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Phenotyping is used in plant breeding to identify genotypes with desirable

characteristics, such as drought tolerance, disease resistance, and high-yield

potentials. It may also be used to evaluate the effect of environmental

circumstances, such as drought, heat, and salt, on plant growth and

development. Wheat spike density measure is one of the most important

agronomic factors relating to wheat phenotyping. Nonetheless, due to the

diversity of wheat field environments, fast and accurate identification for

counting wheat spikes remains one of the challenges. This study proposes a

meticulously curated and annotated dataset, named as SPIKE-segm, taken from

the publicly accessible SPIKE dataset, and an optimal instance segmentation

approach named as WheatSpikeNet for segmenting and counting wheat spikes

from field imagery. The proposed method is based on the well-known Cascade

Mask RCNN architecture with model enhancements and hyperparameter tuning to

provide state-of-the-art detection and segmentation performance. A

comprehensive ablation analysis incorporating many architectural components of

the model was performed to determine the most efficient version. In addition, the

model’s hyperparameters were fine-tuned by conducting several empirical tests.

ResNet50 with Deformable Convolution Network (DCN) as the backbone

architecture for feature extraction, Generic RoI Extractor (GRoIE) for RoI pooling,

and Side Aware Boundary Localization (SABL) for wheat spike localization

comprises the final instance segmentation model. With bbox and mask mean

average precision (mAP) scores of 0.9303 and 0.9416, respectively, on the test set,

the proposed model achieved superior performance on the challenging SPIKE

datasets. Furthermore, in comparison with other existing state-of-the-art methods,

the proposed model achieved up to a 0.41% improvement of mAP in spike

detection and a significant improvement of 3.46% of mAP in the segmentation

tasks that will lead us to an appropriate yield estimation from wheat plants.
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1 Introduction

Wheat is one of the top three most valuable crop species around

the world, as well as responsible for nearly half a billion dollars’

worth of annual trade (Hasan et al., 2018). It is the principal source

of nutrition for 2.5 billion people in 89 different nations (Misra

et al., 2020). As the global population rises, so does the need for

cereal grains including wheat, sorghum, millet, maize, and rice. This

is because these grains provide sustenance for a sizable population

around the world. Wheat accounts for the vast majority of the

world’s food commerce and is cultivated on more land than most

other crops. For good reason, wheat is often referred to as the

foundation of food security (Xiong et al., 2019). This highlights the

need to identify wheat plant varieties with greater resilience, higher

yields, and enhanced endurance to biotic and abiotic stresses.

In agriculture, scientific efforts are directed toward quantifying

how a plant’s function and features are continuously affected by its

environment. While these tasks of plant and crop phenotyping are

not new, manually keeping track of a plant’s physical and biological

attributes such as its height, growth rate, hardiness, nutritional

content, and yield, as a function of environmental conditions can be

extremely time and labor demanding. Modern high throughput

plant and crop phenotyping methods, on the other hand, involving

image-based information, captured by configurable land-based

equipment or drones with minimal effort and mostly with little

expense, are able to collect significantly more data in a considerably

shorter length of time. The challenge now is to effectively and
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efficiently process this vast amount of data, and derive as accurate

information as possible about plant growth and development in an

automatic way and in a practical period of time. To meet this

challenge cutting-edge agricultural technology is now making use of

artificial intelligence (AI) in order to greatly simplify the modern

crop performance monitoring process overall. The complete

processing chain of steps involved in modern high throughput

plant phenotyping operations, depicted in Figure 1, may thus

include ground or aerial imaging, or both, the application of

image processing methods of computer vision and the application

of machine learning processes (i.e., AI) for, say, object recognition,

object identification and instance segmentation. This information is

then used as input into subsequent data analysis procedures where

correlations with genetic and environmental factors are deduced.

Accessing image-based phenotypic features such as wheat crop

yield, and even wheat spike size and shape, requires accurate

segmentation of wheat spikes out of a complicated backdrop.

When it comes to wheat spike segmentation, several different

kinds of convoluted neural network (CNN) analysis systems have

been generated including, but not limited to, Faster R-CNN, Cascade

R-CNN, Mask R-CNN (Ren et al., 2015; He et al., 2017; Cai and

Vasconcelos, 2019). These deep learning algorithms have been

trained on massive spike data sets so that they will subsequently

be able to distinguish spikes from other object features (background)

in images. The insights gained might then be put to use in real-time

for data intelligence, predictive analysis, and smart farming, all

driven by artificial intelligence. Earlier, the author Batin et al.
FIGURE 1

Overall high throughput phenotyping process for various domain applications.
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(Batin et al., 2023) proposed improved detection of wheat spikes

using multi-stage CNN; this time, author significantly improves both

the detection and segmentation process of wheat spikes, leading us to

a more accurate spike estimation approach that is robust in terms of

identifying it in the complex in-field scenarios. The objective of this

research is to achieve greater accuracy and consistency than

previously proposed deep learning techniques, utilizing a method

that can segment wheat spikes from images of actual fields, and then

to apply this strategy to other agricultural sectors where AI can

be advantageous.

The challenge of segmenting objects in complicated contexts

may be overcome, in part, by developing multi-stage, region-based

convolutional neural networks (RCNNs), which employ region

suggestions in conjunction with CNN characteristics (Maji et al.,

2022). When the calculated CNN-derived features obtained from

region proposals are used, segmentation as well as counting of

objects in pictures is superior to approaches that do not use region-

based proposals.

In this study, we aim to address the phenotyping challenge of

accurately segmenting wheat spikes from real-world field images with

high levels of precision and robustness. The ability to precisely detect,

count and segment wheat spikes from such images is crucial for

accurately estimating the overall wheat yield, more so importantly in

a non-destructive manner. The focus of this research problem is the

development of advanced deep learning based approaches that may

successfully manage the complexities and variances present in such

images. These complexities arise from things like varying

illumination, occlusions, and various growth stages of wheat. As

can be seen from Section 2, existing research in non-destructive

phenotyping mostly focuses on lab condition images, which cannot

always represent the real-world complex scenarios.

To meet the requirements of our study, we have first curated

and annotated a wheat spike segmentation dataset, SPIKE-segm,

with accurate masks and bounding boxes. We then proposed a

modified spike segmentation model based on the Cascade Mask R-

CNN architecture. Our proposed method includes novel

modification to several components of the model architecture,

including Deformable Convolution Network (DCN), Generic RoI

Extractor (GRoIE), and Side Aware Boundary Localization (SABL).

Details of these modifications and an ablation analysis between

these components have been explained in Section 3 and Section 4.

In terms of spike segmentation, based on the results presented in

Section 4, we have determined that our proposed method is more

accurate, efficient, applicable, and robust than other existing

methods (see Section 4). Finally, the conclusions are summarized

in Section 5.
2 Related works

All facets of modern life are becoming more dependent on

technology. The agricultural industry has been profoundly altered

by technological advancements. Many researchers in the field of

agriculture are utilizing AI to modernize age-old practices, therefore

increasing output while decreasing the workload of farm workers

and their demands on the environment. Many techniques for
Frontiers in Plant Science 03
phenotyping plants have been reported by scientists in the field.

Different deep-learning approaches have been proposed for

segmenting and counting wheat spikes.

Misra et al. (Misra et al., 2020) introduced SpikeSegNet, a novel

deep learning (DL)-based method for the detection, recognition,

and counting of many wheat spikes. On average, the suggested

technique was 99% precise, 95% accurate, and 97% robust when

used to count spikes in images their data set. The SpikeSegNet

approach achieved sufficient robustness based on a data set

containing illuminated images, with no significant drop in

segmentation performance. Despite extensive testing under a

variety of lighting conditions, results from the lab are not feasible

to apply to real-life scenarios. On the other hand, the proposed

method requires sufficiently high-quality images to be able to detect

and count spikes.

Zhang et al. (Zhang et al., 2022) suggested a Hybrid Task

Cascade model improve detection outcomes for the wheat spike

identification problem in high-dimensional environments, making

it possible to reliably segment wheat spikes. Wheat spike detection

and segmentation in a wheat field with complicated surroundings is

the major topic of this study. For the model’s bounding box and

mask, values of average precision (AP) equal to 0.904% and 0.907%

were achieved, respectively, while a value of 99.29% was found for

the precision with which wheat spikes might be enumerated. Even

though both bounding box and mask segmentation have room for

improvement in terms of average precision. An improved

performance of Wheat-Net was found in the experiments

presented in this study, although when it came to identifying the

base of wheat spikes, the model encountered several segmentation

issues; due to their similarity in color, texture, and form to the plant

background, the connected spike and stem made up a

blurry boundary.

The work by Hasan et al. (Hasan et al., 2018) presented a fine-

tuned region-based convolutional neural network (R-CNN) model

for detecting and evaluating wheat spikes in ground-based images.

Faster R-CNN was chosen as the network model to be instructed in

this article’s training set. Images were fed into a pre-trained VGG-

16 prototype, which was subsequently utilized to automatically

extract features, and then sent to the region proposal network

(RPN) to generate bounding boxes (Bbox-es), and finally to the

classification network to be labelled as spikes or background. In-

field images were captured using high-definition RGB cameras to

create a spike data set called SPIKE, which was used to train a Faster

RCNN architecture. Both the average accuracy and F1 score for the

model were 93.4% and 0.95, respectively. Nonetheless, no actual

spike segmentation work is carried out here. However, the model’s

inaccuracy increased when dealing with partially covered spikes,

especially in high-density locations.

A strategy based on SpikeRetinaNet was developed by Wen

et al. (Wen et al., 2022) to recognize and quantify a densely

distribution of small objects in complicated images. The three

main components of SpikeRetinaNet − including the use of

BiFPN (weighted bi-directional feature pyramid network) for

more efficient implementation of multi-scale data, and the use of

Soft-NMS (non-maximum suppression) to address the occlusion

problem − make it an upgraded edition of the RetinaNet
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framework. The authors trained and evaluated their technique

using the GWHD data set, which was supplemented with pictures

from the wheat-wheat grass spike detection (WSD) dataset. One

drawback of this approach is that it may generate many bounding

boxes for the same spike. Again, the outcome differs depending on

the growth stage of the crops. Despite Mean average accuracy

(mAP) rates for wheat spike identification achieved by the model

were 92.62%, with a count detection capacity of 92.88%.

For segmenting individual corn against a ground background,

Jin et al. (Jin et al., 2018) suggested a combination of deep learning

and regional development techniques to identify the root of specific

maize plants in a variety of settings. For target detection, Faster R-

CNN was used because of its particular search with a regional

proposal network (RPN). A faster R-CNN-based technique was

found to be effective at recognizing stem anchors in 2D views from

3D Lidar pictures. The model has a drawback in that if the stem is

totally missing in the scanned data, the system will not be able to

recognize the individual maize plant, which will not be able to

develop into an individual stem. The suggested approach was only

tested on premature maize plants, and its efficacy for segmenting

adult maize plants requires more study.

Zhou et al. (Zhou et al., 2018) proposed a new approach that

uses computer vision to obtain statistics on the number of wheat

spikes. Their effort presents a technique for improving the

maximum entropy segmentation technique by selecting optimal

thresholds for noise reduction using morphological filters, which

yields more reliable coarse-segmentation findings. Multispectral

and panchoromatic pictures are fused in this case. These findings

not only demonstrate the high precision of the approach used here,

but also demonstrate how the local search operator may greatly

enhance the performance of the original evolution algorithm, which

has its own inherent limitations.

Su et al. (Su et al., 2020) suggested Mask R-CNN for the reliable

identification of disease sites and symptom severity on wheat spikes.

The fungal disease fusarium head blight (FHB) causes significant

losses in quantity and quality of wheat grains. To build the feature
Frontiers in Plant Science 04
pyramid and to extract features, Mask-RCNN relied on a network

similar to ResNet-101 called the feature pyramid network (FPN).

After full-sized image of wheat spikes were used to create mask

images, Mask-RCNN was used to forecast unhealthy spots on each

spike. Despite the bigger dataset, naturally infected wheat spikes

were left out, and the dataset was collected under controlled

environmental settings. The detection rates for wheat spikes using

this procedure were 77.76%, and for infected regions, they were

98.81%. By comparing the predicted wheat FHB severity value to

the actual value, they were able to attain an accuracy of 77.19% in

their predictions.

Most spike segmentation approaches have only been evaluated

on random data sets in the lab, making it hard to determine whether

or not they will provide correct findings when applied to real-world

images. The images were taken in controlled settings, resulting in

good resolution and recognizable spikes; the number of obscured

spikes is very minimal. As a result, the techniques often perform

poorly under real-world imaging conditions when only partially

visible spikes are present, particularly when the resolution is low. In

contrast, we evaluated our model (described in the next section) on

low-resolution, real-world image data and found an increased

capacity to segment (and count) partially hidden spikes.
3 Materials and methods

The objective of our efforts is the development of a faster, more

robust and more accurate method of identifying and counting

wheat spikes in land-based field images. A flow-chart diagram

describing the process involved in our system is shown in Figure 2
3.1 Data collection

For this research, we have utilized the SPIKE data set that was

established by Hasan et al. (Hasan et al., 2018). The SPIKE data set
Annotated
Dataset

Training
images

Trained model for
spike detection

and segmentation
Test

images

SPIKE
Dataset

Manual
annotation of

spikes

EvaluationModel
Training

Data
augmentation

Bounding Box
Regression

Classification
Score

Spike
segmentation

Mask

Detection
Count

Land-based Imaging Platform

Image
Pre-processing

Output

Pre-trained
 CNN

(ResNet-50)
for feature
extraction

Fine-tuned
Cascade

Mask R-CNN
model

FIGURE 2

Generic work flow diagram describing the proposed algorithm for the detection and segmentation of wheat spikes in field images.
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was collected over four months (July 21, 2017 - November 22, 2017)

using a transportable, land-based imaging frame, taking images of

90 individual plots of wheat distributed over 18 rows and 5

columns. Ten different varieties of spring wheat (Triticum

aestivum L.): Drysdale, Excalibur, Gladius, Gregory, Kukri, Mace,

Magenta, RAC875, Scout, and Yitpi, were cultivated in the areas.

Having spikes of varying shapes and sizes increases the versatility of

the data set for the task of recognizing different wheat varieties (not

of a focus of this work). Three fertilizer treatments were applied to

each variety of wheat: no fertilizer treatment, early treatment, and

late treatment, in order to establish the effect of fertilizer on wheat

spike development. Each variety and each different treatment was

replicated three times for a statistical analysis. Two-thirds of the

plots were given the industry-standard fertilizer dose of 80

kilograms of nitrogen, 40 kilograms of phosphorus, and 40

kilograms of potassium per hectare, whereas the remaining thirty

plots were left untreated.

Three cameras were mounted on an overhead rail in the center

of a steel-framed, four-wheeled cart shown in Figure 3. Although

the setup includes a stereo pair of cameras for “overhead”

observation, the images from these cameras were not included in

this study (spikes seen along the vertical viewing axis appear small

and round in photos, finding them challenging to identify). Instead,

only images taken by a camera situated at one end of the cart,

supported at an acute angle to the vertical were used in this study.

The images were taken with a digital camera with a resolution of

18.2 megapixels using a Canon EOS 60D. After a trial and error

period, it was determined that a viewing angle of 55 degrees from

the horizontal, overhead rail would provide the most usable plot

area with the least amount of intersection. The height of the

camera’s sensor from the ground was 190 centimeters. These are

the parameters that had been set for the camera;
Fron
• Focal length —18 mm,

• Aperture — f/9.0,

• ISO — automatic

• Exposure time — 1/500 s
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3.2 Dataset annotation and preparation

For the segmentation of wheat spikes from field images, we

manually annotated images from the SPIKE data set to create

training, testing and validation sets. The images in this data set

are divided into the following three color classes: GSYC - green

spike, yellow canopy; GSGC - green spike, green canopy; YSYC -

yellow spike, yellow canopy. We maintained this same distribution

of images, which correspond to the different growth stages of wheat.

(Table 1) shows the overall count and distribution of the data set for

wheat spike segmentation:

To annotate the images in the data set we used the Roboflow

Web API (Dwyer et al., 2022). Wheat spikes in the images were

annotated using the polygon tool provided by API. Careful

inspection ensured a high quality of annotations, as exemplified

by Figure 4. More than 26,000 spikes were annotated with an

average of 83 spikes per plot image. Considerable effort went into

curating this spike segmentation data set. For evaluation and testing

purposes, we annotated the objects (wheat spikes) in the images in

the COCO format (Lin et al., 2014), which is used as a standard

format to evaluate instance segmentation models.
3.3 Proposed wheat spike
segmentation approach

3.3.1 Model architecture
To detect, segment and count wheat spikes from images, we

decided the instance segmentation method to be the most suitable

for the task at hand. The high resolution of the plot images, allowed

the segmentation model to detect, localize and segment spikes from

features at the instance level and thus be able to count the detected

spikes as well. We use the Cascade Mask R-CNNmodel, a two-stage

object detection and segmentation approach described by Cai et al.

(Cai and Vasconcelos, 2019), for segmentation. This method is a

multi-stage, modification of the Mask R-CNN architecture (He

et al., 2017) allowing the detectors further down the cascade
FIGURE 3

The ground-based vehicle for imaging in the field. (A) A camera, angled for oblique viewing, is placed at the top of an imaging frame mounted on a
four-wheel base (the wagon). The frame also supports two stereo cameras, angled vertically, placed in the center of the top section. (B) A schematic
of the wagon from a side-view (Hasan et al., 2018).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1226190
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Batin et al. 10.3389/fpls.2023.1226190
architecture to be successively more discriminating against false

positive detection. These steps of the R-CNN architecture are

trained progressively, utilizing the output of the preceding stage

to train the subsequent stage.

By training a segmentation branch in tandem with a detection

branch, Mask R-CNN effectively expands upon the two-stage

design of Faster R-CNN (Ren et al., 2015; Lin et al., 2017) used

by Hasan et al. (Hasan et al., 2018). Figure 5 depicts the

architectural representations of Mask RCNN and Cascade Mask

RCNN. Here, I - input image, conv - convolutional layer, pool -
Frontiers in Plant Science 06
maxpooling, and C, S, B represents classification, segmentation and

bounding box head, respectively. In comparison with Mask RCNN

(Figure 5A), the Cascade Mask RCNN (Figure 5B) has multiple

detection branches, which raises the question of how many and

where to add segmentation branches. For our project we opted for a

design in which a segmentation branch is included at each cascade

stage. At the time of inference, the final mask prediction for this

architecture is derived from the ensemble of three segmentation

branches. The overall structure of our model is shown in Figure 6.

3.3.2 Model optimization
The first step to detecting and localizing objects in an image is to

extract relevant features from that image using a backbone network

(Figure 7). In our study we employed the ResNet architecture (He

et al., 2016) as our model’s backbone, which comprises four stages

or residual layers wherein, each stage has a different number of

convolution “blocks”; in our case: (3, 4, 6, 3) (Figure 7).

Furthermore, each block has three convolution layers, and each

convolution layer is followed by a batch normalization layer. For

our experimentation, we used the ResNet-50 version of the ResNet

architecture. It is important for our proposed model to be able to

extract relevant features of wheat spikes across the whole

input image.

Due to a high variability in shape and size of wheat spikes,

standard convolution layers do not provide the optimal solution, as

the fixed size of the kernels in those layers all have the same

receptive field (sampling grid) to model geometric transformations

of objects in images. The deformable convolution network (DCN)

(Dai et al., 2017) addresses this issue by allowing the convolution
TABLE 1 Number of images from each growth stage used for training, testing and validation.

Images GSYC GSGC YSYC Total

Train 222 34 34 290

Val 9 3 3 15

Test 9 3 3 15

Total 240 40 40 320
FIGURE 4

Example of the annotation of an image from the SPIKE data set
(GSGC stage).
BA

FIGURE 5

The different architectures of (A) Mask R-CNN and (B) Cascade Mask R-CNN (Cai and Vasconcelos, 2019).
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layers of the network to have a deformable structure for their

kernels (Figure 8). Offsets of the sampling grid are learned by the

model without any additional supervision. This learned

“deformation” of the kernel allows the convolution layer to model

dense spatial arrangements of objects so that overall the model can

detect and segment wheat spikes of different size, shape

and orientation.

After extracting features from the backbone network, our model

arranged those region of interest (ROI) features using a feature

pyramid network (FPN) (Lin et al., 2017) and balanced feature
Frontiers in Plant Science 07
pyramid (BFP) (Pang et al., 2019) sub-network fused together, into

a multi-scale pyramid with a top-down architecture comprising 5

different scales, each containing 256 feature channels. These

features, generated by the FPN + BFP module, are then passed on

to a region proposal network (RPN) (Ren et al., 2015), which

generates candidate regions that might contain an object. To

efficiently generate region proposals (or anchors), RPN predicts

the object bounding box and classification score of the object with

varying scales and aspect ratios. Instead of a single-level RoI

extractor, we used a generic RoI extractor (GRoIE) (Rossi et al.,
FIGURE 6

The proposed model structure for spike segmentation.
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2021), which utilizes all the levels of FPN for RoI pooling to extract

7 × 7 RoI features. GRoIE was chosen over a single RoIE based on

the observation that only the best layer from FPN is selected by the

RoI extractors currently in use, ignoring potentially useful

information in other layers. In order to overcome this restriction,

non-local building blocks and attention mechanisms were added to

the GRoIE to extract and merge data from all FPN layers, producing

a more comprehensive and accurate representation of the wheat

spikes (Zhang et al., 2022).

After the RoI pooling, the feature maps were used as input into

the cascaded bounding box (bbox) head of our model (Figure 6). For
Frontiers in Plant Science 08
this bbox head, we used the side aware boundary localization

(SABL) approach, proposed by Wang et al. (Wang et al., 2020),

for localization of each side of a bounding box that might contain a

wheat spike. SABL improves the localization performance of the

object detection model by focusing on object boundaries rather than

on the center point utilized in more traditional bounding box

regression schemes. In our approach, side-aware features are

extracted from RoI features and then a “bucketing scheme” is

employed where the target space (input image) is divided into

multiple buckets (shown in Figure 9). The bbox head then predicts

in a two-step process the bounding box that contains an object -
FIGURE 7

The optimized ResNet50 architecture highlighting multiple blocks, each comprising three convolution layers.
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bucket estimation to find a proposed bbox, and fine regression of

the proposed bbox.

The model must segment wheat spikes at an instance level after

identifying and localizing them. In order to achieve segmentation

results, a mask head was added to each cascaded level of the model

(Figure 6). Again, a single-level RoI extractor was utilized to extract

a 14 × 14 RoI feature map used as input for the model’s mask head.
Frontiers in Plant Science 09
The mask head consists of a fully convolutional network (Long

et al., 2015) with four convolutional layers and a 3 × 3 kernel.

Deep learning networks need to adaptably fine-tune the

learning rate (LR). Early model instability can result from a large

LR. In our model we used a linear warm-up LR approach (Goyal

et al., 2017) for training. The LR is first set to a tiny number, usually

a fraction of the real LR, and then progressively increased over a few
FIGURE 8

Deformable convolution network.
FIGURE 9

An example of side-aware boundary localization (SABL).
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epochs until it approaches the actual LR. The model starts training

with consistent convergence. Our linear warm-up approach starts

with 0.01 times the real LR and progressively grows until the actual

LR is attained. As the training iteration grows, the LR must decay

since a high LR will prevent the model from converging.

MultiStepLR, a prominent LR decay approach, employs specified

steps (epoch numbers) to reduce the learning rate by 0.5 to address

this issue. The MultiStepLR scheduler reduced the LR by 0.5 at

epochs 100 and 140 for all models. Even though linear annealing

results in a greater average precision (AP) for an intersection over

union (IoU) measure of 0.5, MultiStepLR converges significantly

sooner (as shown in the Comparative Analysis section).

Furthermore, we also employed auto-scaling LR based on the

batch size and number of images per gpu to obtain the LR for our

model (Goyal et al., 2017). According to the linear scaling rule for

auto-scaling of LR, if the batch size is multiplied by k then LR must

also be multiplied by k, while other hyper-parameters remain

unchanged. The base batch size and LR for the auto scaling rule

was set to 16 and 0.01, respectively. So, with a batch size of 2 and 1,

the LR was reduced by a factor of 8 and 16, respectively. This is done

so that the models’ are not affected negatively by having different

batch sizes due to memory constraints. We observed the impact of

utilizing the auto-scaling rule in the ablation study part of our

experiments. Table 2 shows the important hyper-parameters that

were fine-tuned as part of our method.

After careful optimization and fine-tuning, we eventually

constructed a new instance-segmentation model for wheat spikes

based on the Cascade Mask RCNNmethod, together with ResNet50

backbone with deformable convolutions, generic RoI extractor

(GRoIE), side aware boundary localization (SABL) for bounding

box regression, and auto-scaling LR rule. During training, several

data augmentation treatments were applied, namely, resizing the

images to 1333x800 resolution, random flipping with a 0.5

probability of being vertical or horizontal, and finally padding the

images with up-sampling to a multiple of 32. These data

augmentations help enhance the robustness of the model by

providing it with more varied training data. The backbone

network of the model was initialized with weights from a pre-

trained ResNet50 model and parameters of other modules was

initialized randomly with different initialization methods such as

Kaiming initialization (He et al., 2015) and Xavier initialization

(Glorot and Bengio, 2010).

As the model has a cascaded structure with separate bbox and

mask heads for detection and segmentation tasks, the overall loss

function of the model takes the following form,

L =o
T

t=1
at (Ltbbox + Ltmask) (1)

Here, Ltbbox and Ltmask are the bounding box prediction losses

and the mask prediction losses at different stages t, respectively.

Since we are using 3 stages for the cascade architecture, T = 3 and a

are set to [1,0.5,0.25] for all three stages consecutively.

Smooth L1 loss is used for both region proposals and bounding

box regression loss, which can be defined as follows:
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losssml1   =
0:5 · ( ðj pred� target jÞ2

b ) if  pred� targetj j < b

pred� targetj j − 0:5 · b  otherwise

8<
: (2)

Here, pred represents the predicted bbox (or region), target

represents the target bbox (or region), and b is the threshold

parameter, which was set to 1.0/9.0 for the RPN head and 0.1 for

all the three bbox heads.

For classifying the bounding box region as well as the pixel in

the segmentation mask, Cross Entropy (CE) loss function is used,

defined as following:

lossce =   −
1
No

N

i=1
½yi · log (pi) + (1 − yi) · log(1 − pi)� (3)

Here, yi is the target class and pi is the predicted class of the

bounding box (or pixel), and N = 2 as we are only classifying

between the spike and background classes.
3.3.3 Evaluation metrics
For a consistent evaluation of the models we have implemented,

we use the average precision (AP) metric because of its

representativeness and simplicity. AP measures the area under the

Precision-Recall (P-R) curve, where precision and recall are defined

by Equations (4) and (5). Thus, AP can be defined by Equation (6).

According to the COCO evaluation protocol, AP can be measured

at different thresholds for intersection over union (IoU) measures,

such as IoU = 0.5 (PASCAL VOC metric), IoU = 0.75 (strict

metric), and IoU = 0.5: 0.95: 0.05 (primary challenge metric) (Lin

et al., 2014).

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

AP =
1
101 o

ri∈ 0,0:01,…,1f g
max
ri : ri≥r

p(ri) (6)

IoU(A,B) =
A ∩ Bj j
A ∪ Bj j , (7)

where |S| denotes the numerical size of the set S.

In the above and below, true positive (TP) - refers to the

case where the model correctly detects a region as a spike, false

positive (FP) — refers to the case where the model incorrectly

detects a background region as a spike, or detects the same

spike as multiple ones; and false negative (FN) — is where the

model incorrectly classifies an actual spike as background. P

(ri) is the measured precision at recall ri. The precision at each

recall level, ri , is interpolated by taking the maximum

precision-measured for which the corresponding recall

exceeds. A and B represent the predicted and target bbox,

respectively, in Equation 7.
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3.3.4 Implementation
Training and testing of all the experimental models were done

using a Ryzen-5 2600x (6-core) processor, 16GB system RAM and

NVIDIA RTX 2070 GPU with 8GB VRAM (unless specified

otherwise). We also utilized the open-source object detection and

instance segmentation framework MMDetection (Chen et al., 2019)

based on the PyTorch deep learning library to implement our model

architecture of choice, as it offers an easy-to-use modular codebase.

After each epoch of training, we evaluated the model on the

validation set. So, after the whole training period, we saved the

checkpoint of the best performing model.
4 Result

4.1 Performance analysis of the model

We report the average precision (AP) of our model on the test

set to evaluate its performance. The test set contains 15 images from

three different growth stages of wheat and contains a total of 1243

wheat spikes. In our experiment, the object detection score refers to

the AP value at a specified threshold, calculated using Equation 6,

for the final bounding box prediction stage of our model’s network.

Segmentation score refers to the same metric, but for the final

segmentation mask output stage. Our model achieved an object

detection score of 0.93 and segmentation score of 0.9404 for AP at

IoU = 0.5, 0.801 and 0.8018 for AP at IoU= 0.75, and 0.678 and

0.6459 for AP at IoU = [0.5: 0.95: 0.05]. In the case of a dense

environment such as a wheat plot, detection models tend to predict

many false positives. In our case, the high AP values indicate a

relatively low detection rate of false positives.

The detection performance of the model can also be evaluated

through the count results on the test set. We set an IoU threshold of

0.5 for a spike prediction to be considered true positive and counted

the TP, FP and FN results for each image. Table 3 shows these count

results. As can be seen from the table, our model achieves an
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average accuracy of 86% and an average F1-score of 0.93, across all

15 test images. This is particularly impressive, given the complex

nature of the wheat plot images in the test set. Somewhat

surprisingly, however, our model struggles the most with images

from the green spike, yellow canopy (GSYC) class, apparently as

these images contained spikes that were the most challenging

to detect.

Figure 10 summarizes the various accuracy measures employed to

gauge performance. Figure 10A shows a plot of detected spikes as a

function of actual count (ground truth). The slope of the line of best fit

indicates that the model over estimates the true number of wheat

spikes. Graphs in Figures 10B, C show the training losses and training

accuracies, respectively, of our model over 150 epochs (43k iterations).

It can be seen from the graphs that the training loss (shown in Equation

1) rapidly decreases over the first few epochs and then exhibits a more

gradual decrease over the remainder of the training stage. Overall, the

training loss of the model does not completely converge at the end of

the training phase even though the training accuracy reaches its

maximum value. Training accuracy reaches almost 100% after about

30k iterations of training, which coincides with the plateauing of the

AP (at IoU = 0.5: 0.95: 0.05) value of the validation set (Figure 10D).

In addition to these summary measures, we visualize in Figure 11

typical detection and segmentation results of our model applied to the

test set. The figure shows a comparison of our results with the ground

truth masks in test images with complex background at different

growth stages. The Blue bbox and masks represent ground truth

annotations, Green bbox and masks represent true positive

detections, and Red bbox and masks represent false positive detections.

Some example cases of spike occlusion, such as when occluded by

another spike or awns or leaves, are shown in Figure 12, which depicts

the segmentation of spikes, where amask within a yellow bounding box

represents a detected spike (the color variations within the mask have

no significant meaning and are only included to highlight the issue of

occlusion). An example of a single spike, easily seen in Figure 12A, was

reliably recognized by our model. Two overlapping spikes are visible in

Figure 12B. The model is able to separate the two individual objects.
TABLE 2 Hyper-parameter table.

Hyper-parameter Type Value

Optimizer SGD momentum=0.9 weight_decay=0.0001

Batch size batch_size=1

Learning Rate Ir = 0.000625

Learning rate policy MultiStep step = [100, 140]

Warmup policy
Linear warmup.iterations=500

warmup_ratio=0.01

Epochs Number=150

Classification stages Cascaded Number=3

IOU threshold

Stage_1 = 0.5

Stage_2 = 0.6

Stage_3 = 0.7

Score threshold RCNN Score_thr=0.5
frontiersin.org

https://doi.org/10.3389/fpls.2023.1226190
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Batin et al. 10.3389/fpls.2023.1226190
Although it is challenging for any deep learning model to identify

partially visible spikes, our model demonstrates a high success rate in

such cases; partially visible instances of observed spikes are shown

in Figure 12C.
4.2 Ablation analysis

We conducted an ablation analysis in which we omitted one or

more of different components of the complete model architecture.

The objective of this study was to assess the significance and

quantitative impact of the model’s individual components. Such a

study can assist in identifying the most important features of the

model structure and provide some direction for future

enhancements. During the study, we created different versions of

the model with different combinations of the components. We refer

to these versions as
Fron
1. Deformable Convolution Network (DCN) (Dai et al.,

2017),

2. Generic RoI Extractor (GRoIE) (Rossi et al., 2021),

3. Side Aware Boundary Localization (SABL) (Wang et al.,

2020), and

4. Auto-scaling LR (Goyal et al., 2017).
To evaluate the individual as well as combined impact of these

components on the model’s performance, we set a baseline
tiers in Plant Science 12
architecture based on a ResNet50 backbone, image scale = 1333 ×

800, batch size = 2, and LR = 0.00125 (unless specified otherwise).

Not surprisingly, a comparison of these alternative approaches,

shown in Table 4, reveals that the version involving all of the

different components achieves the best AP at IoU = 0.5,0.93 and

0.94 for bbox and mask, respectively. However, the version not

including Auto-scale LR and GRoIE, achieves the best AP for both

IoU = 0.75 and IoU = 0.5: 0.95: 0.05 (shown in row 6). This is due to

the fact that while GRoIE lets the model extract the RoI from all the

levels of the Feature Pyramid from FPN, it does not guarantee the

model will choose the RoI with the most accurate bounding box.

Meanwhile, without GRoIE, the SABLHead can regress the

bounding box from the RoI that is extracted from the top-most level

of FPN thus getting bounding boxes with better IoU scores. This is

reflected in the increased score of both AP (IoU = 0.75) and mAP

metrics. Furthermore, with the help of GRoIE, SABLHead is able to

regress bounding boxes from a larger number of samples or RoIs

extracted. This led to more detected bounding boxes with an IoU score

of at least 0.5, resulting in reduced false negatives and increased true

positives, which is reflected in the higher value for AP (IoU = 0.5).
4.3 Quantitative comparison with
other models

In order to get an overview of our model’s performance in

comparison with other existing models, we conducted several
TABLE 3 Count and evaluation of spike detection on test images from the SPIKE data set.

Image GT Det. TP FP FN Prec. Recall Accuracy F1-Score

GSGC_test2 73 78 66 12 7 0.85 0.90 78% 0.87

GSGC test4 76 78 72 6 4 0.92 0.95 88% 0.94

GSGC test5 72 72 65 7 7 0.90 0.90 82% 0.90

GSYC test199 73 76 72 4 1 0.95 0.99 94% 0.97

GSYC test220 84 89 81 8 3 0.91 0.96 88% 0.94

GSYC test242 86 94 84 10 2 0.89 0.98 88% 0.93

GSYC test320 89 95 85 10 4 0.89 0.96 86% 0.92

GSYC test383 89 97 87 10 2 0.90 0.98 88% 0.94

GSYC test417 87 94 82 12 5 0.87 0.94 83% 0.91

GSYC test421 73 71 65 6 8 0.92 0.89 82% 0.90

GSYC test437 74 78 73 5 1 0.94 0.99 92% 0.96

GSYC test480 88 93 86 7 2 0.92 0.98 91% 0.95

YSYC test1 97 100 93 7 4 0.93 0.96 89% 0.94

YSYC test3 80 84 75 9 5 0.89 0.94 84% 0.91

YSYC_test6 102 100 91 9 11 0.91 0.89 82% 0.90

Total 1243 1299 1177 122 66 – – – –

Average – – – – – 0.91 0.95 86% 0.93

SD 9 10 9 2 3 0.03 0.03 0.04 0.03
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experiments involving models with different backbones, LR

schedulers and architectures. Our benchmarked scores are

reported in Table 5. Different backbone networks showed

different performances in our experiments.

ResNet50 with deformable convolution backbone achieved on

average 1.42% and 1.99% better scores than the default ResNet50

backbone across all evaluation metrics for bbox and mask

segmentation respectively. We also compared different learning

rate schedulers to see which one would be better suited for our

case. We reported the benchmark scores between Multistep and

Linear Annealing learning rate schedulers. While Linear annealing

showed a 0.3% and 0.12% increase in AP (IoU = 0.5), it was slower

in terms of model convergence. So, we opted for using the Multistep

LR scheduler throughout the rest of our experiments as it let the

model converge to an optimal solution in less epochs than linear

annealing LR scheduler. Model with LR scheduler also has around

23% slower inference speed compared to Multi-step LR scheduler,

so there is a bit of tradeoff between precision and speed when

choosing between different LR schedulers. We have made the

decision to use the Linear Annealing Learning Rate (LR)

scheduler in our model because it could produce better mAP

scores (at IoU=0.5), but with a little trade-off in inference speed.

Finally, we compared different object detection and instance

segmentation architectures, namely, Faster RCNN, Mask RCNN,
Frontiers in Plant Science 13
and ours as in Cascade Mask RCNN, with a similar configuration of

hyperparameters, to figure out the best architecture for our model.

Our model with the Cascade Mask RCNN architecture outperforms

all other methods by an average of 2.79% for bbox and 3.52% for the

mask at AP (IoU = 0.5) while converging at only 70 epochs. Overall,

we showed that our architecture and optimization strategy of choice

provides a significant performance boost over all other compared

architectures and strategies.
4.4 Comparison with existing approaches

In comparison to other existing methods Hasan et al. (Hasan

et al., 2018), Wen et al. (Wen et al., 2022), Su et al. (Su et al., 2020)

and Zhang et al. (Zhang et al., 2022) our model utilizing Cascade

Mask RCNN architecture performs better in both bbox and mask

segmentation. Our model was benchmarked across various

scenarios, and several experiments involving models with

different backbones, LR schedulers and architectures. For

bounding box detection our model outperformed the best-

performing existing model developed by Wen et al. and

improved the AP(IoU=0.5) from 0.9262 to 0.9303 (increased by

0.41%). On the other hand, in terms of mask segmentation, our

model out-performed the method developed by Zhang et al. and
B

C D

A

FIGURE 10

Overall performance measures: (A) the coefficient of determination; (B) the loss metric during training; (C) training accuracy; and (D) validation of
training. (A) Ground Truth vs Detection Count Plot. (B) Training loss over 150 epochs. (C) Training accuracy over 150 epochs. (D) Validation set mAP
over 150 epochs.
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improved the AP (IoU=0.5) from 0.907 to 0.9416 (increased by

3.46%). Overall comparison with other state-of-the-art methods is

shown in detail in Table 6.

Our approach has shown some promising results in spike

segmentation. However, there are a few limitations. When a leaf’s

color is close to that of a spike, the model misidentifies the leaf as a

spike, as seen in Figure 13A. In addition, there are a few spikes that the

model overlooks due to a high density of spikes, and limited (partial)

visibility of those spikes. Figures 13B, C both feature spikes that can be

discerned by the human eye, but which the model is unable to identify.

On the other hand, several spikes that were missed in the human

annotation process were correctly identified as spikes by the model
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(Figure 13D), demonstrating the model’s efficacy. (Incidentally, it is

worth remarking that the quantification of the model’s accuracy

suffered as a result of these human annotation errors.)
5 Conclusion

This research addresses the phenotyping challenge of accurately

segmenting wheat spikes from field images with high precision and

persistence. Such images must be able to non-destructively discern,

count, and segment wheat spikes in order to accurately estimate

wheat production. This research concentrates on enhancing deep
B

C D

E

A

F

FIGURE 11

Visual example of ground truth vs detection results in test images of different growth stage. (A) GSGC ground truth image. (B) GSGC detection
result. (C) GSYC ground truth image. (D) GSYC detection result. (E) YSYC ground truth image. (F) YSYC detection result.
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learning-based methods to handle the complexities of field images,

such as illumination, occlusions, and various growth stages. The

proposed method introduces a novel architecture for the spike

segmentation task which differs significantly from existing methods
Frontiers in Plant Science 15
since for accurate detection and segmentation of the spike regions

we fused the Cascade Mask RCNN with other extra precising

techniques of DCN, GRoIE, SABL and Auto-scaling LR. Several

iterations of repeated trials were applied to fine-tune and optimize
B CA

FIGURE 12

Examples of the different circumstances in which objects may appear in an image. (A) A completely visible spike, (B) Two overlapping spikes, (C)
Partially visible spikes.
TABLE 4 Ablation analysis based on selective omission of one or more component of the proposed model.

DCN GRoIE SABL AutoS
LR

AP
(IoU=0.5)

AP
(IoU=0.75) mAP (IoU=.5:.95:.05)

Epoch
(optimal)

Train time (hr) Infr. time
(s/img)

Bbox Mask Bbox Mask Bbox Mask

– – – – 0.9104 0.9155 0.7782 0.7841 0.6702 0.6268 222 10.5 0.77

✓ – – – 0.921 0.93 0.809 0.801 0.684 0.639 111 11 0.83

✓ ✓ – – 0.9177 0.925 0.796 0.806 0.66 0.6357 183 11 0.83

✓ ✓ – ✓ 0.9192 0.931 0.804 0.792 0.6781 0.6377 200 11.5 0.77

✓ – ✓ – 0.9195 0.9287 0.8167 0.8162 0.689 0.6473 103 12.5 0.83

✓ – ✓ ✓ 0.9212 0.9321 0.8024 0.7921 0.6712 0.6308 52* 11* 0.77*

✓ ✓ ✓ ✓ 0.9303 0.9416 0.8002 0.8009 0.6765 0.6436 70* 11* 0.87*
fr
* Training and testing of model was done using NVIDIA RTX 3080 12gb VRAM GPU. Bold value in a column represents the highest number (or, lowest for time).
TABLE 5 Comparative Analysis of models performance with different backbones, LR scheduler and architectures.

Type Remark

AP
(IoU=0.5)

AP
(IoU=0.75)

mAP
(IoU=.5:.95:.05)

Epoch
(optimal)

Train time(hr)

Inference time(s/img)Bbox Mask Bbox Mask Bbox Mask

ResNet50 Backbone 0.917 0.9165 0.7797 0.7845 0.667 0.6278 230 10 0.67

ResNet50 + DCN Backbone 0.93 0.9404 0.801 0.8018 0.678 0.6459 51 11 0.67

MultiStep LR Scheduler 0.93 0.9404 0.801 0.8018 0.678 0.6459 51 11 0.67

Linear Annealing LR Scheduler 0.9303 0.9416 0.8002 0.8009 0.6765 0.6436 70 11 0.87

Faster RCNN Optimized 0.901 – 0.8018 – 0.669 – 241 9 0.55

Mask RCNN Optimized 0.9047 0.9062 0.7459 0.7542 0.6327 0.6001 213 10 0.63

Proposed – 0.9303 0.9416 0.8002 0.8009 0.6765 0.6436 70 11 0.87
* Training and testing of model was done using NVIDIA RTX 3080 12gb VRAM GPU. Bold value in a column represents the highest number (or, lowest for time).
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the architecture and hyper-parameters of the model to satisfy the

criteria. Along with a few limitations such as human annotation

error, misidentifies the leaf as a spike, overlooking due to a high

density and limited visibility of spikes; the approach offers a

significant improvement over existing techniques, which have

hitherto been recognized as state-of-the-art, such as Zhang

et al.(Zhang et al., 2022), Su et al. (Su et al., 2020), Wen

et al.(Wen et al., 2022) and Hasan et al. (Hasan et al., 2018). This

improvement enhances the capability to segment and count spikes

in images captured under challenging field conditions, such as

variable illumination, shadowing, or high congestion. The

approach is applicable to a wide variety of complex real-world

situations, in part because it employs a flexible data set compiled

from land-based field imaging under real-world conditions. In

addition, the enhanced model can be deployed with various

imaging modalities, including UAVs and possibly satellites. The

precise segmentation and counting of multiple phenotypic

characteristics, such as wheat spikes and spikelets, paddy and

sorghum head, allows for more precise crop breeding and

management decisions. The research findings presented in this

article represent a significant step towards the realization of the

promise of e-agriculture, specifically AI, as an instrument for

enhancing agricultural productivity.
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TABLE 6 Comparison with other existing approaches.

Methods AP (IoU=0.5)

Bbox Mask

Hasan et al. (2019) 0.6763 –

Wen et al. (2022) 0.9262 –

Su et al. (2021) 0.567 0.572

Zhang et al. (2022) 0.904 0.907

Proposed (WheatSpikeNet) 0.9303 0.9416
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FIGURE 13

Limitations in the challenging environment. Here, Green bbox and mask denotes true positive detections, and Red bbox and mask denotes false
positive detections. (A) ”Leaf” detected as ”spike”, (B) Partially visible ”spike” not detected, (C) Occluded ”spike” not detected, (D) Missed annotation
correctly detected as "spike".
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