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Introduction: The difficulties in tea shoot recognition are that the recognition is

affected by lighting conditions, it is challenging to segment images with similar

backgrounds to the shoot color, and the occlusion and overlap between leaves.

Methods: To solve the problem of low accuracy of dense small object detection

of tea shoots, this paper proposes a real-time dense small object detection

algorithm based on multimodal optimization. First, RGB, depth, and infrared

images are collected form a multimodal image set, and a complete shoot object

labeling is performed. Then, the YOLOv5model is improved and applied to dense

and tiny tea shoot detection. Secondly, based on the improved YOLOv5 model,

this paper designs two data layer-based multimodal image fusion methods and a

feature layerbased multimodal image fusion method; meanwhile, a cross-modal

fusion module (FFA) based on frequency domain and attention mechanisms is

designed for the feature layer fusion method to adaptively align and focus critical

regions in intra- and inter-modal channel and frequency domain dimensions.

Finally, an objective-based scale matching method is developed to further

improve the detection performance of small dense objects in natural

environments with the assistance of transfer learning techniques.

Results and discussion: The experimental results indicate that the improved

YOLOv5 model increases the mAP50 value by 1.7% compared to the benchmark

model with fewer parameters and less computational effort. Compared with the

single modality, the multimodal image fusionmethod increases themAP50 value

in all cases, with the method introducing the FFA module obtaining the highest

mAP50 value of 0.827. After the pre-training strategy is used after scale

matching, the mAP values can be improved by 1% and 1.4% on the two

datasets. The research idea of multimodal optimization in this paper can

provide a basis and technical support for dense small object detection.

KEYWORDS

dense small object detection, multimodal image fusion, RGB-D-IR, scale matching,
frequency domain, attention mechanism, tea shoots
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1 Introduction

In recent years, the aging trend of agricultural labor has

significantly intensified, and the difficulty in recruiting and

expensive labor has limited the development of the tea industry

(Han et al., 2014). The manual picking of premium tea accounts for

about 60% of the labor used for managing the whole tea plantation,

while excellent high-grade tea is picked with delicate leaf tips that

grow in different positions, postures, and densities, making it

difficult for machine picking especially in the unstructured

environment with wind and light changes (Xu et al., 2022). Thus,

it is essential to study intelligent tea-picking technology to promote

the development of the tea industry. The key to realizing automated

tea picking is the accurate identification of tea shoots. In recent

years, with the development and application of computer

technology, the accurate identification of tea shoots based on

image processing has become a research hotspot (Lin et al., 2019).

Since there are obvious color differences between tea shoots and

old leaves and tree trunks, color features can be used to extract

shoot regions in the image, so the early research on tea shoot

segmentation is mainly based on color features. The primary

process of traditional image processing algorithms based on color

space involves image pre-processing, color feature selection,

segmentation, and other steps (Bojie et al., 2019). To further

address the issue that tea leaf segmentation under natural

conditions is easily affected by the external environment, such as

old leaves, branches, and soil, and obscured and overlapping tea

leave. Machine learning methods have been introduced for

identification by extracting and synthesizing various feature

sample data for training, and standard methods for tee shoot

identification are developed based on features such as color,

texture, and shape, combined with the use of K-mean clustering,

support vector machine methods, Bayesian discriminant methods,

and cascade classifiers. Recognition methods based on traditional

machine vision rely on image pre-processing and data conversion,

and unreasonable pre-processing will significantly affect the

accuracy of the model (Karunasena and Priyankara, 2020) (Li

et al., 2021).

The algorithm based on deep learning has high accuracy,

providing a basis for studying intelligent tea shoot-picking

equipment in complex backgrounds. To alleviate the influence of

a complex environment on the performance of the detection model,

(Xiaoxiao et al., 2019) employed a pre-segmentation method and

then used the improved YOLO series of medium and large-scale

network models to detect tea shoots with an average accuracy of

84.2%. To promote the deployment of models for detecting tea

shoots to picking leaf tips, lightweight models have received much

attention from researchers. (Xu et al., 2022) exploited the fast

detection capability of YOLOv3 and the high-precision

classification capability of DenseNet201 through a cascaded

network to detect tea shoots accurately. Although the above

methods have relatively high accuracy, robustness, and

generalization performance, they are difficult to detect adequate

tea shoots in complex environments on low arithmetic devices in

farmland due to the high dependence of deep learning network
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models on arithmetic power. Thus, researchers have investigated

the accuracy, speed, and lightness of model detection

simultaneously (Cao et al., 2022). proposed a tea shoot detection

algorithm that fuses GhostNet and YOLOv5; (Li Y. et al., 2022)

designed a YOLOv3-SPP deep learning algorithm based on channel

and layer pruning, which reduced the number of parameters, model

size, and inference time while achieving efficient and accurate tea

shoot detection. Note that few studies have focused on crop objects

that are dense and minutely difficult. However, in the study of small

target detection problems, remote sensing image target detection

has achieved excellent results. (Wu et al., 2019) presented a detector

called ORSIm, which effectively improves the accuracy of small

target detection in optical remote sensing images by integrating

different channel features, feature learning, and fast image pyramid

matching and enhancement strategies. To reduce the difficulty in

infrared small target detection, (Wu et al., 2023) proposed an

interactive cross-notice nested U-Net network called UIU-Net.

However, UIU-Net models infrared small target detection as a

semantic segmentation problem, which increases the cost of

labeling. Therefore, this study improves the detection

performance of dense and tiny tea shoots by improving the target

detection model and adopting migration learning techniques.

The above studies took only RGB images as the input to the

network. Nevertheless, in an unstructured environment, a single

sensor provides limited information to detect shoot targets under

various difficulties, such as different lighting conditions, the similar

color of tea shoots to the background, the small size of tea shoots,

dense tea shoots, overlapping tea shoots, branch and leaf occlusion,

as well as different poses. To overcome these difficulties, the

approach of using multimodal data can be adopted since there is

a certain complementarity and consistency between multimodal

information. Although RGB images can reflect features such as

color, brightness, and texture of objects, they can only provide two-

dimensional (2D) details. With the further development of image

acquisition devices, the availability of multimodal data for object

detection in agricultural environments has increased greatly, such

as depth images, infrared images, etc. (Sun et al., 2022). Depth

images contain information about the distance from the object to

the sensor, which can reflect the depth and three-dimensional (3D)

morphology of the object. So, depth images have more unique edge

features and shape features that can be exploited to better

distinguish between foreground and background. Meanwhile,

infrared images collect information about the heat distribution of

the object, which can reflect the temperature and thermal radiation

characteristics of the object. Most importantly, depth and infrared

images are less affected by illumination and viewing angle, and they

can be used to perform stable target detection in complex

environments. Thus, in recent years, research work has been

devoted to using multimodal information to improve the

performance of crop detection. For instance, (Tao and Zhou,

2017) extracted improved 3D descriptors (Color-FPFH) that

incorporate color features and 3D geometric features from pre-

processed point clouds to obtain richer feature information to

enhance the accuracy of detecting apples. (Gan et al., 2018)

designed an algorithm for green citrus fruit detection by
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integrating image alignment, information fusion, fruit classification,

and detection into a single step to realize real-time detection.

Experimental results indicate that the fusion of color and thermal

images can effectively improve the detection of unripe green citrus

fruits. Additionally, some studies use depth information to exclude

complex backgrounds in agricultural environments to enhance the

detection performance of target objects in RGB images. For

example, (Lin et al., 2019) presented a depth filter and Bayesian

classifier-based image segmentation method based on red-green-

blue-depth (RGB-D) images to remove complex backgrounds. This

improves citrus detection and localization accuracy in a natural

outdoor orchard environment. (Fu et al., 2020) developed a faster

R-CNN-based apple detection method using RGB images and

depth features in a dense leafy wall tree. The background was first

eliminated using a depth threshold of 1.2 m to obtain the

foreground RGB image. Then, the detection results of the original

RGB image and the foreground RGB image were compared by using

two different pre-trained network architectures (ZFNet and

VGG16). The results demonstrated that removing the background

tree using the depth filter can improve the fruit detection accuracy

by 2.5%.

Methods for effective fusion methods of multimodal

information have attracted much attention. In multimodal image

target detection, the fusion methods for different information can be

usually divided into three types: data layer fusion, feature layer

fusion, and decision layer fusion. First, data layer fusion methods

treat multimodal data as indistinguishable multichannel data and

can exploit the inherent complementarity between different

modalities to supplement the incomplete information in the input

stage. For instance, (Gené-Mola et al., 2019) collected RGB images,

depth images, and infrared images of apples simultaneously and

performed range-correction on the signal intensity to solve the

signal attenuation problem. The detection of apples was achieved

by applying the Faster R-CNN model to five channels of input

images (color (RGB), depth (D), and distance-corrected intensity

signal (S)). The results indicate that the F1-score improves by 4.46%

when depth and range-corrected intensity channels are added, and

an F1-score of 0.898 and an AP of 94.8% are obtained when all

channels are used. (Liu et al., 2019) proposed a method to fuse

aligned RGB images, NIR images, and deep convolutional neural

networks for kiwifruit detection. In their study, two different fusion

methods were investigated: image fusion (fusing RGB and infrared

images on the input layer) and feature fusion (combining the feature

maps of two VGG16 networks with separate input RGB and NIR

images). The results showed that the highest AP value of 90.7% was

achieved by using the image fusion method. (Rong et al., 2023)

applied a multimodal (RGB images and depth images) data fusion

approach to optimize the input of YOLOv5 to reduce the effect of

background on false tomato recognition and improved the recall of

unripe tomatoes with a detection accuracy of 97.9% by the improved

YOLOv5-4D. However, the crude data layer fusion method may

result in information redundancy and noise propagation with

limited enhancement effect, affecting the quality and accuracy of

the fused data. The second type of fusion method, i.e., the feature

layer fusion method, inputs multimodal images into parallel
Frontiers in Plant Science 03
branches, extracts independent features at different scales in

different modes, and then fuses the features. For instance, (Wu

et al., 2021) developed a new multimodal remote sensing image

classification network called CCR-Net. CCR-Net uses features from

different modalities obtained by a CNN extractor and fuses them

more compactly, allowing better processing and analysis of

multimodal remote sensing data. (Hong et al., 2021) designed a

new supervised algorithm for GCNs, called miniGCNs. miniGCNs

jointly uses CNNs and GCNs to extract more diverse and

differentiated feature representations for hyperspectral image

classification tasks. However, both are based on image

classification tasks. (Sun et al., 2022) proposed a noise-tolerant

RGB-D feature fusion network for outdoor fruit detection to

integrate RGB feature information, depth feature information, and

an attention-based fusion module to adaptively fuse multimodal

features to remove the adverse effects of depth noise and focus

perception on the essential parts of the features. The proposed NT-

FFN achieves an AP50 value of 95.4%. However, the inappropriate

feature fusion approach in the feature layer fusion method may

increase the difficulty of model learning and aggravate the imbalance

of the network learning modality. The third type of feature fusion

method, i.e., the decision layer fusion method, fuses the detection

results of the last stage. For example, (Tu et al., 2018) adopted a

faster region-based convolutional neural network (Faster R-CNN) to

detect passion fruit for color images and depth images, respectively,

and the two detection results based on RGB images and depth

images were combined to improve the detection performance. (Lin

et al., 2022) developed a regression network with multi-branch

architecture to extract and fuse RGB, depth, and geometric

features easily. The proposed post-fusion architecture significantly

improved the fresh weight detection accuracy of lettuce shoots at

different growth periods. However, the decision-level fusion method

may consume a lot of computational resources due to the repeated

computation of other multimodal branches, and the process learns

the features of individual modalities independently without

considering the correlation between different modal information.

Therefore, to realize efficient real-time detection of tea shoots in an

agricultural intelligent picking environment, this study investigates

two data layer-based multimodal information fusion methods and a

feature layer-based multimodal information fusion method,

respectively. Meanwhile, a lightweight frequency domain attention

mechanism module is designed for the feature layer fusion method

to effectively fuse feature information across modalities.

To efficiently detect small targets of dense tea shoots in complex

environments, this study improves the architecture of the YOLOv5

target detection model. Additionally, to make up for the deficiency

of RGB image-based tea shoot detection, this study designs two data

layer-based multimodal fusion methods and a feature layer-based

multimodal fusion method based on the YOLOv5 model and

designs a cross-modal fusion module based on frequency domain

and attention mechanism. The main contributions of this study are

summarized below:
1. A tea image dataset of the natural environment is

constructed. It contains aligned RGB images, depth
frontiersin.org
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Fron
images, and infrared images; the RGB images are annotated

with tea shoot objects.

2. The architecture of the YOLOv5 model is modified and

adjusted to improve the detection performance of the

model for dense and tiny tea shoots.

3. The scale matching method is optimized based on the

object scale. The generalization and robustness of the tea

shoot detection model are improved by applying transfer

learning techniques.

4. Two multimodal fusion methods based on the data layer

and one multimodal fusion method based on the feature

layer are investigated. Meanwhile, a cross-modal fusion

module based on frequency domain and attention

mechanism is designed to learn complementary

information by adaptively focusing key regions in intra-

and inter-modal frequency domain dimension and channel

dimension to improve the performance of the tea shoot

detector.
2 Materials and methods

2.1 Data

2.1.1 Data acquisition
The dataset used in this study was obtained at the National Tea

Tree Breeding Farm, Mengdingshan Tea Modern Agricultural Park,

Ya’an City, Sichuan Province, China. The images were taken on the

evening of 09/03/2023 and 19/03/2023, the prime time for famous

tea harvesting. This study took Microsoft Kinectv2 as the image

acquisition device, which integrates an RGB camera and a depth

sensor that works following the TOF principle. The sensor provides
tiers in Plant Science 04
three types of data: a color image, a depth image that can generate a

3D point cloud of the scene, and a received infrared backscattered

intensity image.

In the data acquisition process, the Microsoft Kinect v2 depth

camera was fixed on a triangular stand, with one end of the camera

being connected to 220V outdoor mobile power and the other end

being connected to a laptop via USB 3.0. The depth image, infrared

image, color, and depth information aligned low-resolution image

were captured simultaneously on the computer by calling the API of

PyKinectV2 (Kinect/PyKinect2). First, a depth image, an infrared

image, and an aligned image (RGB) with both color and depth

information were captured simultaneously; then, they were resized

to 512×424 pixels; finally, the images were mirrored and inverted

separately and saved. The RGB image was stored in 24 bits, the

infrared image in 16, and the depth image in 8. The depth camera

was placed vertically from 0.5-1.0 m away from the top of the tea.

To reduce the effect of bright light on sensor performance under

outdoor conditions, all data were captured from 5:00 to 7:00 PM on

an overcast day. Table 1 presents the parameters and specifications

of the equipment used in the data acquisition process.

2.1.2 Data preparation
A multimodal image dataset consisting of RGB, infrared, and

depth images was obtained after data acquisition, each with a

resolution of 512×424 pixels. The original image schematic is

shown in the first row of Figure 1. Since the depth sensor has a

larger vertical field of view than the color camera, the RGB, infrared,

and depth images were cropped by removing the bottom and top

images that do not provide RGB information, and the image

resolution became 521×360 pixels, as shown in the second row

of Figure 1.

In the data annotation process, tea shoots were manually

annotated using the COCO Annotator (Stefanics et al., 2022)
TABLE 1 Acquisition equipment specifications.

Device Specifications Parameter

RGB-D Sensor Manufacturer and model Microsoft Kinectv2

RGB channel resolution (pixels) 1920 × 1080

RGB channel field-of-view (FOV) 84.1° × 53.8°

IR and Depth channel resolution (pixels) 512 × 424

IR and Depth channel FOV 70° × 60°

Working range (m) 0.5–8

Notebook Computer Manufacturer and model ASUS

Processor AMD Ryzen 7 6800H with Radeon Graphics 3.20 GHz

RAM 16.0 GB

Outdoor mobile power Manufacturer and model St. Xinlong

Size 255×165×145mm

Power capacity 90000mAh

Output voltage 220V
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online annotation software for RGB images only. To simulate the

complexity of tea shoot growth in a natural environment and reflect

the effectiveness of the detector, tea shoots with less than 75%

occlusion and tiny tea shoots were annotated with absolute pixels

larger than 2×2 pixels. Each image annotation process took 0.5-0.6

hours, and each image contains 200-400 tea shoot targets with an

absolute scale of about 30×30 pixels. To achieve a low manual

annotation cost and investigate the effect of multimodal images on
Frontiers in Plant Science 05
the performance of tea shoot detection, RGB, infrared, and depth

images shared a common set of labels: the annotation result on RGB

images. An example of the image after mapping the labeling results

to infrared and depth images is shown in the third row in Figure 1.

This study collected 100 sets of multimodal image data on 09/03/

2023 and 19/03/2023, respectively, 200 sets in total. Each dataset

contains one RGB, infrared, and depth image, as well as the

corresponding labels. Table 2 shows the distribution of the datasets
B C

D E F

G H I

A

FIGURE 1

RGB images, IR images, and Depth images are represented from left to right. (A-C) captured original image; (D-F) cropped image; (G-I) annotated image. .
TABLE 2 Distribution of data sets and image examples.

Datasets Collection time Number RGB IR Depth Label

Dataset3 Dataset1 2023.03.09 100

Dataset2 2023.03.19 100
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and example images. Dataset1 and Dataset2 represent the datasets

collected on 09/03/2023 and 09/03/2023, respectively. Dataset 3

represents the set of Dataset 1 and Dataset 2 datasets.

Since the color camera has a more significant horizontal field of

view than the depth sensor, the original high-resolution color image

(1920×1080 pixels) and the RGB image (521×360 pixels) used in

this study were unaligned, and this study aimed to investigate the

detection method and model for dense small targets in low-

resolution images. Therefore, this study only used the low-

resolution RGB images and the aligned infrared and depth images

as experimental data. In future work, we will explore the problem of

image alignment and super-resolution-assisted small target

detection based on high-resolution and low-resolution images,

and the original high-resolution color images will be used.
2.2 Methods

2.2.1 YOLOv5s baseline and improvement
architecture

YOLO (You Only Look Once) (Redmon et al., 2016) is a classic

single-stage target detection network. The YOLOv5 (Jocher et al.,

2022) model is widely used in various target detection tasks because

of its flexibility and versatility. It uses CSPNet (Cross Stage Partial

Network) (Wang et al., 2020) as the backbone to extract feature

information and SPP (Spatial Pyramid Pooling) (He et al., 2015) to

extract multi-scale depth features and then fuse the features at

different scales through a feature pyramid constructed by PANet

(Path Aggregation Network) (Liu et al., 2018), and the final results

are output through three detection heads P3, P4, and P5. The depth

and width of the YOLOv5 model depend on the bottleneck layer

and several convolutional kernels, whereas the YOLOv5s model has

a small size and fast inference speed, which is beneficial for real-

time target detection in realistic scenarios. This is the reason why

this study chooses YOLOv5s as the baseline. However, since the

baseline model is usually designed for detecting medium and large

targets, there are some limitations in the detection of small objects.

YOLOv5s mainly includes the Focus layer, the design of the CSP1_n

module, the number of stacks, and the PANet architecture. This

study will elaborate on their limitations and the corresponding

improvement measures for dense and tiny tea shoot detection.

Figures 2A, B show the architectures of the YOLOv5 model and our

improved YOLOv5s_improve model, respectively, and Figure 2C

shows the detailed construction of the modules that may be

included in these two models.

The limitations and improvements are analyzed as follows:
Fron
1. From Focus to Conv: Focus is a lightweight convolutional

layer. To reduce computational cost and speed up network

training and inference, the Focus layer divides the input

into four parts; convolutional operations are performed on

each part separately, and the results are stacked finally to

form the output feature map. However, this approach may

sacrifice the accuracy of small target detection. Therefore,
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to better capture the feature information of small targets,

this study uses replaces the Focus layer with a superficial

Conv layer to increase the perceptual field of the model and

the feature representation.

2. From “3693” to “8833”: The backbone of YOLOv5 used

convolution with a step size of 2 in the early stage to halve

the feature size. As the network deepens, the feature size

retained for multi-scale target detection is much smaller

than the size of the original input image. This low-

resolution feature map does not contain information that

can be used to reliably distinguish tiny objects. (Ning et al.,

2023) effectively improved the performance of small object

detection by increasing the shallow layers (the

convolutional layers in the high-resolution stage) in the

ResNet (He et al., 2016) and HRNet (Sun et al., 2019),

thereby using fewer convolutional layers in the later stages

of the network. The experimental results indicated that the

early downsampling leads to information loss and difficulty

in representing the features of small targets. Similarly, the

number of CSP1_n modules in each phase of the YOLOv5

backbone network is modified to allocate more resources to

handle higher-resolution features, and the number of

CSP1_n modules in the post-backbone stage of the

network is reduced to not introduce additional

computational burden. The original YOLOv5 backbone

contains four CSP1_n modules, and the number of

modules is 3, 6, 9, and 3 in order. Through several

experimental adjustments, this study finds that the

optimal number of CSP1_n modules is 8, 8, 3, and 3 in

order.

3. From CSP2 to C3_DSConv: In the CSP2 module of the

neck, the standard convolution operation may cause the

small object model of tea shoots to overfit and introduce an

enormous computational burden. (Nascimento et al., 2019)

proposed a flexible quantized convolution operator

DSConv that uses inexpensive integer operations instead

of single-precision operations while maintaining the kernel

weights and output on the probability distribution. This

study replaces the standard convolution in the neck CSP2

module with DSConv to ensure the lightweight and real-

time characteristics of the tea shoot detection model.

4. From PANet to FPN: The main idea of PANet is to obtain

higher-level semantic information through aggregation and

transfer, but it requires a lot of computational resources

and time and may lead to information loss and model

overfitting, and PANet focuses on the improvement of

detection accuracy of medium and large targets. FPN

(Feature Pyramid Network) (Lin et al., 2016) obtains

better scale adaptation and semantic information through

feature transfer and fusion, which helps to preserve the

delicate features and information required for small object

detection and effectively reduces the complexity of the

model. Thus, this study replaces the PANet structure with

FPN.
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2.2.2 Multimodal object detection architecture
2.2.2.1 Multimodal image object detection

To fully utilize the complementary information between RGB,

infrared, and depth images of tea shoots to enhance the ability of the

model to detect and localize tea shoots, two data layer-based fusion

methods and a feature layer-based fusion method is established in

this study. Besides improving the quality of intra-modal and inter-

modal information fusion, a simple and effective FFA module is

designed in this study by using the feature layer-based data fusion

method. The input and the backbone of the models of the three

fusion methods in this study are illustrated in Figure 3.

Method 1 uses a simple data layer fusion approach. As shown in

method (A) in Figure 3, through several repetitive comparative

experiments, the best weighting coefficients are first derived for

RGB, infrared, and depth images, and they are 0.6, 0.2, and 0.2,

respectively. Secondly, the RGB, infrared, and depth images are fused

by simple pixel-level summation with the best weighting coefficients,

respectively. Then, the synthesized images are fed into the single-

stream object detection backbone for feature extraction. Finally, BP3,

BP4, and BP5 features are provided to the model head for detection.

Method 2 uses data layer fusion based on channel mapping.

Again, the best weighting coefficients are derived for infrared and

depth images by repeated experiments with multiple comparisons

of 0.5 and 0.5, respectively. Then, the infrared and depth images are

fused by simple pixel-level summation with the best weighting

coefficients. The obtained image A is taken as the fourth channel of

the image to obtain a four-channel RGBA image by stitching it with

the color RGB image. Next, the RGBA image is fed into the designed

4-channel single-stream object detection backbone for feature

extraction, and finally, BP3, BP4, and BP5 features are provided
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to the model head for detection. The details are shown in method

(B) in Figure 3.

Method 3 uses feature layer fusion. The infrared and depth

images are first stitched into a single three-channel image

(D_IR_IR) to preserve as much information as possible under each

modality; then, the stitched and colored RGB images are fed into the

designed dual-stream object detection backbone to extract features,

and finally, BP3, BP4, and BP5 features are provided to the model

head for detection. The detailed design of YOLOv5s-Multimodal, a

multimodal image fusion architecture based on feature layers, is

presented in Figure 3C. In the YOLOv5s_Multimodal model, this

study uses YOLOv5s_improve as the backbone of two branches, but

the parameters in the two backbones are not shared. The same

backbone structure is used to extract features from D_IR_IR and

RGB images under each modality. In the intermediate stage of the

backbone, the features are fused by the frequency domain-based

cross-modal fusion attention module (FFA) to facilitate the

interaction and fusion of modalities, and the fused features are fed

to the RGB stream and the D_IR_IR stream respectively for feature

extraction in depth.

2.2.2.2 Cross-modal fusion attention module based on
frequency domain

RGB, infrared, and depth images have their strengths and

weaknesses, and their information is usually complementary but

contains noise. There are better solutions than simply fusing or

processing RGB, infrared, and depth images. However, noisy

information can be filtered and calibrated using features from

another modality, so this study proposes FFA, and its structure is

shown in Figure 4.
B

C

A

FIGURE 2

Model architecture diagram and detailed module construction diagram. (A) YOLOv5s model architecture diagram; (B) YOLOv5s_improve model
architecture diagram; (C) detailed construction of the modules that may be included in the model.
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B

C

A

FIGURE 3

Three fusion methods for multimodal images. (A) Data layer-based fusion method 1; (B) Data layer-based fusion method 2; (C) Feature layer-based
fusion method.
FIGURE 4

Structure of the FFA module.
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To reduce expensive computations, improve the inference speed

of the model and better preserve the spatial and semantic

information of the images, this study chooses to filter, enhance,

and fuse the information of different modalities in the frequency

domain. To resolve the noise and uncertainty in other modalities

and to calibrate and extract the frequency feature information in

various modalities, this study infers the attention map along the

channel dimension and frequency dimension in turn and then

multiplies the attention map with the feature map in the frequency

domain to perform adaptive frequency domain feature fusion

optimization. To facilitate feature extraction and interaction

between modes, this study enhances information interaction

between other methods by simple convolution and cross-fusion.

Spatial domain to frequency domain: feature maps Frgb and

Fdepth _ ir are respectively converted to Ff _ rgb and Ff _ depth _ ir in the

frequency domain using FFT. Equations (1-2) show the

corresponding 2D FFT.

Ff _ rgb(u, v) = o
M−1

x=0
o
N−1

y=0
Frgb(x, y)e

−j2p(uxM+vy
N ) (1)

Ff _ depth _ ir(u, v) = o
M−1

x=0
o
N−1

y=0
Fdepth _ ir(x, y)e

−j2p(uxM+vy
N ) (2)

where F(x, y) is a feature map of size M � N , and equations (1)

and (2) are evaluated for the discrete variables u and v with u =

0, 1, 2,…,M − 1 and v = 0, 1, 2,…,N − 1.

Information fusion and enhancement of channel dimensions: First,

global pooling operations are performed on the frequency -domain

feature maps Ff _ rgb and Ff _ depth _ ir respectively to obtain global

frequency -domain feature information, and both global average

pooling and global maximum pooling are used to retain as much

information as possible. Then, four resultant vectors are generated and

stitched to form a richer frequency -domain feature representation.

Next, the frequency -domain feature information is further extracted

and fused by the MLP_1 layer. Subsequently, the sigmoid operation is

performed to obtain the weights, and the weights are divided into

WC
f _ rgb andWC

f _ depth _ ir by the split operation. Finally, the weights are

multiplied with the input frequency-domain feature maps Ff _ rgb and

Ff _ depth _ ir to obtain the frequency-domain feature maps FC
f _ rgb and

FC
f _ depth _ ir , respectively. In this way, the information enhancement and

complementation of the channel dimension of RGB and Depth_IR

features are realized. The whole process is shown in Equations (3-7).

Ff _ rgb _ c = Concat MaxPool(Ff _ rgb
� �� �

, AvgPool Ff _ rgb
� �� �Þ (3)

Ff _ depth _ ir _ c = Concat MaxPool(Ff _ depth _ ir
� �� �

, AvgPool Ff _ depth _ ir
� �� �

(4)

WC
f _ rgb  ,W

C
f _ depth _ ir

= F split d FMLP _ 1 Concat Ff _ rgb _ c  , Ff _ depth _ ir _ c
� �� �� �� �

(5)

FC
f _ rgb = WC

f _ rgb ⊛ Ff _ rgb (6)
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FC
f _ depth _ ir = WC

f _ depth _ ir ⊛ Ff _ depth _ ir (7)

where d represents the Sigmoid operation.

Information fusion and enhancement in the frequency domain:

first, the Concat operation is performed on frequency -domain feature

maps FC
f _ rgb and FC

f _ depth _ ir to obtain a richer frequency -domain

feature representation. Then, after MLP_2 layers, which are two 1×1

convolution and nonlinear transform RELU operations, more features

are extracted to obtain a complex frequency -domain feature

representation. Next, the sigmoid operation is performed to obtain

the weights, and the weights are divided into WF
f _ rgb and WF

f _ depth _ ir

by the split operation. Finally, the weights are multiplied with the input

frequency-domain feature maps FC
f _ rgb and FC

f _ depth _ ir to obtain the

frequency-domain feature maps FF
f _ rgb and F

F
f _ depth _ ir , respectively. In

this way, the information enhancement and complementarity of the

frequency dimension of RGB and Depth_IR features are realized. The

whole process is shown in Equations (8-11).

FC
f _ rgb _ depth _ ir = Concat(FC

f _ rgb   ,F
C
f _ depth _ ir) (8)

WF
f _ rgb  ,W

F
f _ depth _ ir

= F split d Conv1�1 RELU Conv1�1 FC
f _ rgb _ depth _ ir

� �� �� �� �� �

(9)

FF
f _ rgb = WF

f _ rgb ⊛ FC
f _ rgb (10)

FF
f _ depth _ ir = WF

f _ depth _ ir ⊛ FC
f _ depth _ ir (11)

where d represents the Sigmoid operation.

Frequency domain to spatial domain: IFFT is performed on

feature maps FF
f _ rgb and FF

f _ depth _ ir to convert them back to feature

maps FCF
rgb and FCF

depth _ ir in the spatial domain, respectively. The

corresponding 2D IFFT is shown in Equations (12-13).

FCF
rgb(x, y) =

1
MN o

M−1

u=0
o
N−1

v=0
FF
f _ rgb(u, v)e

j2p(uxM+vy
N ) (12)

FCF
depth _ ir(x, y) =

1
MN o

M−1

u=0
o
N−1

v=0
FF
f _ depth _ ir(u, v)e

j2p(uxM+vy
N ) (13)

where x = 0, 1, 2,…,M − 1, y = 0, 1, 2,…,N − 1.

Re-enhancement of purified information: To obtain a better

feature representation, two convolution operations are used to

enhance the feature information extracted in the above process,

and the information is fed to the RGB stream and Depth_IR stream

respectively for the next stage of feature extraction and fusion by

cross-fusion. Equation (14-15) shows the purified information re-

enhancement operation.

Frgb = Conv1�1 Conv1�1 FCF
depth _ ir

� �� �
⊕ Frgb (14)

Fdepth _ ir = Conv1�1 Conv1�1 FCF
rgb

� �� �
⊕ Fdepth _ ir (15)
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2.2.3 Objective-based scale matching
The influence of uncontrollable factors in the natural

environment, such as light, temperature, and humidity, leads to

different growth states of tea shoots. Particularly, tea shoots

proliferate from early March to early April, as shown in Dataset1

and Dataset2, which exhibit large differences in length, volume,

posture, and color, although only ten days. This poses a challenge to

the generalizability and robustness of the detection model. Figure 5

shows the number and relative scale distribution of tea shoot objects

in the two datasets.

From Figure 5, it can be observed that: In Dataset1, the total

number of tea shoots exceeds 20,000, the distribution of tea shoots

is relatively dense, the width and height of tea shoots are similar in

attitude, and the relative scale of over 90% of the tea shoots is less

than 5%. In Dataset2, the total number of tea shoots is close to

25,000, the distribution of tea shoots is very dense, the width, height,

and posture of tea shoots are different, and the relative scale of over
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90% of tea shoots is less than 10%. Overall, both datasets are dense,

making it challenging to find targets. The difference between them is

that Dataset1 has fewer samples and more minor relative scale

differences, while Dataset2 has more samples and larger relative

scale differences.

(Yu et al., 2020) found that the problem of scale mismatch

reduces the accuracy of feature representation and detection models,

and a smaller dataset may lead to model overfitting. To improve the

generalization and robustness of the detector for detecting tea shoots

of different periods under the condition of small samples, this study

uses a simple scale-matching method combined with migration

learning techniques to improve the detection performance of the

model. The targets in Dataset2 are scaled to align with the relative

scales of the targets in Dataset1. Then, the best weights obtained from

training using the aligned dataset are used as pre-training weights to

guide the detection model to fine-tune the parameters on Dataset1 to

improve the detection capability of the detector for Dataset1. This
B

C D

A

FIGURE 5

Distribution of tea shoot objects in Dataset1 and Dataset2 datasets. (A) the total number of targets and the relative width and height scales of target
boxes in Dataset1; (B) the total number of objects and the relative width and height scales of object boxes in Dataset2; (C) the relative width and
height scales and distribution of objects in Dataset1; (D) the relative width and height scales and distribution of objects in Dataset2.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1224884
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Shuai et al. 10.3389/fpls.2023.1224884
facilitates the distribution of features between the pre-trained dataset

of the aligned network and the dataset learned by the detector,

enabling the model to better utilize the information at small scales.

The specific procedure is as follows: first, the average scale (s1,

s2) of the two datasets Dataset1 and Dataset2, and their

distributions are calculated by statistical data methods, and the

scale scaling factors (a12, a21) between the two datasets are obtained.

Then, search, judgment, and scaling operations are performed for

all targets in the images. For instance, for Dataset2, if the relative

scale of an object is larger than the average scale s1, the target object

is keyed out according to the label box, followed by scaling the

object according to the scale scaling factor a21, and then the object is

put back to the original position to keep the center position

unchanged. Additionally, to not damage the contextual structure

information of the target object, this study uses the adjacent pixel-

based image interpolation method to recover the empty part caused

by scaling the target object, and the same processing is conducted

for Dataset1. Figure 6 shows the image comparison effect of the

objective-based scale matching method.
2.2.4 Loss function
The loss function used to detect tea shoots in this paper consists

of three components: confidence loss function, classification loss

function, and boundary regression prediction loss function, as

shown in Equation (16).
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LO = LConfidence + LClassification + LBox (16)
3 Results and discussion

3.1 Experimental details

The experiment was conducted on a computer running

Windows 10 operating system, and the hardware and software

parameters are listed in Table 3. The official YOLOv5 version 6.1

(Jocher et al., 2022) codebase was taken, and the modifications

described in sections 2.2.1 and 2.2.2 were implemented on top of it.

The training was performed using the SGD optimizer. The initial

learning rate was 1E-2, the final learning rate was 1E-5, and the

weights decayed to 5E-3. After a momentum of 0.8 was used in the

first three warm-up phases, it became 0.937. The training process

was run for 300 epochs with a batch size of 4. Online data

enhancement methods such as horizontal flip, random rotation,

color change, and mosaic, were used during the training to enhance

the sample diversity.
3.2 Evaluation metrics

In this study, floating point operations per second (GFLOPs),

precision (Precision), recall (Recall), and average precision (mAP)
B

C D

A

FIGURE 6

Objective-based scale matching method. (A) Example image in Dataset1; (B) Example image in Dataset2; (C) Example image after Dataset1 is aligned
to Dataset2 scale; (D) Example image after Dataset2 is aligned to Dataset1 scale.
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were taken as evaluation metrics for measuring model complexity

and performance. The calculation formulas of these metrics are

shown in Equations (17-21).

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

mAP = o
N
1 AP

N
=oN

1

Z 1

0
P
(R)dR
N

(19)

Parameter = Cin � Cout � K � K (20)

GFLOPs = (2CinK
2 − 1)� HoutWoutCout (21)

The parameter denotes the number of parameters of the model.

GFLOPs is a metric of the computational power of the model, and a

smaller GFLOPs value indicates that the model has less

computational burden and can respond to requests faster. The

two metrics visually represent the complexity of the model. TP, FP,

and FN denote the number of correctly detected objects, incorrectly

detected objects, and undetected tea shoot objects, respectively.

Precision is the probability that a tea shoot is predicted to be a

positive sample among the actual positive samples. The recall is the

probability of tea shoots being predicted as positive among the

actual positive samples. AP represents the average precision, a

combination of precision and recall. The mAP is the average of

AP of different categories, where N is the number of types; in this

experiment, there is only one category of tea shoots, so N is 1. In this
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study, mAP50 and mAP95 refer to the mAP values when the value

of IOU is taken at 50% and 95%, respectively.
3.3 Ablation and comparison experiments

This section validates the models and methods selected and

designed in this study through ablation experiments and

comparison experiments. First, a set of comparison experiments

was designed to verify the validity of the baseline model selected in

this study. Then, a group of ablation experiments based on the

modified baseline model was carried out to demonstrate the

effectiveness of the improved method adopted in this study. Next,

the superiority of the proposed method was verified by designing a

set of comparative experiments of multimodal image target

detection using different fusion methods and approaches. Finally,

a set of ablation experiments was designed to verify the effectiveness

of the migration learning and scale -matching methods.
3.3.1 Validation of the baseline framework
In this experiment set, 200 color RGB tea shoot images in Datatset3

were used as the experimental dataset, and it was divided into a training

set, a validation set, and a test set at the ratio of 8:1:1. The dataset was

trained and validated on models of YOLOv3 (Redmon and Farhadi,

2018), YOLOv4 (Bochkovskiy et al., 2020), YOLOv5, YOLOv6 (Li C.

et al., 2022), YOLOv7 (Wang et al., 2022), and YOLOv8 (Jocher et al.,

2023), and the test results andmodel performance are shown in Table 4.

To ensure fairness, no pre-training weights were used for all models in

the training process, and the testing environment and configuration

were identical during the experiments.

Although YOLOv8 obtained the highest mAP50 value, its number

of parameters was 1.5 times larger than that of the YOLOv5smodel, and

its GFLOPs was 1.8 times higher than that of the YOLOv5s model.

YOLOv3, YOLOv4, and YOLOv7, although their number of parameters

and GFLOPs were smaller, had relatively low mAP50 values, and

especially, YOLOv3 and YOLOv4 had a lower recall. YOLOv6

performed relatively poorly on small targets with dense tea shoots.

Overall, YOLOV5 is much smaller and more lightweight than the other

models in terms of parameter size and GFLOPS, although its mAP50

value is lower than the highest value. Therefore, YOLOv5s is easier to
TABLE 3 Software and hardware parameters.

Accessories Model

Operating system Windows 10

CPU Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz

RAM 128 GB

GPU NVIDIA Quadro RTX 5000

Development environments Python3.8, Pytorch1.10.1, CUDA10.2
TABLE 4 Comparative results of detection capabilities of different YOLO frameworks and baseline models.

Method Parameters GFLOPs P R mAP50 mAP95

YOLOv3 8666692 12.9 0.686 0.585 0.647 0.254

YOLOv4 5874116 20.0 0.636 0.608 0.799 0.377

YOLOv5 7012822 15.8 0.825 0.733 0.801 0.425

YOLOv6 18500000 45.17 0.779 0.715 0.623 0.322

YOLOv7 6007596 13.0 0.814 0.733 0.703 0.326

YOLOv8 11125971 28.4 0.819 0.732 0.802 0.459
fron
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deploy in practical application scenarios. The above results validate the

selection of YOLOv5s as the baseline model in this study.

3.3.2 Validation of baseline model improvements
In this set of experiments, 200 color RGB tea shoot images in

Datatset3 were used as the experimental dataset, and they were

divided into a training set, a validation set, and a test set at the ratio

of 8:1:1. “From Focus to conv” (NoFocus),” From 3693 to 8833”

(BH),” From CSP2 to C3_DSConv” (C3_DSConv), and “From

PANet to FPN” (FPN) modular architectures and methods were

added to the baseline model, respectively. Table 5 presents the

experimental results. Note that no pre-training weights were used

for all models during training, and the testing environment and

configuration were identical during the experiments.

Overall, the mAP50 of the model was improved after the

modules and methods described in Section 2.2.1 were added to

the baseline model. Particularly, the recall of tea shoots was

significantly enhanced when all the improved methods were used,

indicating that our proposed method benefits the detection of tea

shoots that are prone to miss-detection. Meanwhile, the number of

model parameters and GFLOPs was optimized, which is consistent

with our original intention to achieve real-time detection of dense

and tiny tea shoots through a lightweight model. Note that the

accuracy was significantly improved when the BH strategy was used

(aggravating the computation of the early stages of the network).

Still, the GFLOPs were also increased by introducing more

computation. For this purpose, this study used C3_DSConv to

reduce the computational effort, and it can be seen that the GFLOPs

were significantly reduced without affecting the accuracy.

Additionally, this study demonstrates the performance of the

YOLOv5s model under other BH strategies. The details are

presented in Table 6. First, it can be seen that relative to the

distribution of CSP1_n modules of the original YOLOv5s model,

the model detection accuracy and especially the recall were

significantly improved by using the method of early calculation of

the weighted network. Second, the optimal performance was

achieved when the number of CSP1_n modules in the four stages

of the backbone was set to 8, 8, 3, and 3, respectively.
3.3.3 Comparison of multimodal image
fusion methods

In this set of experiments, the Dataset3 dataset was used as the

experimental dataset, and it was divided into a training set, a
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validation set, and a test set at the ratio of 8:1:1. However, it is

worth noting that the data were preprocessed differently according

to different modal fusion methods. This is shown in detail in Section

2.2.2. Also, to further validate the effectiveness and superiority of

our proposed baseline model and the multimodal feature fusion

model, different experimental models were compared. The

performance of the data layer fusion approach was compared on

the YOLOv5s baseline and improved models. The performance of

the feature layer fusion approach was compared on the CFT model

proposed by (Qingyun et al., 2021), the HINet proposed by (Park,

2022), and the YOLOv5-Multimodal model designed in this study.

Besides, to show the impact of the baseline improvement-based

approach and the introduction of the FFA model, Without_FFA

and Without_Improve were added as the ablation experiments for

the YOLOv5-Multimodal model. No pre-training weights were

used for all models in the training process, and the test

environments and configurations were identical during the

experiments. Table 7 presents the specific comparison results.

Overall, the detection accuracy of tea shoots was improved after

the multimodal fusion method was used, indicating that the

information in different modalities is complementary, and our

conjecture in Section 2.2.2 is validated. Regarding the various

fusion methods, the multimodal image fusion method using

channel-based (Data_Fusion1) achieves a more considerable

accuracy gain than the multimodal image fusion method using

pixel-by-pixel (Data_Fusion2). However, it increases the number of

parameters by a smaller amount. Meanwhile, the multimodal image

fusion method with a feature layer introduces more parameters

than the multimodal image fusion method based on the data layer.

Notably, the mAP50 value of the model decreased when HINet was

used directly. Since the HINet model extracts high-frequency

information in the frequency domain, so it loses more low-

frequency information to guide the detection of small targets.

Also, the information is not filtered and aligned in the cross-

modal fusion process, thereby introducing some noise that affects

the training and convergence of the model. For the GPT model,

although the detection accuracy was improved, the use of the multi-

head self-attentive mechanism (MHSA) (Vaswani et al., 2017) in

the cross-modal fusion module introduces a large number of

parameters and computational effort, which is not acceptable in a

low-cost agricultural application environment.

In contrast, the model YOLOv5s_Multimodal proposed in this

study significantly reduced the number of parameters by purifying,

fusing, and enhancing multimodal information in the frequency
TABLE 5 Results of ablation experiments with improved baseline model.

NoFocus BH FPN C3_DSConv Parameters GFLOPs P R mAP50 mAP95

7012822 15.8 0.825 0.733 0.801 0.425

√ 7012822 15.8 0.835 0.742 0.808 0.427

√ 6746326 16.4 0.841 0.750 0.814 0.444

√ 5979478 14.6 0.836 0.750 0.814 0.441

√ 7016278 13.7 0.826 0.749 0.805 0.426

√ √ √ √ 5715670 13.5 0.841 0.751 0.818 0.448
fron
Bold indicates the best experimental results.
The "√" symbol indicates the use of the policy, method, or module.
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domain and obtained the best mAP50 value for the tea shoot

detection. Meanwhile, by comparing the use of YOLOv5s and

YOLOv5s_improve models in different fusion methods, it was

found that both YOLOv5s_improve models performed optimally,

which again demonstrated the superiority and robustness of the

dense and tiny tea shoot detector designed in this study. Note that

when the Without_FFA model was used, i.e., directly summing and

fusing the features under two modes, the mAP50 value reached the

lowest value, which was even lower than that of the unimodal target

based on the YOLOv5s model. To analyze this result, the feature

maps and 3D surface maps of the first fusion stage of the

Without_FFA model and YOLOv5s_Multimodal model are

shown in Figure 7.

Figures 7C, F reveals that when the features extracted in

different modalities are directly summed and fused, the resulting

feature maps are relatively noisy, and the target edges will be more

obvious for the pairs. This is because the coarse and cluttered

feature information deteriorates the training and convergence of the
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model. However, when the FFA module was used to calibrate,

purify, and enhance the feature information within and between

each modality, the noise in the feature maps was significantly

reduced. The tea shoot targets were more prominent, and the

edges were more clearly defined. It can be seen from Figures 7B,

E that in the 3D image with preserved spatial information, the tea

shoots do not show significant gradient differences from the

background compared to the direct summation mode of the

multimodal feature information. However, after the FFA module

was used again, the tea shoots exhibited noticeable gradient

differences with the background leaves, which is beneficial for

identifying and localizing tea shoots. Also, this demonstrates the

effectiveness and superiority of our proposed FFA module on the

multimodal tea shoot dataset.

3.3.4 Verification of scale matching
To investigate and validate the effectiveness of the scale-

matching-based transfer learning method in tea shoot detection, a
TABLE 7 Comparison of experimental results of different fusion methods and different models.

Fusion Method Model Parameters P R mAP50 mAP95

Data_Fusion1 YOLOv5s_3ch 7012822 0.833 0.740 0.804 0.446

YOLOv5s_improve_3ch 5715670 0.848 0.754 0.820 0.446

Data_Fusion2 YOLOv5s_4ch 7013974 0.832 0.742 0.808 0.436

YOLOv5s_improve_4ch 5722230 0.848 0.756 0.824 0.460

Feature_Fusion GPT(s) 44500982 0.840 0.745 0.810 0.426

HINet(s) 23738982 0.821 0.731 0.794 0.413

Without_FFA 11261174 0.807 0.718 0.774 0.394

Without_Improve 26424892 0.834 0.742 0.809 0.429

YOLOv5s_Multimodal 24764092 0.850 0.759 0.827 0.447
fron
Bold indicates the best experimental results.
TABLE 6 Performance demonstration of the YOLOv5s model under other BH strategies.

Number of CSP1_n modules Parameters P R mAP50 mAP95

3,6,9,3 7012822 0.825 0.733 0.801 0.425

5,7,6,1 6859030 0.842 0.753 0.811 0.435

4,8,6,2 6889814 0.838 0.740 0.803 0.427

7,8,3,1 6736022 0.844 0.745 0.813 0.442

6,7,4,2 6694934 0.836 0.747 0.813 0.436

10,6,4,1 6705238 0.843 0.746 0.810 0.439

9,8,2,2 6746326 0.839 0.746 0.813 0.443

8,7,3,3 6705238 0.840 0.752 0.811 0.437

9,6,3,3 6705238 0.837 0.747 0.807 0.437

9,9,3,1 6746326 0.839 0.753 0.811 0.441

8,9,2,2 6746326 0.836 0.748 0.811 0.440

8,8,3,3 6746326 0.841 0.750 0.814 0.444
Bold indicates the best experimental results.
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set of ablation comparison experiments was designed in this study. In

the experiments, the color RGB image datasets in Dataset1 and

Dataset2 were used as the experimental datasets, called Tea1 and

Tea2, respectively, and they were divided into a training set, a

validation set, and a test set at a ratio of 8:1:1, and YOLOv5s and

YOLOv5s_improve were used as the experimental models. Firstly,

this study compared the performance of the two models on Tea1 and

Tea2. Secondly, Tea1 was aligned to the scale of Tea2 according to the

scale matching method to obtain Tea1up, and the performance of the

two models on Tea1up was compared. Similarly, Tea2 was aligned to

the scale of Tea1 according to the scale-matching method to obtain

Tea2d, and the performance of the two models on Tea2d was

compared. Finally, the best weights obtained by training Tea2 and

Tea2d were used as pre-training weights to train the model on Tea1

(denoted as Tea2_Tea1 and Tea2d_Tea1, respectively), and the best

weights obtained by training on Tea1 and Tea1up were used as pre-

training weights to train the model on Tea2 (denoted as Tea1_Tea2

and Tea1up_Tea2). The specific comparison results are given in

Figure 8. Note that the test environment and configuration during the

experiments are identical.

Figure 8 shows that the precision, recall, and mAP50 values of the

Tea1 and Tea2 datasets were reduced when their scales were aligned

to that of the original dataset. This may be because the difficulty of

small object detection was exacerbated by the reduced scale of Tea2.

Besides, since Tea1 ignored the small object objects in the image
Frontiers in Plant Science 15
edges when increasing the scale, it resulted in fewer small target

samples, thus affecting the training and convergence of the model.

However, the model accuracy improvement could be stronger when

Tea1 and Tea2 were used to guide each other’s learning, and the scale

mismatch problem may arise. When the scale-aligned datasets Tea2d

and Tea1up were used to guide the model to learn on the Tea1 and

Tea2 datasets, respectively, the detection accuracy was significantly

improved. Additionally, to more clearly compare the performance of

different scale datasets and pre-training strategies during model

training and validation, the localization loss curve of the

YOLOv5s_improve model on the validation set is shown in Figure 9.

Figures 9A, B show that when the pre-training weights were

used, the initial values of the localization loss were significantly

lower, with relatively small curve oscillations, and the loss

converged relatively quickly. However, the localization loss

converged best when the corresponding scale was used as the pre-

training dataset. This also demonstrates the effectiveness of the

target-based scale-matching method used in this study in guiding

the small target detection task.
3.4 Heat map visualization

To more intuitively illustrate the impact of model

improvements, explicitly modifying the baseline model for dense
B C

D

E F

G

A

FIGURE 7

First fusion stage feature map visualization. (A) input RGB image; (D) input Depth image; (G) input IR image; (C) feature map of the first fusion stage
in the Without_FFA model; (B) 3D surface map corresponding to the feature map of the first fusion stage in the Without_FFA model; (F) feature map
of the first fusion stage in the YOLOv5s_Multimodal model phase in the YOLOv5s_Multimodal model; (E) 3D surface map corresponding to the
feature map of the first fusion phase in the YOLOv5s_Multimodal model.
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and small targets, and the effectiveness of multimodal feature fusion

methods, this study used a gradient-weighted class activation

mapping (Grad-CAM) (Selvaraju et al., 2016) to visualize the

model considering the target based on tea shoots. Grad-CAM can

exploit the gradient of any target concept to flow into the final

convolution layer, thereby generating a rough localization map and

displaying it in the form of weights, where the weight values are

shown in red, yellow, green, and blue colors in decreasing order.

The redder the color in the corresponding graph, the more critical

the region for tea shoot detection. Figure 10 shows the heat map

visualization results for different models under different

inspection conditions.

Both YOLOv5s_improve and YOLOv5s-Multimodal models

perform better than YOLOv5s in various cases, e.g., the color of

tea shoots is similar to the background, tea shoots are relatively

sparse, the target scale is rather large, tea shoots are dense and tiny,

the color of tea shoots differs from the background, and the target

scale is relatively large. Note that when the tea shoot has a similar

color to the leaf and its background is difficult, the YOLOv5s model

collects minimal information and does not focus on many tiny tea
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shoot objects. However, YOLOv5s_improve focuses on more tiny

tea shoot objects by enhancing the retention and extraction of

detailed texture features. However, it is difficult for YOLOv5s and

YOLOv5_improve to focus on the groups of tea shoots with high

overlap, especially the tiny tea shoots in the overlap case where the

tea shoots are relatively dense and overlapping occlusion occurs.

However, the multimodal model YOLOv5s-Multimodal has multi-

class information input, so it can findmore tea shoots and has better

segmentation ability for tea shoot groups with high overlap. Besides,

it is no longer limited to the part of the stem tip. The model also

considers the related connecting stems, leaves, and stems. This

demonstrates the superiority of YOLOv5s-Multimodal for tea

shoot detection.
3.5 Visualization of results

To more intuitively compare the performance of different

detection models and different fusion methods on the tea shoot

detection task in a natural environment, this study performed a
BA

FIGURE 8

Comparison of experimental results of different models using objective-based scale matching and migration learning. (A) indicates the performance
on the YOLOv5s model using different scale datasets and training strategies; (B) shows the performance on the YOLOv5s_improve model using
different scale datasets and training strategies.
BA

FIGURE 9

Plots of box loss curves on the YOLOv5s_improve model for different scale datasets and pre-training strategies. (A) Box loss profile plots of Tea1 at
different scales and pre-training strategies; (B) Box loss profile plots of Tea2 at different scales and pre-training strategies.
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comparative analysis of the visualization results of different types of

samples after recognition. In this study, YOLOv5s (single modal),

YOLOv5s_improve (single modal), YOLOv5s_improve_3ch

(multimodal), YOLOv5s_improve_4ch (multimodal), and

YOLOv5s-Multimodal (multimodal) were used on the test set of

the corresponding experimental dataset. The inference was

conducted, and the performance of these models under different

detection conditions is shown in Figure 11.

In Figure 11, the first column shows relatively sparse and tiny

tea shoot targets. The second column shows rather large and sparse

tea shoot objects. The third column shows relatively dense and

small tea-shoot objects. The fourth column shows relatively large

and thick tea shoot objects, and the fifth column shows rather

complex tea shoot backgrounds. Overall, under different

challenging conditions, YOLOv5s_imporve and multimodal-based

fusion methods can substantially reduce false negatives (FN), and

there is a significant increase in true positives (TP) of YOLOv5s-

Multimodal visualization results, which again demonstrates the

superiority and robustness of our proposed method.
4 Conclusion

This study aims to improve the detection accuracy of dense and

tiny tea shoots in a natural environment and realize real-time object
Frontiers in Plant Science 17
detection. In this paper, a real-time dense and small tea shoot target

detection algorithm is designed based on multimodal image data,

baseline detection model architecture, multimodal image fusion

method, scale matching, and migration learning techniques.

First, to make up for dense and tiny tea shoot detection in a

complex environment, this paper uses the Conv layer to replace the

Focus layer in the YOLOv5s baseline, which is easy to lose detailed

information. This helps to extract features for tea shoot detection by

enhancing the computation of the early stage of the network while

using DSConv to balance the introduced computation and improve

the model’s attention to detail texture, and the recall of targets at

different scales is enhanced by the FPN structure. The improved

model achieves an accuracy of 84.1%, a recall of 75.1%, and a

mAP50 value of 81.8% on low-resolution RGB tea shoot images,

showing an improvement of 1.6%, 1.8%, and 1.7% compared to the

original YOLOv5s model.

Second, to make up for the deficiency of RGB image-based tea

shoot detection, two data layer-based multimodal fusion method

and one feature layer-based multimodal fusion method are

investigated in this paper. Compared with the images based on a

single modality, the mAP50 values of Data_Fusion1 and

Data_Fusion2 are improved by 1.9% and 2.3%, respectively.

Besides, the Feature_Fusion method proposed in this paper

achieves the highest mAP50 value of 82.7% at a relatively small

number of parameters compared to other feature layer-based
B C D E
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K L M N O

P Q R S T

A

FIGURE 10

Heat map visualization results for different models with different detection conditions. (A–E) The input images; (F–J) The results of YOLOv5s; (K–O)
The results of YOLOv5s_improve; (P–T) The results of YOLOv5s-Multimodal.
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multimodal fusion methods. This study mainly introduces a

frequency domain-based cross-modal attention fusion module to

perform purify, align, fuse, and enhance multimodal information

with minor computational effort and parameters. Thus, more

complementary information beneficial to detecting dense and tiny

tea shoots in complex environments is obtained. Although the

feature layer-based multimodal fusion approach proposed in this

study introduces a larger number of parameters compared with the

data layer-based multimodal fusion approach, the former achieves

optimal performance, providing a reference for feature layer-based

multimodal fusion approaches. In the future, we will continue to

consider the feature layer-based multimodal fusion approach in

model lightweight.

Finally, to investigate the differences and effects of training at

different scales, this study designed comparison experiments on two

tea shoot datasets with target scale differences, and their detection

results in different periods were compared. It can be found that

small-scale target detection is very complex. To improve the
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accuracy and recall of tea shoot detection in various scales, this

study uses migration learning techniques and scale matching to

align datasets of different scales and mutually guide the models to

learn at the corresponding scales, thereby improving the

performance of small target detection.

However, there are still some drawbacks and limitations in this

study. First, although the tea shoot samples used for training in this

study are about 50,000, the model’s generalization still needs to be

enhanced because the image data are relatively small and do not

contain all natural scenes. Secondly, affected by the data acquisition

equipment, there are some voids and noises in the acquired depth

maps and infrared images, and in the future, we will consider using

techniques such as depth estimation, depth enhancement, and

image denoising to obtain high-quality depth images and infrared

images. Finally, also affected by the data acquisition equipment, the

Kinectv2 device could initially acquire high-resolution RGB images;

however, since the color camera has a different field of view from

the depth camera, the acquired high-resolution images are not
B C D E
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FIGURE 11

Visualization results of different detection models and methods under different detection conditions. (A–E) The test results of YOLOv5s; (F–J) The
test results of YOLOv5s_improve; (K–O) The test results of YOLOv5s_improve_3ch; (P–T) The test results of YOLOv5s_improve_4ch; (U–Y) The test
results of YOLOv5s-Multimodal. The green, blue, and red boxes indicate true positive (TP), false positive (FP), and false negative (FN) predictions,
respectively.
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aligned with the depth images and infrared images, and the existing

alignment techniques based on traditional image processing have

some errors. This cannot be neglected in the detection task of dense

and small tea shoots. In the future, we will consider introducing a

deep learning-based image alignment method and combining it

with super-resolution techniques to further improve the detection

performance of dense and tiny tea shoots.
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