0.019

Soil properties

pH 6.84 ± 0.87 7.27 ± 0.05 7.51 ± 0.12 7.53 ± 0.12 18.539 < 0.01

EC(ms/cm) 3.41 ± 1.15 3.38 ± 0.37 2.30 ± 0.89 2.36 ± 1.02 8.539 0.036

Available K (mg/kg) 185.33 ± 49.40 172.97 ± 43.09 140.53 ± 21.19 176.38 ± 16.88 6.365 0.095

Available P (mg/kg) 31.77 ± 15.45 14.70 ± 1.66 15.67 ± 4.83 11.01 ± 1.07 17.979 < 0.01

Water Soluble Na (g/kg) 14.64 ± 3.86 12.22 ± 2.92 16.31 ± 3.98 18.07 ± 4.65 5.708 0.127

Water Soluble K (g/kg) 20.34 ± 8.93 21.65 ± 4.97 21.27 ± 3.61 22.12 ± 5.20 0.559 0.906

Water Soluble Ca (g/kg) 194.11 ± 64.18 161.97 ± 19.18 152.76 ± 37.69 165.07 ± 44.87 5.351 0.148

Water Soluble Mg (g/kg) 18.73 ± 7.45 18.98 ± 1.40 14.95 ± 4.92 18.82 ± 9.92 2.12 0.548

Total OM(g/kg) 52.16 ± 18.49 42.68 ± 6.95 26.68 ± 11.99 34.42 ± 12.38 10.157 0.017
fr
Bold values indicate significant differences (p < 0.05).
ontiersin.org

https://doi.org/10.3389/fpls.2023.1226720
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wen et al. 10.3389/fpls.2023.1226720
three replicates were combined and treated as an independent sample

unit. Soil samples containing no ECM fungal species and sequences not

hosted on C. deodara were excluded from the following analyses.

To estimate ECM fungal richness and to assess the diversity of soil

spore bank communities of C. deodara forests, species accumulation

curves and Chao2 richness estimators were calculated in the EstimateS

program (https://www.robertkcolwell.org/pages/estimates) version 9.1

using 1000 randomizations without replacement, respectively. The

species richness, Shannon’s, and Simpson’s diversity indices were

calculated for each point both in mature and bioassay experiments.

Non-metric multidimensional scaling (NMS), applied via PC-ORD

version 6 and based on relative Bray–Curtis distance, was performed to

visualize ECM fungal communities between mature forests and

bioassay experiments. Additionally, redundancy analysis (RDA) was

performed to explore the main factors determining the ECM

community structure. Data were log + 1 transformed in RDA. A
Frontiers in Plant Science 04
multi-response permutation procedure (MRPP) test was also

performed to assess statistical differences in ECM fungal

communities between mature forests and bioassay experiments, as

well as among the four sites we studied. To determine the significant

differences between the seedlings’ growth and the number of ECM

fungal species colonizing a seedling, one-way analyses of variance

(ANOVAs), with Tukey’s honest significant difference (HSD) tests at p

< 0.05, were used. Moreover, linear regression analyses between the

seedlings’ growth and inoculation rates of ECM fungi were revealed.

Results

Soil properties

Geological and climate information, site conditions, and soil

properties are described in Table 1. The results of the Kruskal–
TABLE 2 Possible identities of ectomycorrhizal fungi formed each ectomycorrhizal type observed in Cedrus deodara forests of Nantong in East China.

Species
Acc.

Number

R.Aa Frequency Best BLAST Matches

Matura Bioassay Matura Bioassay Description Ident.
Acc.

Number

Ceratobasidium
sp

MZ144027 2.18% 2 0
Uncultured fungus clone YJ7 18S ribosomal
RNA gene

100.00% KU931539.1

Geopora sp MZ144028 2.38% 0 1
Geopora pinyonensis isolate 255 small
subunit ribosomal RNA gene

99.65% MK841899.1

Helotiales sp MZ144029 1.78% 0.93% 2 1
Uncultured Helotiales clone 1S1.07.F05 18S
ribosomal RNA gene

99.59% EF619697.1

Hydnobolites sp MZ144030 0.65% 1 0 Uncultured Hydnobolites genes clone: 17 99.31% LC200533.1

Pezizales sp. 1 MZ144031 14.17% 0 4 Pezizales sp. A14 99.83% JX434665.1

Pezizales sp.2 MZ144032 2.29% 0 1 Uncultured fungus isolate Q03.13 99.60% MG274190.1

Pisolithus sp MZ144033 10.02% 1 0
Pisolithus orientalis isolate LS065 small
subunit ribosomal RNA gene

99.52% MH447973.1

Thelephoraceae
sp.1

MZ144034 19.33% 7 0
Uncultured Thelephoraceae genes clone:
1918

98.25% MN549508.1

Thelephoraceae
sp.2

MZ144035 9.44% 2 0
Uncultured ectomycorrhizal fungus genes
clone: P09109

96.92% AB587780.1

Thelephoraceae
sp.3

MZ144036 3.01% 0 1
Uncultured Thelephoraceae clone
P1_Contig_0347

97.75% JN704829.1

Tomentella sp.1 MZ144037 0.72% 1.58% 1 1
Uncultured fungus isolate S4NOV.1 small
subunit ribosomal RNA gene

98.31% MK737472.1

Tomentella sp.2 MZ144038 1.64% 1 0 Uncultured fungus clone mOTU49 98.98% MN549513.1

Tomentella sp.3 MZ144039 0.65% 1 0
Uncultured Tomentella genomic DNA clone
Ir84

98.69% FR852208.1

Tomentella sp.4 MZ144040 0.53% 1 0 Uncultured Tomentella genes clone: 176 99.19% LC176640.1

Tomentella sp.5 MZ144041 4.26% 2 0 Uncultured fungus ys2 genes 98.69% LC364196.1

Tomentella sp.6 MZ144042 1.94% 0 1
Uncultured ectomycorrhizal fungus clone
Type58

98.19% HM057221.1

Trichophaea sp MZ144043 47.75% 6.86% 24 4 Uncultured fungus clone mOTU52 100.00% MN549516.1

Wilcoxina sp MZ144044 66.86% 0 24 Wilcoxina mikolae genes strain: TypeA 100.00% LC029799.1

Pezizaceae sp MZ133282 1.04% 1 0 Pezizaceae sp. A16 95.62% JX434666.1
f

aR.A, Relative abundance.
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Wallis test revealed significant differences in the estimated

properties among the four sites (Table 1). Variation in soil pH

among the four investigated sites was small, but the differences were

significant (p < 0.01). Samples from site LSP had the highest

contents of available P (up to 60.14 mg/kg) and total OM

(ranging from 24.49 to 83.20 g/kg), whereas the soil pH (ranging

from 4.86 to 7.44) in these samples was lower. Nevertheless, samples

from site GEG had the lowest total OM (26.68 ± 11.99 g/kg), and

site PHW had the lowest content of available P (11.01 ± 1.07 mg/kg)

(Table 1). Lower pH and total OM content favor the formation of

mycorrhizae (Zhang et al., 2021; Wen et al., 2022).
ECM fungal species summary

Mature forests
Of the 28 soil samples, 26 contained ECM root tips, but only 13

ECM fungal species were identified. At the species level,

Trichophaea sp.1 (48%) and Thelephoraceae sp.1 (19%) were

dominant on C. deodara and were found in 24 and 7 soil

samples, respectively. Only 2 ECM fungi were identified in more

than 5 soil samples. On the contrary, 7 ECM fungal species were

singletons, which were identified in a single sample (Table 2).

Bioassay experiments
Most bioassay seedlings (82%) were alive at the end of the 9-

month experiment. Wilcoxina sp. was the most dominant on C.

deodara bioassay seedlings and found in 24 soil samples. In total,

ECM root tips formed on the seedlings in 26 soil samples.

Moreover, up to 3 ECM species were found in individual soil

sample, and only 1 or 2 ECM species were found in the majority

of soil samples (Table 2).

In all, we identified 19 ECM fungal species, of which 13 species

were found in mature forests and 9 species were detected in bioassay

experiments, while only 3 species were shared between mature

forests and bioassay seedlings. The chao2 (± SD) richness estimator

indicated that at least 28± 9 ECM fungal species were expected to

inhabit these forests; meanwhile, the estimators for mature forests

and bioassay experiments were 23 ± 9 and 14 ± 6, respectively

(Figure 1). In sites LYP and BJP, both the Shannon’s and Simpson’s

diversity values were higher in resident ECM communities in

mature trees than in the spore banks. However, the other two

sampling sites (GEG and PHW) showed a completely contradictory

conclusion (Table 2). In addition, the curves Chao2 (filled)

minimum species richness estimates of ECM fungi (Figure 1)

reached their asymptote for the overall dataset. Additional ECM

species would be found with more soil samples collecting.
ECM fungal species community structure

The NMS ordination, based on the relative Bray–Curtis

distance, clearly separated ECM fungal communities between

mature forests and spore banks (Figure 2). The MRPP test also

confirmed this statement (A = 0.391, p = 0.006). In contrast, site had
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no significant effect on ECM fungal community composition in

either mature forests (A = 0.088, p = 0.066) or spore banks (A =

0.043, p = 0.081).

In mature forests, RDA showed that ECM fungal communities

were significantly correlated with soil properties. The eigenvalues of

Axes 1 and 2 were 0.88 and 0.27 in the RDA biplots (Figure 3A),

explaining 39.6% and 12.9% of the total variance in the community

data, respectively. Axis 2 had a marked correlation with pH (r =

0.94) and available P content (r = -0.63). Meanwhile, in spore banks,

the eigenvalues of Axes 1 and 2 were 0.59 and 0.29 in the RDA

biplots (Figure 3B), explaining 33.1% and 21.3% of the variance in

the community data, respectively. Axis 2 had a markedly positive

correlation with pH (r = 0.81), indicating that ECM fungal

communities were significantly correlated with soil pH. In
FIGURE 1

Species accumulation curves for ectomycorrhizal (ECM) fungi found
in Cedrus deodara forests. Circles, triangles, and squares represent
bioassay, mature, and total observed ECM fungal species richness
(open) and Chao2 minimum species richness estimates (filled),
respectively.
FIGURE 2

Non-metric multidimensional scaling (NMS) of ectomycorrhizal (ECM)
fungal communities in resident Cedrus deodara tree roots (Mature) and
soil spore banks (Bioassay), based on the relative Sørensen distance. LSP,
Langshan Park; BJP, Binjiang Park; GEG, Green Expo Garden; PHW,
Provincial highway.
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addition, Tomentella sp.1, Tomentella sp.6 (in spore bank), and

Pisolithus sp. (in mature) occurred in soils with a low pH and high

available P content, while Trichophaea sp. occurred at a high pH.
Effects of ECM fungi on the growth of
bioassay seedlings

ECM richness had significant effects (F = 3.028, p < 0.05) on the

root growth of bioassay seedlings in ANOVA but had no effects on

the shoot (F = 1.778, p = 0.177) or total (Root + Shoot) biomass (F =

2.188, p = 0.120) (Figures 4A, B). In addition, linear regression

analyses revealed no effect of inoculation rates on seedlings growth

(Figures 5A, B).
Discussion

To the best of our knowledge, this investigation represents the

first documentation of ECM fungi that can form ECM symbionts

with C. deodara in forests and bioassay experiments. In general,

host specificity, evolution and diversity, geographic distribution,

and ecology systems can influence ECM fungal communities

(Tedersoo and Smith, 2013). Belowground ECM fungal

communities in C. deodara forests showed a typical and special

structure, including a few abundant and plenty of rare species.

Accordingly, the sporocarp investigation carried out by Itoo and

Reshi (2014) in India showed similar results. Of the 44 ECM species

associated with C. deodara, 24 were rare. However, we cannot

underestimate the function of rare species in forest dynamics. The

spatial mechanism of assembling ECM fungal communities remains

unclear, particularly in coastal areas where such investigations

are scarce.

The diversity and community structure of ECM fungi are

essential for the establishment of coastal pine forests. Some fungal

species belonging to Thelephoracae (e.g., Thelephoracae spp. and
Frontiers in Plant Science 06
Tomentella spp.), the richest family in this study, were detected in

both resident trees and soil spore banks, as the results showed. They

have also been observed to be the dominant species in coastal pine

forests (Kataoka et al., 2008; Matsuda et al., 2009; Zhang et al.,

2021). Trichophaea spp. have been observed to be the first or third

most dominant species in mature tree roots or soil spore banks. Sun

et al. (2020) found that Trichophaea play an important role in

obtaining nutrients from saline soil, suggesting that such ECM fungi

may have a priority in colonizing C. deodara along coastal lines.

Wilcoxina sp. was the most commonly detected ECM fungus in C.

deodara seedlings in the bioassay experiments (Table 3). Consistent

with this, this mycorrhizal symbiont was typically dominant in 1-

year-old host seedlings (Rudawska and Leski, 2021) and forest

nursery seedlings (Klavina et al., 2016). Wilcoxina spp. are

dominant in sandy lands (Guo et al., 2020). They can improve

the survival and tolerance of their hosts to salinity stresses (Zwiazek

et al., 2019). Interestingly, they were not found in mature trees

during this study. We hypothesized that Wilcoxina was the major

genus, but its abundance decreased with an increase in stand age. In

addition, ECM fungal communities commonly differ in the ability

of their dispersal and fungal propagules to disperse in new habitats

(Kennedy and Bruns, 2005; Kennedy, 2010). This agrees with

previous findings (Wu et al., 2018; Wang et al., 2019) in root-

associated ECM fungal communities. However, evidence of this and

its potential effects on seedling performance is scarce (Smaill and

Walbert, 2013).

Most ECM fungal genera have a global distribution, while their

hosts do not (Tedersoo and Nara, 2010), meaning that ECM fungal

communities may vary among host plants in different habitats.

Globally, the ECM fungal community structure is significantly

influenced by the host, geographic position, soil properties, and

climatic variables, of which the host may be the most significant

factor (Ishida et al., 2007; Smith et al., 2009; Bahram et al., 2012;

Tedersoo et al., 2012; Põlme et al., 2013; Roy et al., 2013; Velmala

et al., 2013; Miyamoto et al., 2014). Therefore, to explore the

influence of abiotic factors, the most effective way to eliminate
BA

FIGURE 3

Redundancy analysis (RDA) of ectomycorrhizal fungi detected [(A) mature forests and (B) soil spore banks] in important Cedrus deodara forests with
reference to soil parameters. Ava, Available; WS, Water Soluble; TOM, Total Organic Matter; Cer, Ceratobasidium; Geo, Geopora; Hel, Helotiales;
Hyd, Hydnobolites; Pez, Pezizales; Pis, Pisolithus; The, Thelephoraceae; Tom, Tomentella; Tri, Trichophaea; Wil, Wilcoxina; Pezi, Pezizaceae. Species
names are based on Table 2.
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host effects is to focus on only one host species and investigate the

coexistence mechanism of a single species.

Here, we carried out research on the community and structure of

ECM fungi in pure C. deodara plantation forests. Consistent with our

previous work (Wen et al., 2015; Wen et al., 2018; Zhang et al., 2021),

we found that at large scales, the site was the overriding factor

affecting the structure of the ECM fungal community. However, on

local scales, as the results showed, the ECM fungal communities did

not differ significantly among the four sampling sites in this study

system. We hypothesized that the strength of selection and biotic

interactions decreases at the smallest scale as the environment

becomes more homogeneous (Vályi et al., 2016; Prieto−Rubio

et al., 2022), causing similarity in the ECM community structure.

However, in the present study, ECM fungal communities on mature

trees and spore bank communities were well documented to be

related to soil characteristics (Smith and Read, 2008; Dickie et al.,

2009; Alzetta et al., 2012; Glassman et al., 2015; Miyamoto and Nara,

2016; Wen et al., 2018; Zhang et al., 2021). Here, we confirmed that

soil pH and available P content had significant effects on ECM species

occurrence in both mature trees and young seedlings (Figure 3) as

ECM communities exhibit complex structural and functional

responses to the surrounding environment. In addition, the RDA

analysis showed that the soil properties we tested here only
Frontiers in Plant Science 07
collectively accounted for 52.5% and 54.4% of the total variation in

mature forests and bioassay seedlings, respectively. Accordingly, we

supposed that the local process, except for the tested soil parameters,

includes species interaction, habitat filtering, and dispersal limitation,

which might determine the abundance of coexisting species on local

scales. Our study contributes to the increasing literature

demonstrating the effect of the environment on the fungi.

Except for richness effects on roots, ECM fungal inoculation

rates did not cause any difference in host seedling growth (Figures 4

and 5) as adequate soil nutrient levels might mask the contribution

of ECM fungi to the host. These results were confirmed by the

studies of Makita et al. (2012) and Kayama and Yamanaka (2014),

where there was no significant difference in the dry weight of

seedlings inoculated with different ECM fungal species. The

promotion of plant growth by ECM symbionts has been widely

reviewed (Marschner, 2012). Moreover, findings concerning the

high and low biomass of host seedlings were found for the relative

abundances of ECM fungi. Only being colonized with specific ECM

species, such as Suillus and Rhizopogon, could improve seedling

growth, rather than colonization with other species (Qu et al., 2003;

Sousa et al., 2011; Murata et al., 2017; Wen et al., 2018; Castaño

et al., 2023). This means that the effects of ECM fungi on host plant

growth differ among species due to their different physiological
BA

FIGURE 5

Regression between seedlings growth [(A) dry weight of root; (B) dry weight of shoot] and inoculation rate.
BA

FIGURE 4

Correlation between the growth of bioassay Cedrus deodara seedlings [(A) dry weight of root (filled) or shoot (open); (B) dry weight of total
seedlings] and ectomycorrhizal fungal richness colonized from soil spore banks in Cedrus deodara forests. Only one seedling was colonized with
three ECM fungal species and was excluded from analyses.
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traits (Onwuchekwa et al., 2014; Peay and Bruns, 2014; Wen

et al., 2018).

In summary, although this study conducted a limited sampling

effort (four sites with 28 soil samples) and came with the limitations

of studying symbionts in a greenhouse under artificial conditions,

our findings suggest that: (1) soil pH and available P content, with

another local process, had significant effects on species occurrence

both in mature trees and young seedlings, with ECM communities

clearly separated from each other on local scales; (2) C. deodara

might have its own preference in association with Thelephoracae,

the richest family we detected; and (3) the promotion of ECM

symbionts to plant growth has been widely confirmed but only

when colonized with specific ECM species, and the effects of ECM

fungi on host plant growth differ among different ECM fungal

species. Accordingly, these findings are worth further investigation

with more sampling sites, and to conserve this important tree

species, we should take ECM fungi that are associated with it

into consideration.
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