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biofertilizer improved nitrogen
use efficiency in wolfberry
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saline land
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Shenyang, China, 3CAS Key Laboratory of Coastal Environmental Processes and Ecological
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A two-year field trial was conducted to investigate the effects of partial

substitution of chemical fertilizer (CF) by Trichoderma biofertilizer (TF) on

nitrogen (N) use efficiency and associated mechanisms in wolfberry (Lycium

chinense) in coastal saline land. As with plant biomass and fruit yield, apparent N

use efficiency and plant N accumulation were also higher with TF plus 75% CF

than 100% CF, indicating that TF substitution promoted plant growth and N

uptake. As a reason, TF substitution stabilized soil N supply by mitigating steep

deceases in soil NH4
+-N and NO3

–N concentrations in the second half of

growing seasons. TF substitution also increased carbon (C) fixation according

to higher photosynthetic rate (Pn) and stable 13C abundance with TF plus 75% CF

than 100% CF. Importantly, leaf N accumulation significantly and positively

related with Pn, biomass, and fruit yield, and structural equation modeling also

confirmed the importance of the causal relation of N accumulation coupled with

C fixation for biomass and yield formation. Consequently, physiological and

agronomical N use efficiencies were significantly higher with TF plus 75% CF than

100% CF. Overall, partial substitution of CF by TF improved N use efficiency in

wolfberry in coastal saline land by stabilizing soil N supply and coupling N

accumulation with C fixation.
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1 Introduction

Saline land is a worldwide resource that must be used rationally to

satisfy increasing food demand (Rozema and Schat, 2013; Qin et al.,

2015; Nikalje et al., 2017; Zhang et al., 2021). In China, the Yellow

River Delta has a large area of coastal saline land with poor agricultural

productivity. An important barrier to increase productivity is that

nitrogen (N) fertilizer is not used efficiently in saline cropland, because

salinity stress inhibits plant N uptake and assimilation (Ashraf et al.,

2018). Nitrogen is also easily lost in saline soil, further restricting plant

N uptake (Duan et al., 2018; Zhu et al., 2020; Li et al., 2020b). In the

Yellow River Delta, hydrological and climatic characteristics such as

shallow groundwater table, concentrated rainfall, and high

evaporation to precipitation ratio aggravate soil N loss in nitrate

leaching and NH3 volatilization (Zhu et al., 2021).

Nitrogen is an essential macronutrient for plants, and crop N

deficiency under saline stress is typically expressed in poor growth

and yield (Abouelsaad et al., 2016; Yu et al., 2016; Cui et al., 2019).

Plant N use efficiency is a comprehensive proxy of N uptake and use

and is closely associated with photosynthetic carbon (C) fixation

(Wu et al., 2019). Photosynthesis provides the C skeleton and

energy for N uptake and assimilation, whereas N uptake and

assimilation contribute to the synthesis of photosynthetic

pigments and C assimilation enzymes. Thus, coordination

between C and N processes is responsible for efficient N use and

healthy plant growth. In addition to the decrease in N use, saline

stress also depresses photosynthesis by inducing leaf stomatal

closure and photosystem photoinhibition (Yan et al., 2013; Yan

et al., 2020; Zhao et al., 2020). However, whereas many studies focus

on the response of either photosynthesis or N accumulation to salt

stress, only a few simultaneously examine salt-induced variations in

both processes by using pot experiments (Nazar et al., 2011; Liu

et al., 2013). Thus, to determine plant N use in saline land, the

synergism between photosynthesis and N accumulation needs to be

explored further by field trials.

Chemical fertilizer is habitually overused to increase crop yields

in China, but the yield-increasing effect has reached a bottleneck,

and much chemical N is wasted to exacerbate the environmental

burden (Liang et al., 2019; Li et al., 2021). Partial organic

substitution of chemical fertilizer is a sustainable measure that

has been used to solve the problem in various agricultural

ecosystems, including tea plantations, vegetables, and field crops,

because it can guarantee yields while simultaneously reduce

chemical N input and loss (Tang et al., 2019; Zhou et al., 2019; Ji

et al., 2020; Li et al., 2021; Hou et al., 2023). Soil organic matter is

generally low in saline land, which can decrease microbial N

immobilization and result in large N loss, and accordingly,

organic amendment is a feasible approach to mitigate N loss and

improve crop yield by increasing N retention in saline soil (Xiao

et al., 2020; Zhu et al., 2020). Plant growth-promoting

microorganisms have recently gained increasing attention,

because they can be used in a green approach to abate saline

barriers, in contrast to other remediation protocols with high

investment costs (Arora et al., 2020; Kaushal, 2020). Biofertilizer

is a type of organic fertilizer rich in plant growth-promoting
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microorganisms, and compared with organic fertilizer,

biofertilizer application combined with chemical N more

effectively reduces N loss in saline soil and increases crop yield

(Wang et al., 2018; Xue et al., 2021). Trichoderma is a growth-

promoting fungus and also can strengthen plant resistance to salt

stress by regulating hormone synthesis, increasing osmotic and

antioxidant defenses, and maintaining ion balance and

photosynthetic performance (Chen et al., 2016; Zhang et al., 2016;

Zhang et al., 2019a; Zhang et al., 2019b; Oljira et al., 2020).

Trichoderma inoculation was evidenced to aid in elevating yield

and quality of onion and leafy vegetables iceberg lettuce and rocket

and reducing fertilizer investment (Ortega-Garcia et al., 2015;

Fiorentino et al., 2018). In addition, it has been well documented

that partial substitution of chemical fertilizer by Trichoderma

biofertilizer (TF) was superior to substitution by organic fertilizer,

and could increase soil fertility and nutrient availability, regulate

soil microflora composition and enhance crop yield (Cai et al., 2015;

Pang et al., 2017; Zhang et al., 2018; Qiao et al., 2019; Liu et al., 2020;

Ye et al., 2020; Liu et al., 2021). However, the knowledge about TF

application for crop cultivation in saline soil remains very limited

and mainly originates from pot experiments. Wang et al. (2018)

reported that combined application of TF with urea reduced NH3

loss from saline soil and promoted potted sweet sorghum growth,

and likewise, TF effectively altered saline soil properties and

microbial composition, leading to the increase in potted Medicago

sativa biomass (Zhang et al., 2020). However, the application of

Trichoderma spore powder did not improve potted tomato yield

under saline irrigation (Daliakopoulosa et al., 2019). Whether TF

application can promote crop growth by improving N utilization in

coastal saline land still needs to be examined by field trials. In

particular, it is largely unknown whether TF substitution can

increase N retention in saline soil and stabilize soil N supply.

Wolfberry (Lycium chinense) is a deciduous shrub in the

Solanaceae, and its fruit has long been used as traditional

medicine and health food in China. Wolfberry may be an ideal

economic crop to plant in coastal saline land, because it is a

halophyte naturally distributed in coastal zones. However, despite

high adaptability to salt, saline stress also inhibits wolfberry

photosynthesis and growth, and cultivation methods need to be

developed to achieve high fruit yields in saline land (Feng et al.,

2017; Dimitrova et al., 2019). Chemical fertilizer was commonly

used to improve growth and yield of wolfberry, and the importance

of application with organic fertilizer has gradually been recognized,

however, it remains unknown whether partial substitution of

chemical fertilizer by Trichoderma biofertilizer is more superior

for wolfberry growth in coastal saline land. Recently, a Trichoderma

asperellum strain was isolated and then successfully prepared as a

TF biofertilizer. In this study, the effect of partial substitution of

chemical fertilizer (CF) with the TF on N use efficiency in wolfberry

was investigated by a two-year field trial in coastal saline land. In

particular, mechanisms were examined that affected soil N supply,

C and N coupling, and root N absorption. This study may deeply

disclose the mechanisms by which TF substitution improve crop

growth under salt stress, and also can provide technical guidance for

the cultivation of crops in saline land.
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2 Materials and methods

2.1 Trichoderma biofertilizer preparation

Trichoderma asperellum strain used in the study was deposited

in the China general microbiological culture collection center (No.

13187) in Beijing. Apple residue is a typical organic waste in Yantai

city, China and has been utilized as the material to prepare TF by us.

A Trichoderma potato glucose agar plate was punched to obtain

three 1 cm diameter blocks, which were shaken in potato glucose

liquid medium at 150 rpm and 28°C for 5 d to prepare fermentation

broth. Similar with the method in previous studies (Chen et al.,

2016; Daneshvara et al., 2023), the fermentation broth was added to

apple residue compost and mixed thoroughly for fermentation.

After 10 days of fermentation, the product was dried to 30% water

content to prepare TF. Trichoderma viable colony count was

assessed by a dilution method with a selective potato glucose agar

plate, which reached 2 × 108 cfu g-1 dry weight in the TF. The

selective plate contained nystatin, sodium propionate, and

streptomycin and was optimized based on Papavizas and

Lumsden (1982). In TF, the content of organic matter, total

nitrogen, phosphorus pentoxide and potassium oxide was 641.08

mg g-1, 26.45 mg g-1, 3.37 mg g-1 and 27.77 mg g-1, respectively.
2.2 Field trial

The field trial was conducted in moderate saline land in the

Yellow River Delta, Dongying, China (37°17′N, 118°38′E). The site
has a warm temperate continental monsoon climate, and annual

average temperature and precipitation are approximately 13.5°C and

700 mm, respectively. Soil texture was silty loam, and soil chemical

properties were the following: electrical conductivity, 433.7 µs cm-1;

pH, 8.3; organic matter, 15.3 g kg-1; total N, 1.0 g kg-1; NH4
+-N, 2.2

mg kg-1; NO3
–N, 15.3 mg kg-1; Olsen-P, 7.3 mg kg-1; and available K,

267.2 mg kg-1. The field trial had the following four treatments: (1)

NF (no N application); (2) 50% CF plus TF (combined application of

50% chemical N fertilizer and TF); (3) 75% CF plus TF (combined

application of 75% CF and TF); (4) 100% CF. In each treatment, four

replicate plots (5.5 m × 4 m) were randomly distributed in the field.

Plots were separated by 0.3 m wide and 0.3 m high ridges to avoid

border effects, and 2 m remained around the plots as an isolation belt.

The NF plots were designed as the control without N application. The

N application rate was 400 kg ha-1 in 100% CF plots, whereas the TF

application rate was 5,000 kg ha-1 with reduced chemical nitrogen

application in 75% CF or 50% CF plus TF treatments. The amount of

TF applied was based on a conventional organic fertilizer dose, and

the total N application rate in plots with 75% CF plus TF was the

same as that in 100% CF plots. Phosphorus application rate was 50 kg

ha-1 in all plots. Urea and calcium superphosphate were applied as

chemical N and P fertilizers, respectively. In April, 2020, twelve two-

year bare-rooted wolfberry plants were planted in each plot, and plant

and row spacing were 1.5 m. In April, 2020 and 2021, fertilizer was

applied to circular furrows, which were 20 cm around plants and

20 cm deep. During the growing seasons in 2020 and 2021, three
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plants were randomly selected in each plot for measuring gas

exchange and modulated and prompt chlorophyll fluorescence

parameters. The topsoil (0–20 cm) was also collected in each plot

by a five-point sampling method with a soil auger (diameter, 38 mm)

in the growing seasons. At the end of October in 2020 and 2021, one

plant was selected in each plot and excavated to measure biomass, N

and C contents and leaf stable N and C compositions.
2.3 Assay of soil nitrogen concentration

Soil samples were sieved through a 2 mm screen and

homogenized. One subsample was used to measure soil NH4
+-N

and NO3
–N concentrations and moisture. Soil NH4

+-N and NO3
–N

were extracted with 2 M KCl for 1 h, and filtrates were analyzed for

NH4
+-N and NO3

–N concentrations by a continuous flow analyzer

(AutoAnalyzer III, Seal, Germany). Another soil subsample was air-

dried, ground, and sieved through a 150 mm screen, and soil total N

was determined by an elemental analyzer (VarioMACRO cube,

Elementar Analysensysteme, Germany). Soil available K was

extracted by using ammonium acetate to measure its content

through flame photometry (Lu et al., 2017).
2.4 Assay of plant nitrogen content

Plants from plots were separated to leaves, roots, stems, and

fruit, which were oven-dried at 60°C to constant weight, ground,

and sieved through a 250 mm screen. Powders were digested by

H2SO4–H2O2, and total N in digests was determined by indophenol

blue colorimetry (Ivancic and Degobbis, 1984). In treatments,

FDWt, BDWt, and Nt indicate fruit dry weight, plant total

biomass, and N accumulation, respectively, whereas in the

control, FDWc, BDWc, and Nc respectively indicate those

variables. The variable Nf is the amount of N applied.

Agronomic, apparent, and physiological N use efficiencies were

calculated as (FDWt-FDWc)/Nf, (Nt-Nc)/Nf, and (BDWt-BDWc)/

(Nt-Nc), respectively (Chen et al., 2020).
2.5 Measurements of leaf stable carbon
and nitrogen isotopic compositions and
nitrogen and carbon concentrations

Fully expanded leaves in plots were selected, oven-dried at 60°C

to constant weight, ground, and sieved through a 250 mm screen.

Leaf powder (0.06 mg) was packed in tin capsules, which were

sealed and measured using an Elemental Analyzer (FlashEATM

1112, ThermoScientific, Germany) coupled with an isotope ratio

mass spectrometer (Finnigan Delta Plus XPTM, ThermoScientific).

Stable C and N isotope compositions were expressed using standard

delta notation: (d,‰) = Rsample/Rstandard - 1, where Rsample and

Rstandard were isotopic ratios in samples and standards,

respectively. Total N and C in leaf powders were also measured

using an elemental analyzer (VarioMACRO cube).
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2.6 Gas exchange and modulated
and prompt chlorophyll
fluorescence measurements

In fully expanded leaves in plots, gas exchange and modulated

chlorophyll fluorescence parameters were simultaneously detected

by using an open photosynthetic system (LI-6400XTR, Li-Cor,

USA) equipped with a fluorescence leaf chamber (6400-40 LCF,

Li-Cor). Temperature and CO2 concentration in the leaf cuvette

were set at 25°C and 400 mmol mol-1, respectively. Actinic light

intensity was set at 1200 µmol m-2 s-1 in the field trial.

Photosynthetic rate (Pn) and stomatal conductance (Gs) were

simultaneously recorded, and modulated chlorophyll fluorescence

was also recorded to calculate photosynthetic electron transport rate

(ETR) according to a previous study (Yan et al., 2020).

A multifunctional plant efficiency analyzer (MPEA, Hansatech,

UK) was used to record prompt chlorophyll fluorescence in the first

1 s of illumination with red light, and the PSII performance index

(PIabs) was calculated according to Strasser et al. (2010).
2.7 Statistical analyses

Data are presented as the mean of samples from four replicate

plots in the field trial. Means were tested for significant differences

using an LSD test following one-way ANOVA. Statistical analyses
Frontiers in Plant Science 04
were conducted in SPSS 22.0 (SPSS Inc., Chicago, IL, USA), and

differences were considered significant at P < 0.05. Regression

analysis was also performed using SPSS 22.0.

Structural equation modeling (SEM) was used to evaluate direct

and indirect relations among N accumulation, C fixation, and yield in

different fertilization treatments and was performed using AMOS

Graphics 23.0 (IBMCorp., Armonk, NY, USA). The fit of the resulting

model was evaluated using P-values, c2 values, a goodness-of-fit index
(GFI), and the root mean square error of approximation (RMSEA).
3 Results

3.1 Fruit yield, biomass, and nitrogen
content and use efficiency

Fruit yield, plant biomass, and N content increased significantly

with application of N fertilizer, and the increase was significantly

higher in plots with TF plus 75% CF than in plots with 100% CF and

TF plus 50% CF (Figures 1A, C, E). Compared with 100% CF plots,

agronomic, apparent, and physiological N efficiencies increased

significantly in plots with TF plus 75% CF by 78.23%, 80.76%,

and 35.32% in 2020 and by 82.70%, 31.67%, and 46.60% in 2021,

respectively. However, compared with 100% CF, only physiological

N efficiency increased significantly in plots with TF plus 50% CF

(Figures 1B, D, F).
B

C D

E F

A

FIGURE 1

Wolfberry (A) fruit yield, (C) total nitrogen, and (E) biomass and (B) apparent, (D) physiological, and (F) agronomical nitrogen use efficiency in
different fertilizer treatments in coastal saline land. Values are the mean of four replicate plots ( ± SD), and different letters indicate significant
differences among treatments at P < 0.05. NF, no nitrogen fertilizer; 100% CF, 100% chemical nitrogen fertilizer; 50% CF+TF, 50% CF plus
Trichoderma biofertilizer; 75% CF+TF, 75% CF plus Trichoderma biofertilizer.
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3.2 Leaf d13C, d15N, carbon, and
nitrogen contents

Applying N fertilizer did not significantly affect leaf d13C, except
for a significant increase in TF plus 75% CF plots in 2020 and 2021

(Figure 2A). Leaf d15N increased significantly with N fertilizer

application, but there was no significant difference in leaf d15N
between plots with TF plus 75% CF and those with 100% CF

(Figure 2B). Carbon and N contents per leaf increased significantly

with application of N fertilizer, but the increases in TF plus 75% CF

plots were significantly greater than those in 100% CF and TF plus

50% CF plots (Figures 2C, D).
3.3 Photosynthetic parameters in the
field trial

In 2020 and 2021 growing seasons, Pn, Gs, ETR, and PIabs
generally increased with N fertilizer application. Changes in those

parameters were relatively greater in TF plus 75% CF plots than in

100% CF and TF plus 50% CF plots, although differences were not

always significant in the monthly samplings (Figure 3).
3.4 Structural equation model analysis and
relations between leaf nitrogen
accumulation and photosynthetic rate,
plant biomass, and fruit yield

In regression analysis, leaf N accumulation was significantly

positively related to Pn, plant biomass, and fruit yield (Figures 4A-

C). An SEM analysis was conducted to identify direct and indirect
Frontiers in Plant Science 05
relations among N accumulation, C fixation, plant biomass, and

fruit yield (Figure 4D). In the SEM, leaf N accumulation directly

positively regulated leaf C accumulation and Pn and also

significantly indirectly affected fruit yield and plant biomass by

affecting C fixation (Figure 4D). Thus, the coupling of accumulated

N with C fixation was responsible for increases in plant growth and

yield with TF substitution fertilization.
3.5 Soil total and mineral nitrogen contents

Compared with NF and 100% CF plots, soil total N content

increased significantly in TF plus 75% CF plots at the end of the

growth seasons in October 2020 and 2021 (Figures 5A, C). Soil

NH4
+-N and NO3

–N contents increased significantly in June in

plots with N fertilizer application and then gradually declined

during the growing seasons (Figures 5B, D). The decreases in soil

NH4
+-N and NO3

–N contents after June were not as great in TF

plus 75% CF plots as in 100% CF plots, and soil NH4
+-N and NO3

–

N contents remained generally higher in TF plus 75% CF plots in

the second half of the seasons (Figures 5B, D).
4 Discussion

High N application is commonly used for planting wolfberry by

farmers because N in saline soil is liable to loss, and maybe, a lower

chemical N application rate is appropriate considering that

excessive N availability can lead to a systemic repression of root

growth with yield reduction (Giehl and von Wiren, 2014; Liu et al.,

2022). For example, Liu et al. (2018) reported that high N

application rate at 300 kg ha-1 reduced wheat yield and root
B

C D

A

FIGURE 2

Leaf (A) carbon (d13C) and (B) nitrogen (d15N) isotope composition and (C) carbon, and (D) nitrogen accumulation in wolfberry in different fertilizer
treatments in coastal saline land. Values are the mean of four replicate plots ( ± SD), and different letters indicate significant differences among
treatments at P < 0.05. NF, no nitrogen fertilizer; 100% CF, 100% chemical nitrogen fertilizer; 50% CF+TF, 50% CF plus Trichoderma biofertilizer; 75%
CF+TF, 75% CF plus Trichoderma biofertilizer.
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weight density in contrast to an optimal application rate at 240 kg

ha-1. However, this study focused on the approach of TF

substitution to reduce chemical N application. TF substitution

could reduce 50% CF investment without influencing wolfberry

growth and yield in contrast to 100% CF application, and notably,
Frontiers in Plant Science 06
TF substitution with 25% reduction of chemical fertilizer improved

wolfberry growth and yield (Figures 1A, E). Thus, TF proved to be

functional and beneficial for wolfberry cultivation in coastal saline

land. The growth-promoting effect of TF probably related to N

uptake and use, considering greater plant nitrogen accumulation in
B

C D

A

FIGURE 3

Wolfberry (A) photosynthetic rate (Pn), (B) stomatal conductance (Gs), (C) photosynthetic electron transport rate (ETR), and (D) performance index
(PIabs) in different fertilizer treatments in coastal saline land. Values are the mean of four replicate plots ( ± SD), and different letters indicate
significant differences among treatments at P < 0.05. NF, no nitrogen fertilizer; 100% CF, 100% chemical nitrogen fertilizer; 50% CF+TF, 50% CF plus
Trichoderma biofertilizer; 75% CF+TF, 75% CF plus Trichoderma biofertilizer.
B

C

D

A

FIGURE 4

Regression analysis of leaf nitrogen accumulation with (A) photosynthetic rate (Pn), (B) biomass, and (C) fruit yield in wolfberry in coastal saline land.
Significant relation at P < 0.01 is indicated by #. NF, no nitrogen fertilizer; 100% CF, 100% chemical nitrogen fertilizer; 50% CF+TF, 50% CF plus
Trichoderma biofertilizer; 75% CF+TF, 75% CF plus Trichoderma biofertilizer. (D) Structural equation model of hypothesized causal relations among
leaf nitrogen and carbon accumulation, Pn, biomass, and yield formation in wolfberry in a two-year field trail. Model fit: c2 = 0.415, P = 0.937, GFI =
0.995, RMSEA < 0.001. Blue solid lines indicate significant positive effects (P < 0.05). Standardized path coefficients are listed beside each path (line
width indicates the proportion of factorial contribution). The R2 values indicate the strength of explanation by independent variables. Significant
effects: *P < 0.05; **P < 0.01; ***P < 0.001.
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plots with TF plus 75% CF than 100% CF (Figure 1C). Consistently,

higher apparent, physiological, and agronomic N use efficiencies in

plants with TF plus 75% CF further verified that growth-promoting

function of TF involved plant N uptake and use (Figures 1B, D, F).

As a proxy of N uptake and use in plants, d15N has a positive

relation with crop growth and yield (Yousfi et al., 2009; Yousfi et al.,

2012). In this study, d15N increased in plants with N fertilization.

However, the relatively minor difference in leaf d15N did not match

the greater yield and biomass in 75% CF plus TF plots than in 100%

CF plots (Figures 1A, C; 2B). Nitrogen isotope fractionation mainly

occurs during enzymatic assimilation of nitrate or ammonium into

organic forms. High N assimilation capacity can directly increase

d15N by decreasing discrimination against 15N, whereas high N

uptake indirectly increases discrimination against 15N by increasing

available N (Evans, 2001; Tcherkez, 2011). Thus, greater N uptake

in plants with TF plus 75% CF than with 100% CF might attenuate

leaf 15N discrimination. Yousfi et al. (2012) also found increases in

biomass and N accumulation with insignificant variation in shoot

d15N in salt-tolerant cultivar RIL47 of durum wheat in contrast to

salt-sensitive cultivar RIL 24 under salt stress. Overall, TF

substitution increased wolfberry N uptake and use in coastal

saline land.

Similar to the accumulation of plant N, the stock of soil total N

also increased in 75% CF plus TF plots compared with 100% CF

plots at the end of growth seasons (Figures 5A, C), suggesting that

TF increased retention of fertilizer N in saline soil and as a result,

could benefit plant N uptake. This finding was supported by

previous reports that organic supplements could inhibit N loss

through NH3 volatilization from saline soil (Al-Busaidi et al., 2014;

Xiao et al., 2020; Yao et al., 2021). Notably, in a pot experiment, N

storage in saline soil increased with application of Trichoderma

spore powder (Daliakopoulosa et al., 2019). In addition, in contrast
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to 100% CF plots, TF substitution mitigated the steep decrease in

soil mineral N concentrations that occurred in the second half of

growing seasons. Therefore, by slowing the decline in soil mineral N

concentrations, TF increased stability of soil mineral N supply

(Figures 5B, D). In agreement with our finding, Wang et al.

(2018) found that in a pot experiment, TF reduced NH3

volatilization loss from saline soil by increasing soil nitrification

which also increased N supply. Recent studies also show that

addition of organic materials such as crop straw can optimize soil

N supply by regulating N transformations (Lu et al., 2018; Li et al.,

2020a; Chen et al., 2021; Yuan et al., 2021). Therefore, soil N

transformations in coastal saline land under combined application

of CF with TF should be investigated further. However, in the field

trial in this study, TF substitution helped to improve soil N supply

to plants in coastal saline land.

Plant N use for growth and yield formation is dependent on

photosynthetic C fixation. The greater increase in Pn with 75% CF

plus TF than with 100% CF suggested that TF substitution helped

increase photosynthetic capacity in wolfberry (Figure 3A). PSII is

the initiation site for driving photosynthetic electron transport, and

it is also susceptible to photoinhibition under environmental

stresses (Takahashi and Murata, 2008). In accordance with Pn,

the increase in PI(abs) was greater with 75% CF plus TF than with

100% CF, which maintained ETR at a higher level to promote C

assimilation (Figures 3C, D). In addition, the greater increase in Gs

with 75% CF plus TF than with 100% CF also benefited

photosynthesis by increasing CO2 diffusion into leaves

(Figure 3B). Increases in CO2 supply with high Gs tend to

decrease d13C by increasing 13C fractionation, whereas strong

CO2 fixation can depress discrimination against 13C and increase

d13C (Farquhar et al., 1989; Li et al., 2017). Thus, the increase in

d13C without reduction in Gs indicated greater CO2 fixation in
B

C D

A

FIGURE 5

Topsoil total nitrogen content in (A) 2020 and (C) 2021 and (B) nitrate and (D) ammonium content in different fertilizer treatments in coastal saline
land. Values are the mean of four replicate plots ( ± SD), and different letters indicate significant differences among treatments at P < 0.05. NF, no
nitrogen fertilizer; 100% CF, 100% chemical nitrogen fertilizer; 50% CF+TF, 50% CF plus Trichoderma biofertilizer; 75% CF+TF, 75% CF plus
Trichoderma biofertilizer.
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plants with 75% CF plus TF than with 100% CF (Figures 2A; 3B).

Overall, TF substitution improved photosynthetic capacity of

wolfberry in coastal saline land and then increased leaf C

accumulation (Figure 2C). Importantly, leaf N accumulation was

significantly and positively related with Pn, biomass, and fruit yield,

and the SEM also confirmed the importance of the causal relation of

N accumulation coupled with C fixation for biomass and yield

formation (Figure 4). Therefore, elevated N accumulation could

well couple with photosynthetic C fixation to increase wolfberry

biomass and yield with 75% CF plus TF, and led to higher

physiological and agronomic nitrogen use efficiency (Figures 1B, F).
5 Conclusion

In summary, partial substitution of CF by TF improved N use

efficiency in wolfberry in coastal saline land by stabilizing soil N

supply and increasing the synergism between N accumulation and

C fixation.
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