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(Capsicum spp.)
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Chilli leaf curl virus disease caused by begomoviruses, has emerged as a major

threat to global chilli production, causing severe yield losses and economic

harm. Begomoviruses are a highly successful and emerging group of plant

viruses that are primarily transmitted by whiteflies belonging to the Bemisia

tabaci complex. The most effective method for mitigating chilli leaf curl virus

disease losses is breeding for host resistance to Begomovirus. This review

highlights the current situation of chilli leaf curl virus disease and associated

begomoviruses in chilli production, stressing the significant issues that breeders

and growers confront. In addition, the various breeding methods used to

generate begomovirus resistant chilli cultivars, and also the complicated

connections between the host plant, vector and the virus are discussed. This

review highlights the importance of resistance breeding, emphasising the

importance of multidisciplinary approaches that combine the best of

traditional breeding with cutting-edge genomic technologies. subsequently,

the article highlights the challenges that must be overcome in order to

effectively deploy begomovirus resistant chilli varieties across diverse

agroecological zones and farming systems, as well as understanding the

pathogen thus providing the opportunities for improving the sustainability and

profitability of chilli production.
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Introduction

Chilli (Capsicum spp.) is one of the oldest domesticated crops

originating in the Americas (Bosland and Votava, 2012). The genus

Capsicum comprises of about 38 species with extensive diversity in

plant, flower, and fruit traits (Khoury et al., 2020). Capsicum annuum

(L.), C. baccatum (L.), Capsicum chinense (Jacq.), Capsicum frutescens

(L.) and Capsicum pubescens (Ruiz & Pav.) are the five domesticated

species with C. annuum being the most widely grown and consumed

(Bosland and Votava, 2012). Chilli pepper, comprising around 17%

of the global spice trade (Ahmed et al., 2000), is an essential

ingredient contributing flavor and spiciness to numerous cuisines

around the world (Bosland and Votava, 2012). Chilli production and

consumption have increased over the past three decades, especially

for hot chilli peppers and an estimated quarter of the world’s

population consumes chilli on a daily basis (Halikowski-Smith,

2015), rising from 1.4 to roughly 4.2 million tonnes of dried types

and from about 14 to 38 million tonnes of fresh types. Approximately

65% of chilli is produced in Asia (FAOSTAT, 2022) (Figure 1) and

being a high value crop (DeWitt and Bosland, 1993), chilli can have

economic benefits for smallholder farmers, greatly improving family

income and socioeconomic mobility (Weinberger and Lumpkin,

2007; Kahane et al., 2013).

Though chilli is considered to be a hardy plant, it is affected by

several pests and diseases causing extensive losses. The past three

decades have seen an increasing number of viral diseases causing

considerable yield loss in several parts of the world (Suzuki andMori,

2003; Kenyon et al., 2014b). Among the begomoviruses causing viral

diseases in chilli, chilli leaf curl disease (ChiLCD), caused by Chilli

leaf curl virus (ChiLCV), is the most problematic disease in the

Asiatic region (Kenyon et al., 2014a; Thakur et al., 2018).Whereas, in

the Americas, Pepper golden mosaic virus (PepGMV) and Pepper

huasteco yellow vein virus (PHYVV) cause significant yield losses in

pepper production (Devendran et al., 2022).

The primary focus of this review is directed towards discussing

the Chilli pepper begomovirus diseases thereby underscoring the

significant challenges that breeders and farmers are facing. In chilli,
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diseases caused by begomoviruses are a relatively recent problem.

Pernezny et al. (2003) have reported five begomoviruses affecting

chillies in the Americas and only one virus in Asia. Since then, the

number of begomoviruses infecting chillies in Asia has greatly

increased, with at least 29 species and a large diversity of strains

reported (Kenyon et al., 2018). This increase is partly a result of

more intensive investigation, but probably more importantly due to

the rapid evolution and recombination between viruses, particularly

under strong selection pressure.

The genomes of begomoviruses consists of either a single-

stranded DNA composed of one (monopartite) or two (bipartite)

components of size 2.5- 3 kb, known as DNA-A and DNA-B

(Sakata et al., 2008; Zerbini et al., 2017). Begomoviruses reported

in the New World (NW) regions, such as in the American regions

(Latin America and North America), mostly have bipartite

genomes, whereas begomoviruses reported in the Old World

(OW) regions, such as Africa, Asia, Australia, and Europe, are

mostly monopartite genomes with few exceptions (Devendran et al.,

2022). Members of the genus Begomovirus infect dicotyledonous

plants, are widely distributed globally (Figure 2), and are classified

based on the presence of separately encapsulated genome

components- as monopartite with a DNA-A-like component and

as bipartite containing DNA-A and DNA-B (Brown et al., 2012).

Generally, DNA-A encodes six open reading frames (ORFs)

necessary for viral replication, transcription, activation, and

encapsidation. The DNA-B component facilitates cell to cell and

nucleocytoplasmic trafficking of the viral genome (Kumar et al.,

2015). In monopartite species, intracellular movement is controlled

by the DNA-A-like component (Hanley-Bowdoin et al., 2013). The

two components of bipartite genomes share a common region,

origin of replication (ORI) of approximately 200 nt (Brown et al.,

2012). Begomoviruses are seen in association with satellite of ~1.3

kb circular single-stranded DNA molecules that are often necessary

for symptom development in the host (Briddon et al., 2001;

Saunders et al., 2004). The tendency for genetic recombination or

the acquisition of extra DNA components, and the synergistic

interaction among different begomoviruses have resulted in the
A B

FIGURE 1

Production quantity share (Metric tonnes) of green chilli across the regions of the world (A) and production quantity share (Metric tonnes) of dry
chilli across the regions of the world (B).
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emergence of new viruses and strains that overcome host resistance

and often resulting in more severe and different disease symptoms

and an expansion of the host range (Lefeuvre et al., 2007).
Genetic recombination, mutation, synergy
in Begomoviruses

Members of the genus Begomovirus are among the most

economically damaging pathogens and pose a significant threat to

the production of chilli (Senanayake et al., 2007). Begomoviruses

were historically divided, based on geographical origin, into New

World and Old World groups, with the New World isolates being

bipartite and Old World isolates being mostly monopartite (Zhou,

2013). However, there are numerous exceptions to this classification

(Melgarejo et al., 2013), and there is genetic evidence that NewWorld

isolates were present in the Old World prior to continental drift (Ha

et al., 2008), making this classification arbitrary. Although chilli leaf

curl virus disease has been reported to be associated with both

bipartite and monopartite begomoviruses (Hussain et al., 2004;

George et al., 2014), it was historically associated primarily with a

complex of monopartite begomoviruses, and a diverse group of

betasatellites (Kumar et al., 2015). However, in the years since this

study, more and more bipartite begomoviruses have been reported in

association with chilli leaf curl virus diseases (Kenyon et al., 2018).

The DNA-A encodes six ORFs that encode protein for

replication, encapsidation and movement AV1/V1 and AV2/V2

in sense orientation and AC1/C1, AC2/C2, AC3/C3, and AC4/C4 in

the antisense orientation (Fontenelle et al., 2007; Hanley-Bowdoin

et al., 2013). The AC1 encodes for a Rep (replication associated

protein) and AC2 for a TrAP (transcriptional activator protein)

while the protein encoded by AC3 is the Ren (replication enhancer

protein) whereas the protein encoded by AC4 serves as RNA

silencing suppressor. The other two ORFs are AV1 coding for a

coat protein and AV2 coding for a protein whose function is

unknown (Chattopadhyay et al., 2008). Similarly, the DNA-B

component also contains two ORFs (BC1 and BV1). BC1 and

BV1 regions contain fundamental elements that were necessary for
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the replication and transcription of the viral genome. NSP (Nuclear

Shuttle Protein) aids in the movement of viral genetic material

within the nucleus of the host cell. C1 is a Replication-Associated

Protein that is essential for viral replication. The Common Region

(CR) contains regulatory components that are required for

replication, recombination, and gene expression control.

Understanding these areas and their functions is essential.

(Figure 3) (Sahu and Mishra, 2021; Shingote et al., 2022). Various

plant cellular and physiological pathways that are intrinsically

maneuvered by geminiviruses for the spread and establishment of

infection in the plant (Sahu et al., 2014). DNA-A encoding proteins

are responsible for replication, encapsidation and vector

transmission while DNA-B encoding proteins have movement

related functions (Shahid et al., 2019).

Mutation, recombination and pseudo-recombination are the

major drivers of evolution and genetic variation of plant viruses

(Juarez et al., 2019). Genetic variation favors evolutionary potential

and adaptation of viral populations with novel pathogenic attributes

to a changing environment (Lima et al., 2017) and to host resistance

(Escriu, 2017). In the evolution of geminiviruses, recombination has

played an especially impactful role (Varma and Malathi, 2003;

Lefeuvre and Moriones, 2015). Due to high mutation and

recombination rates, genetic variability of begomoviruses

increases at a rapid and significant rate (Fiallo and Navas, 2023).

Kumar et al. (2015) suggested that the recombinant begomoviruses

and betasatellites were the major factors for the emergence of chilli

leaf curl virus disease epidemics in India. Infectious recombinants

or pseudo recombinants of begomoviruses can emerge during

multiple infections (Pita et al., 2001; Mendez-Lozano et al., 2003).
FIGURE 2

Global spread of Begomovirus infection in chilli.
A

B C

FIGURE 3

Basic genome structure of begomovirus causing chilli leaf curl virus
disease (A) DNA-A segment and DNA-B segment (A) and its
associated beta satellite (B) and alpha satellites (C).
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Chakraborty et al. (2008) reported the formation of a viable super

virulent pseudorecombinant of tomato leaf curl New Delhi virus

(ToLCNDV) (DNA-A) and tomato leaf curl Gujarat virus

(ToLCGV) (DNA-B), which caused severe leaf curl disease in

tomato. Recombination analysis indicated that the chilli leaf curl

Palampur virus (ChiLCPaV) strain had likely descended from a

sequence that arose through interspecific recombination between

tomato leaf curl Karnataka virus (ToLCKV) and croton yellow vein

mosaic virus (CYVMV) (Kumar et al., 2011). The A-rich region and

satellite conserved regions (SCR) were reported as hot spots for

recombination among chilli-infecting beta-satellites (Pan et al.,

2020). It has been suggested that the high rate of recombination

events of the DNA-A component and their respective betasatellites

are the major reasons for the occurrence of ChiLCV in the previous

non-host crops such as Cape Daisy (Osteospermum fruticosum)

(Mishra et al., 2020a), Amaranthus spp. (George et al., 2014),

Mentha spicata (Saeed et al., 2014), Petunia spp. (Al-Shihi et al.,

2014) and Mirabilis jalapa (Jaidi et al., 2017).

Plant viruses co-infecting the same host plant can interact in either

in a synergistic or an antagonistic way (Renterıá-Canett et al., 2011).

Mixed infections faciliatate recombination, which could lead to the

appearance of more severe strains or new Begomovirus species

(Wahyono et al., 2023). Previous studies reported mixed infection of

leaf curl-causing new and more virulent viruses in chilli (Singh et al.,

2016; Mishra et al., 2020a). The preference of whiteflies for multiple

hosts and transmission of multiple viruses simultaneously favor these

mixed infections. Synergistic interaction within different

begomoviruses strains during multiple infections was shown to result

in increased viral DNA accumulation in the infected host plants along

with the tendency to suppress plant defense mechanisms (Burgyan and

Havelda, 2011; Caracuel et al., 2012). The synergistic relationships

among begomoviruses were shown to result in a permissive cellular

environment in the resistant chilli plants, which lead to the breakdown

of host resistance (Singh et al., 2016). Synergistic interactions have been

reported by Singh et al. (2016) where an association of four viral

genomic components in symptomatic chilli cultivars resulted in

increased viral DNA accumulation and severe symptoms. Similarly,

Renterıá-Canett et al. (2011) reported synergistic interaction of two

begomoviruses (pepper golden mosaic virus (PepGMV) DNA-A, and

DNA-A and DNA-B of pepper huasteco yellow vein virus (PHYVV)

resulting in a marked increased disease severity in N. benthamiana,

chilli, and tomato plants. In contrast, antagonistic interactions were

also found in chilli plants co-infected with pepper huasteco virus

(PHV) and PepGMV (Mendez-Lozano et al., 2003). Alves-Júnior et al.

(2009) demonstrated that the reduced titers of viruses in tomato

infected by tomato yellow spot virus (ToYSV) and tomato rugose

mosaic virus (ToRMV) may be due to the antagonistic negative

interference between two begomoviruses even though the symptoms

expressed were more severe in comparison with single infections. More

intensive studies of the synergistic and antagonistic interactions among

the viruses could provide important insights into viral pathogenesis

and evolution.

High rates of mutations and frequent recombination’s are the

major cause for the rapid evolution and genetic variability in

begomovirus populations (Lima et al., 2013). Mutations in the coat

protein (CP) may play a key role in both the adaptation of
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begomoviruses to the changing vector populations and the evolution

of begomoviruses (Pan et al., 2020). Vector transmission also gets

affected by the genetic variation in the begomoviruses. Mutation in the

CP gene may lead to variations in the transmissibility by a given

whitefly species (Caciagli et al., 2009). Pan et al., 2020, described that

the whitefly transmission characteristics of squash leaf curl China virus

(SLCCNV) is significantly modified due to a single mutation in the CP.

Similarly, Noris et al. (1998) documented that the double mutation in

the CP of tomato leaf curl Sardinia virus (TLCSaV) resulted in the loss

of whitefly transmissibility. However, the adaptation of viruses to insect

vectors after genetic variation due to mutation and recombination is

unclear. Viral mutations, recombination and genetic reassortment

constitute the biggest threat to chilli cultivation in terms of the

breakdown of host plant resistance. Knowledge about the existence

and frequency of recombination in a viral population could help

understand the extent to which genes are exchanged potentially

leading to the emergence of new virus variants.
Symptoms associated with Chilli leaf curl
virus disease

Viral disease epidemics are affected by various factors such as

insect vectors, viral species, and the environment (Mahatma et al.,

2016). In tropical and subtropical regions, chilli faces severe losses,

up to 100%, due to chilli leaf curl virus disease (Chattopadhyay et al.,

2008; Varma et al., 2011; Senanayake et al., 2012; Srivastava et al.,

2017; Kumar, 2019; Mandal et al., 2017). The emergence of new virus

strains and the spread of whitefly ‘B’ biotype, lack of resistance or

breakdown of host resistance, ineffective insecticides, increased

vector host range, are major factors that influence the chilli leaf

curl virus disease outbreaks and crop loss. It is generally agreed that

seed transmission of geminiviruses does not occur. However, Fadhila

et al. (2020) reported that the pepper yellow leaf curl Indonesia virus

(PepYLCIV) is seed-transmissible. The molecular analysis revealed

that embryos and seedlings grown from PepYLCIV infected chilli

seed collected from various locations indicated 25-67% PepYLCIV

DNA-A and 50-100% PepYLCIV DNA-B. The possibility of seed

transmission needs to be further investigated, because other factors

could contribute to this finding.

Infection is the outcome of complex tripartite interaction

among host plants, insect vectors and infecting viruses (Sun et al.,

2017). Begomoviruses are transmitted by whiteflies in a persistent

and circulative manner. The interaction between begomoviruses

and the whitefly vector is well understood. Jasmonic acid (JA) plays

a role in host resistance to whitefly and begomovirus infection has

been shown to reduce transcription of some JA-responsive genes,

enhancing vector survival and reproduction (Li et al., 2019). It has

been reported that the begomovirus virulence factors suppress

terpene production, reducing host resistance to the whitefly

vector (Li et al., 2014), thereby increasing the spread of the virus.

Management of begomoviruses has been based primarily on

insecticides against the whitefly vector. However, the use of

insecticides has been found to be only partially effective, costly for

producers, and represents a hazard to farmers, consumers, and the

environment (Borah and Das, 2012), while limiting export potential
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because of the presence of pesticide residues. Furthermore, using

insecticides to manage the vector is often ineffective because

transmission of the virus occurs during the vector’s probing of

the plant surface, prior to feeding, and before the insecticides can

take effect (Kenyon et al., 2014a).

It is likely that chilli leaf curl virus diease existed in as early as

1963 in India; however, only reports of symptoms exist from this

time (Mishra et al., 1963) and associaton with begomoviruses is

more recent. Since 2005 the severity and occurrence of the

begomovirus in chilli has significantly increased worldwide

(Kenyon et al., 2014a). The diseases elicited by begomoviruses in

chilli can be characterized into three broad categories of symptoms;

vein yellowing, yellow mosaic, and leaf curl. Apart from leaf

anatomy damage, the virus alters the plant physiological

functions and fruit production resulting in axillary buds turning

into leaf clusters, failing to bear any fruit, plant stunting, and

eventually leading to plant death and complete crop loss. A wide

range of symptoms are associated with chilli leaf curl virus infection

and includes leaf mosaic, leaf curling, chlorosis, rolling, crinkling,

cupping, puckering, enations, blistering, petiole bending and

twisting, crowding of leaves, vein clearing, plant stunting and

reduced fruit number and size (Stenger et al., 1990; Torres-

Pacheco et al., 1996; Khan et al., 2006; Senanayake et al., 2007;

Taibangnganbi et al., 2017; Chiemsombat et al., 2018; Manisha

et al., 2020; Hernández-Verdugo et al., 2001; Fadhila et al., 2020).

Incidence and severity of the disease under natural field conditions

is influenced by various external factors. Symptoms can be affected by

environmental factors such as soil fertility and microclimate around

plants, age of the plant and host genetic makeup (Matthews, 1991) in

addition to the species or strain of the virus. Increased severity of chilli

leaf curl virus associated symptoms has also been observed in the

presence of cognate betasatellites molecules (Kumar et al., 2016).

Betasatellites were found to be a prerequisite for the induction of

severe leaf curl symptoms in Capsicum spp. although the viral genomic

DNA-A and-B contain open reading frames (ORFs) known to cause

infection (Chattopadhyay et al., 2008; Ruhel and Chakraborty, 2019).

Typical symptoms of chilli leaf curl virus have been observed only

when both the viral genome and satellite DNA were present

(Chattopadhyay et al., 2008). Kumar et al. (2011) provided further

evidence for the role of betasatellite molecules in the induction of leaf

curl symptom in C. frutescens. When C. frutescens plants were

agroinoculated with infectious clones that included both the

betasatellite (1.7-mer) and partial tandem repeats of the viral genome

(1.9-mer), the characteristic ChiLCV symptoms such as leaf curling

and stunting appeared, but when the viral genome alone was used, no

symptoms of leaf curling appeared. Furthermore, synergistic

interactions among different Begomovirus species could lead to

increased symptom severity and new and diverse symptoms, in

addition to the new viral species with an expanded host range.
The whitefly vector

Whitefly (Bemisia tabaci Genn.; Hemiptera: Aleyrodidae) is a

polyphagous insect that feeds on over 361 plant species from 89

families (Li et al., 2011). Recently, it has been reported that the
Frontiers in Plant Science 05
broad host range of whitefly could to be due to the presence of a

plant-derived phenolic glucoside malonyltransferase gene,

BtPMaT1, which enables whiteflies to neutralize phenolic

glucosides, a toxin produced by plants as a defense mechanism

(Xia et al., 2021). Interestingly, the horizontal transfer of the

BtPMaT1 gene from plants to whitefly is predicted to have been

mediated by a viral species. The primary damage caused by whitefly,

from a phytopathological view, is their role as vectors for plant

viruses. However, as sucking pests, their feeding also causes direct

damage to the plant and can result in a reduction in photosynthetic

capacity. Furthermore, their feeding nymphs excrete honeydew

which promotes sooty mold that interferes with photosynthetic

activity of plants. Geminiviruses and whiteflies have been

interacting for millennia (Czosnek et al., 2001). Whiteflies ingest

virus through their stylets while feeding on the phloem of infected

plants (acquisition access period (AAP)) and ingest the virus with

saliva into the phloem of other plants (inoculation access period

(IAP). When whiteflies suck the phloem sap from infected tissue,

virions reach the insect midgut via the stylet and eventually reach

the salivary glands, from where they are transmitted to new plants

during feeding or probing (Sinisterra et al., 2005; Wei et al., 2014).

Along with DNA A and B, circular beta-satellites (Tabein et al.,

2013), and delta-satellites (Hassan et al., 2016) are transmitted by

whiteflies in the presence of helper viruses. Whiteflies transmit

begomoviruses in a persistent manner and will be transmitted only

after the incubation period of hours to days (Ghanim et al., 2001).

The AAP and IAP required for adult whiteflies have been reported

for many Begomovirus species (Radhakrishnan et al., 2004; Hidayat

and Rahmayani, 2007). Studies on the virus-vector relationships

revealed that the AAP and IAP for begomoviruses range from 30 to

210 and 5 to 60 min, respectively (Senanayake et al., 2012). The

transmission efficiency usually differs among Begomovirus species

however, for artificial inoculation, the IAP used is considerably

longer than required to ensure successful transmission (Barchenger

et al., 2019).

The recent unprecedented upsurge of whitefly populations has

been identified as a major contributor to the chilli leaf curl virus

epidemics in recent years (Kumar et al., 2015; Padhi et al., 2017).

The rapid spread of begomoviruses infecting chilli has been

associated with an expansion of polyphagous whitefly B-biotype

that are able to breed twice faster thatn non-B biotype (Wang et al.,

2023). Plant viruses can produce direct and plant-mediated indirect

effects on their insect vectors, modifying their life cycle and

behaviour (Moreno-Delafuente et al., 2013). The B-biotype has

been reported to have an increased fecundity in tomato leaf curl

china virus (TYLCCNV) infected plants (Luan et al., 2013). Further,

it was hypothesized that the virus could induce behavioural change

of the vector as well as plant biochemical composition, increasing

whitefly spread (Brown, 2000). Co-evolution between the viral

capsid protein and whiteflies favors the rapid spread and

increased host range of begomoviruses across the globe. Several

studies have reported that begomoviruses associated with certain

crops (such as chilli or tomato) can be transmitted to new host

species through whitefly vectors (Senanayake et al., 2012; Kushwaha

et al., 2015). In contrast, there seems to be some level of host

specificity that occurs among begomoviruses. It has been reported
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that tomato yellow leaf curl virus (TYLCV) is able to infect and

replicate in chilli and sweet pepper; however, chilli is typically

asymptomatic or develop mild symptoms when various strains and

inoculation techniques were used (Morilla et al., 2003; Kil

et al., 2016).
Detection and diagnosis

Diagnosis of ChLCV based on symptoms alone is not definitive

or reliable. Mixed or co-infections of multiple species of

begomoviruses as well as other viruses, particularly members of

the genera Potyvirus and Cucumovirus are common and these

mixed infections confound accurate diagnosis (Naresh et al.,

2016). Although serological techniques like dot blot hybridization

and enzyme-linked immunosorbent assay (ELISA) have been used

in the past to identify begomovirus, they are less accurate than

molecular techniques. A laboratory test based on molecular

detection techniques such as polymerase chain reaction (PCR)

and the use of species-specific primers; partial nucleotide

sequencing of the viral genome, whole genome amplication by

rolling circle amplification (RCA) followed by sequencing (Khan

et al., 2006; Senanayake et al., 2007; Chattopadhyay et al., 2008).

Recombinase polymerase amplification (RPA) and loop-mediated

isothermal amplification (LAMP) can also be utilized for field-based

diagnosis of begomoviruses because they don’t need thermocycling

equipment and can be carried out on portable devices.

Development of on-site adaptable RPA-based rapid tests would

be valuable in surveys as well for screening breeding materials for

virus resitance, and for epidemiological and genetic diversity

studies. Viruses can be detected and diagnosed quickly, easily,

and accurately using isothermal-based assays. LAMP and RPA

are two of the most popular isothermal amplification assays as

they don’t need thermocycling equipment and can be carried out on

portable devices. Isothermal amplification kits have been

commercially available and are currently being used for the

detection of begomoviruses in a wide range of crops. The choice

of diagnostic method may depend on factors such as cost,

availability of equipment and expertise.
The role of the satellite molecules in
Begomoviruses pathogenesis

Generally, satellite RNAs have been widely found to be

associated with RNA plant viruses (Simon et al., 2004), it was not

until 1997 that the first DNA satellite was identified to be associated

with the monopartite begomoviruses, tomato leaf curl virus

(ToLCV) (Dry et al., 1997). Begomoviruses are primarily

associated with two classes of ssDNA satellite molecules, known

as alphasatellites and betasatellites. Alphasatellites are capable of

self-replicating in their hosts, but require helper begomoviruses

for movement in plants and insect transmission (Zhou, 2013).

Betasatellites are generally associated with many monopartite

begomoviruses and are essential for infection and the induction

of typical disease symptoms (Jose and Usha, 2003; Saunders et al.,
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2004). Similar to alphasatellites, betasatellites also depend on

begomoviruses for cell-to-cell and systemic spread throughout the

host, for encapsidation, and for transmission to new host plants via

whitefly vectors. Begomovirus-satellite complexes infect a wide

range of plants within at least 37 genera and 17 different families

(Zhou, 2013).

Betasatellites typically contain a satellite conserved region

(SCR), an adenine-rich region, and a bC1 ORF (Shingote et al.,

2022 Single-stranded satellite DNA has been reported to be

associated with both bipartite and monopartite begomoviruses

(Hussain et al., 2004; George et al., 2014). Betasatellites associated

with monopartite viruses were around half the size of their helper

begomoviruses genome and are essential to induce typical

symptoms of virus diseases in their hosts (Briddon et al., 2002).

Chattopadhyay et al. (2008) reported for chilli leaf curl disease

(ChiLCD) caused by a complex mixed virus particle consisting of

the virus variant of monopartite chilli leaf curl virus (ChiLCV) and

a betasatellite variant of tomato leaf curl Bangladesh virus

(ToLCBDB) (Chattopadhyay et al., 2008). The Begomovirus genus

betasatellite molecules are important determinants of pathogenicity

for most monopartite begomoviruses in many economically

important crops (Yang et al., 2011). For replication, encapsidation

and cell-to-cell motion, the beta satellite molecule relies on the

helper virus (Briddon and Stanley, 2006). Betasatellites encodes a

13.5 kDa protein named bC1, a suppressor of gene silencing

essential (Transcriptional gene silencing (TGS) and PTGS (Post-

transcriptional gene silencing) (Cui et al., 2005; Li et al., 2014)

contributes to pathogenesis (Eini et al., 2009; Badar et al., 2020),

affect JA-responsive gene (Yang et al., 2011) and capable of

functionally replacing the DNA-B encoded movement protein

(Patil and Fauquet, 2010). Additionally, betasatellites also

contribute to greater accumulation of viral DNA in the infected

tissues (Sivalingam and Varma, 2012). Recently, Kumar et al. (2015)

illustrated the need for beta-satellites to develop extreme chilli leaf

curl disease. They observed mild symptoms in the chilli plants when

inoculated with DNA-A like sequences, but in the presence of

cognate betasatellites along with the accumulation of viral DNA, the

severity of the symptoms was increased. Symptom enhancement

due to betasatellites is not restricted to monopartite begomoviruses;

the interaction of bipartite begomoviruses and betasatellite is also

a cause.

Alphasatellites are 1.3-1.4kb sized DNA molecules that are

coupled with begomoviruses and betasatellite complexes (Briddon

et al., 2004). Though their role is obscure, they were considered as a

class of self-replicating circular ssDNA satellite like molecules that

require helper viruses for their intra and intercellular movement,

encapsidation, reduction in betasatellites accumulation and doesn’t

have any role in symptom induction (Nawaz-ul-Rehman et al.,

2010; Idris et al., 2011; Xie et al., 2002). Alpha satellites encode their

own nanovirus-like replication initiator protein called alpha Rep

(Saunders and Stanley, 1999; Badar et al., 2020). By overcoming

host defense by RNA silencing, alphasatellites also play an

imperative role in begomoviruses epidemiology (Nawaz-ul-

Rehman et al., 2010). Deltasatellites are small (~0.7kb) noncoding

DNA satellites associated with begomoviruses that diminish the

accumulation of the helper begomovirus in the plant, seldom
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modify the begomoviruses symptoms but do not encode for any

protein. While satellite DNA molecules depend on their helper

begomoviruses for cell-to-cell movement and systemic spread

throughout the plant, encapsidation, and transmission to new

host plants by insect vectors (Xie et al., 2002), they can play a

critically important role in the disease severity and breakdown of

host resistance. There is a need to further study satellite DNA

molecules and to understand their evolution and diversity in order

to effectively breed for host resistance.
Genetic diversity in chilli leaf curl virus and
associated beta satellites

The complete genome sequences of 83 isolates of

begomoviruses associated with chilli leaf curl virus disease along

with closely related begomoviruses associated with papaya, eggplant

and tomato leaf curl diseases retrieved from the NCBI GenBank

when subjected to phylogenetic analysis, formed 2 distinct clusters

(Figure 4A), the isolates of chilli leaf curl virus clustered together

along with papaya leaf curl virus and eggplant leaf curl virus.
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Isolates of tomato leaf curl virus are grouped in a separate

subcluster. However, pepper leaf curl virus isolates from Lahore

(Pakistan), Bangladesh, and Lucknow (India) are distinctly

separated out into a cluster which represents more genetic

distinctness from the rest of the leaf curl viruses analyzed.

Similarly, in a separate phylogenetic tree (Figure 4B) for analysis

of genetic relatedness in beta satellite segment associated with chilli

leaf curl virus along with tomato-, papaya- and cotton leaf curl virus

revealed that beta satellite molecules associated with ChiLCV virus

are similar in their genetic makeup with other leaf curl viruses

infecting tomato (Solanum lycopersicum L.), papaya (Carica papaya

L.) and cotton (Gossypium spp. L).
Managing chilli leaf curl virus disease:
progress and challenges

Management of begomoviruses has been based primarily on

insecticides against the whitefly vector. However, the use of

insecticides has been found to be only partially effective, costly for

producers, and represents a hazard to farmers, consumers, and the
A B

FIGURE 4

Phylogenetic analysis of begomovirus (A) and betasatellite (B) associated with chilli leaf curl virus in chilli and closely related leaf curl viruses
retrieved from NCBI GenBank. The sequences were aligned using MUSCLE and the tree constructed in MEGA by using Neighbor-Joining method
following maximum likelihood criterion with 1000 bootstrap. The scale bar represents the rate of nucleotide substitutions per site.
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environment (Borah and Das, 2012). Insecticides to manage the

vector are often ineffective because transmission of the virus occurs

during the vector’s probing of the plant surface, prior to feeding,

and before the insecticides can take effect (Kenyon et al., 2014a).

Similar to Begomovirus, whiteflies often evolve into new biotypes

and can become tolerant to commonly used insecticides (Naveen

et al., 2017). Whiteflies have shown resistance to more than 40

active ingredients of insecticides (Whalon et al., 2013).

The currently available strategies to manage begomovirus

include host plant resistance (although tolerance might be a more

accurate description of the best commercially available cultivars)

(Barchenger et al., 2019), insect resistance (although no sources of

white fly resistance in Capsicum spp. have been reported), pathogen

derived resistance, insecticide application (Bragard et al., 2013) and

the much less practised changes in cropping systems and sanitation.

Jabłońska-Sabuka et al. (2015) utilized a mathematical model to

predict epidemics and understand the global spread of begomovirus

and found that intensive farming and breeding partially resistant

cultivars were the major triggers for aggressive virus adaptability

through increased rate of mutation.

When it comes to managing plant viral infections, smallholder

farmers in Asia and Africa confront a number of obstacles. One of

the most significant obstacles is a lack of access to information and

resources, as well as limited access to and high cost of pesticides.

Overuse of pesticides may result in the development of resistance in

pest populations. Another barrier is a lack of understanding and

awareness of plant viral infections. Smallholder farmers may be

unaware of the indications of viral illnesses and may lack knowledge

of how to adopt good disease management practices. In addition to

these, the problem of plant viral infections is being made worse by

climate change. The distribution and abundance of viral vectors, as

well as the susceptibility of host plants to infection, can be impacted

by changes in temperature and rainfall patterns. Smallholder

farmers may find it more difficult to adequately manage viral

infections as a result.

For a management program that is to be widely adopted by

farmers – it should be simple, inexpensive, and practical. One of the

most important tools for managing plant viral diseases in

smallholder farms is integrated pest management (IPM). IPM is a

holistic approach to pest control that emphasizes the use of cultural,

biological, and chemical control measures to manage pests and

diseases in a sustainable and environmentally friendly way. IPM can

be particularly useful for managing insect-transmitted viruses, as it

can help reduce the vector population. Additionally, IPM can help

to prevent the development of resistance in pest populations, which

can make pest control more effective in the long run.

Host plant resistance and use of resistant cultivars, combined

with other production practices, forms the central component of a

successful IPM program for reducing the impact of viral diseases. It

has been estimated that farmers that adopt low (one or a few

strategies), medium, and high (multiple strategies) integrated

management strategies for begomovirus could improve incomes

by 17, 26, and 80%, respectively (Swaminathan et al., 2016).

It is known that whiteflies can travel several kilometers and are

semi-persistent and there is a direct relationship between vector

level in neighboring fields and virus incidence in test fields (Aritua
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et al., 1999). Therefore, old infested plantings can be a source of

whitefly and virus inoculum and need to be completely removed

prior to new plantings. In addition, weeds in and around the field

can serve as whitefly reservoirs. In Madhya Pradesh and Andhra

Pradesh states of India, for example, chilli and cotton are grown at

the same time or in rotation, and cotton is a whitefly host and could

serve as a reservoir. Melons grown in close vicinity to a cotton crop

was found to significantly increase whitefly incidence (Ellsworth

and Martinez-Carrillo, 2001), but no reports on whitefly incidence

of chilli grown near to cotton have been published. The use of host-

free periods can be effective in reducing whitefly populations and

could be more effective when host-free periods are combined with

insecticide use during production season (Ellsworth and Martinez-

Carrillo, 2001). It has also been demonstrated that plant spacing can

play a major role in begomovirus incidence in cassava, but no

reports in chilli have been published. Similarly, it has been

found that modifying the production system can limit whitefly

colonization. Although there are no reports on chilli, intercropping

cucumber, tomato, or squash with maize resulted in significantly

lower whitefly and begomovirus incidence (Abd-Rabou and

Simmons, 2012). The use of cucurbit trap crops reduced whitefly

and tomato yellow leaf curl virus (TYLCV) incidence in the

Southern USA; however, trap crops alone are not sufficient to

keep the vector populations below the action threshold and must

be combined with other management strategies.

In the present context of seemingly constant emergence of new

begomoviruses, a clear understanding of the virus/whitefly vector/

host plant interrelationships through epidemiological, phylogenetic

approaches are needed. Identification and deployment of host

plant resistance can be an effective and durable strategy against

whitefly damage. Whitefly resistance may provide an important

contribution in limiting losses associated with begomovirus, and

whitefly tolerant accessions have been reported (Firdaus et al., 2011;

Ballina et al., 2013; Latournerie et al., 2015; Rajput et al., 2017;

Jeevanandham et al., 2018; Pantoja et al., 2018; Yadav et al., 2020).

However, there are still no cultivars with tolerance or resistance and

there is a need to screen chilli accessions for resistance to whitefly

along with begomovirus for durable chilli leaf curl virus resistance.
Resistance sources

Resistant cultivars offer sustainable management of viral

diseases of plants. There is a constant need to identify the

new sources of resistance to counteract the rapidly evolving

begomovirus in chilli, making durable host plant resistance a

crucial output of successful breeding programs. Disease resistance

screening for leaf curl virus disease began in the late 1960s mostly

under open field conditions (Sharma and Singh, 1985; Tewari and

Viswanath, 1986). The material screened comprised locally

available cultivars, lines of the domesticated Capsicum species and

then progressed to related and wild species. For tomato, resistant

sources for begomovirus have been found in the wild species of S.

chilense (Gill et al., 2019), S. habrochaites (Yang et al., 2014), and S.

peruvianum (Hutton et al., 2012); however, for chilli the use of wild

species in breeding has been extremely limited (Barchenger and
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Bosland, 2019). The wild species of Capsicum offer an almost

completely untapped reservoir of variability, which could be

exploited to identify sources of resistance to begomovirus

(Barchenger et al., 2019). There have been numerous reports of

sources of resistance to various chilli-infecting Begomovirus species

(Table 1). Some have suggested resistant/tolerant sources against

pepper leaf curl virus (PepLCV) found more commonly in non- C.

annuum than in C. annuum accessions (Kumar et al., 2006; Rai

et al., 2010; Kumar et al., 2011; Anandhi and Khader, 2011). Others

have described begomovirus resistant sources in C. annuum

accessions (Kumar et al., 2006; Kenyon et al., 2014a; Srivastava

et al., 2015; Singh et al., 2016; Srivastava et al., 2017; Barchenger

et al., 2019) (Table 1). Chilli leaf curl virus resistant cultivars are

rarely developed by public sector researchers, with the exception of

the hybrid CH-27 (Dhaliwal et al., 2015). Most of the tolerant or

partially resistant cultivars on the market today were released by the

private sector. Even with continuous scientific efforts, there is a dire

need for systematic screening to identify sources of the ever-

evolving species of begomovirus and to develop new resistant

cultivars with good horticultural traits. In the current scenario the

emergence of new strains, new whitefly biotypes, a strong base of

plant genetic resources is the prerequisite for the chilli leaf curl virus

resistance breeding program.
Biochemical and morphological basis
of resistance

Plants have biochemical defense mechanisms to protect them

from insect pests. Morphological barriers, such as trichome type

and density, and associated compounds such as acyl sugars also play

a role in defense against insects. A plant that is highly resistant to

whiteflies is also protected against whitefly transmitted viruses

(Broekgaarden et al., 2007). Occurrence and population dynamics

of the vector whitefly and the weather conditions in the

agroecosystem are responsible for the differential response of

genotypes to chilli leaf curl virus incidence and symptom

expression (Kaushik and Dhaliwal, 2018). A promising method to

reduce the whitefly population and therefore chilli leaf curl virus

disease is to understand the resistance mechanisms of chilli to

whitefly and explore these traits for their potential in breeding

resistant cultivars (Moshe and Michael, 2002).

It is known that whiteflies have an affinity for some particular

genotypes as compared to others and this has resulted in some

increased susceptibility to chilli leaf curl virus diease of some

hybrids under open field conditions. The symptomless reaction of

genotypes can be due to the non-preference of whiteflies (Banerjee

and Kalloo, 1987), and may not be due to begomovirus resistance.

Several sources of whitefly resistance have been identified in chilli

(Table 2). Morphological resistance factors physically hinder the

movement of the insect on the plant, and more specifically, interfere

with the mechanisms of host selection, ingestion, digestion of plant

material, mating and oviposition. Plant resistance to whiteflies has

shown to be mediated by morphological characteristics of the leaf

surface, such as trichome density, presence of glandular trichomes,
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TABLE 1 Available sources of resistance in Capsicum spp. to various
members of Begomovirus.

Source
Inoculation
method

Viral
species

Reference

Puri Red, Puri Orange
Open field
screening

NRz Mishra et al.,
1963

Pusa Jwala (NP-46A X
Puri Red)

Open field
screening

NR
Tewari and
Ramanujam,
1974

Surjamani, Perennial, S
118, S 114

Open field
screening

NR
Sooch et al.,
1976

Pant C-1, Pant C-2
Open field
screening

NR
Mathai et al.,
1977

Cross 218, EC 121490,
IC 18253, IC 18885,
JCA 196, Pant C-I

Open field
screening

NR
Bhalla et al.,
1983

CA-960, G-4, Jwala
Open field
screening

NR Dhanju, 1983

Lorai, Longi, Pant C-I,
Perennial, S 5-4, S 20-1,
S 41-1, S 118-2

Open field
screening

NR
Sharma and
Singh, 1985

Pusa Jwala, Delhi Local,
Sel 38-2-1, Sel 94-4-9-3,
Sel 101-2-33

Open field
screening

NR
Tewari and
Viswanath,
1986

JCA 196, JCA 218, JCA
248, NP-46-A, Pant C-I,
Pusa Jwala

Open field
screening

NR
Brar et al.,
1989

Bangla Green (BG-1),
CH-1, Indonesian
Selection, Laichi-1,
Laichi-2, Lorai, LS-l,
MF41-1, MS- 13, Pant
C-I, Perennial, Punjab
Lal, S 20-1, Surjamani

Open field
screening

NR
Singh and
Kaur, 1990

Pusa Jwala, SuryaMukhi
and Loungi

Open field
screening

NR
Kumar et al.,
1999

PBC67
Open field
screening

NR Alegbejo, 1999

Phule Sai (moderately
resistant)

Open field
screening

NR
Jadhav et al.,
2000

KSDA-210-10, LCA-
305, LCA-324 and
Hissar Vijay

Open field
screening

NR Kotreshe, 2002

C. annuum var.
angulosum

Open field
screening

NR
Singh and
Singh, 1989

C. chinense accession
BG-3821

Particle
bombardment
technique

PepGMV
Anaya-Lopez
et al., 2003

Alampady local-1,
Nayyattinkara local,
Kottiyan local,
Haripuram local, Pant
C-1, Chandera local,
Mangalapuram local
and Kotti Kulam
(Tolerant)

Open field
screening

NR
Jose et al.,
2003

(Continued)
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and cuticle thickness (Jindal et al., 2008; Chermenskaya et al., 2009;

Firdaus et al., 2011). The presence of thick cuticles was correlated

with resistance to whitefly in chilli. Thick cuticle in combination

with dense trichomes likely inhibits the insect style from reaching

the phloem (Firdaus et al., 2011). The presence of glandular

trichomes reduces the whitefly population and their nymphal

density (Yadav et al., 2020). Rodrıǵuez-Leal et al. (2017) reported

high mortality of whiteflies on leaves with a high density of

glandular trichomes due to the secretion of chemical compounds

such as acyl sugars. However, in C. annuum accession PBC 535, C.

baccatum accession No. 1553 and C. frutescens cultivar Tabasco,

which all had glandular trichomes, were susceptible to whitefly,

whereas the C. annuum accession CM331, which has only non-

glandular trichomes, was highly resistant (Firdaus et al., 2011). The

contrasting observations that glandular trichomes may and may

not contribute to whitefly resistance in chilli indicate the diversity

and complexity of resistance mechanisms to whiteflies based

on trichome architecture, and shows the need for further

investigations in this area.

Color of the plant may also play an important role in protecting

against attraction and ovipositional choice of whitefly

(Hasanuzzaman et al., 2016). The purple-colored chilli population

with anthocyanin accumulation are resistant to whitefly (Cheng

et al., 2018), and to thrips and mites under field conditions

(unpublished). The PepYLCThV resistant breeding line 9852-123,
TABLE 1 Continued

Source
Inoculation
method

Viral
species

Reference

GKC-29, BS-35,
EC-497636

Open field
screening
followed by
grafting

NR
Kumar et al.,
2006

HC-28 and HC-449
(Resistant, NCH
(Moderately resistant)

Open field
screening

NR
Mali et al.,
2006

Surajmukhi, Japani
Loungi, Pant Chilli-1,
Pusa Jwala and PBC473

Open field
screening

NR
Awasthi and
Kumar, 2008

Punjab Sindhuri and
Punjab Tej (moderately
tolerant)

Open field
screening and
artificial
inoculation by
viruliferous
whitefly

NR
Dhaliwal et al.,
2013

BS-35, GKC-29, Bhut
Jolokia

Artificial
inoculation by
viruliferous
whitefly

ChiLCV Rai et al., 2014

PBC143, PBC144,
PBC149, PBC495,
VI012005, VI012907 (PI
159236),

Artificial
inoculation by
viruliferous
whitefly

TYLCThV
Kenyon et al.,
2014a

CH-27

Open field
screening and
artificial
inoculation by
viruliferous
whitefly

—
Dhaliwal et al.,
2015

Saurian 2010, Perennial
and Japani Loungi

Artificial
inoculation by
viruliferous
whitefly

—
Ahmad et al.,
2016

Hyb3(2)-3 and Hyb3
(2)-2 moderately
resistant

Open field
screening

NR
Yonzone et al.,
2016

DLS-Sel-10, WBC-Sel-5,
PBC142,

Open field
screening and
artificial
screening by
viruliferous
whitefly

NR
Srivastava
et al., 2017:

DLS-Sel-10

Artificial
screening by
viruliferous
whitefly

NR
Manisha et al.,
2020

BJ 001 (symptomless)
Open field
screening

NR
Adluri et al.,
2017

Hybrid 46 and Hot
Queen

Open field
screening

NR
Hussain et al.,
2017

13/CHVar-1 and 13/
CHVar-2-Resistant

Open field
screening

NR
Padhi et al.,
2017

Kumarapuram-I (A-50)
Open field
screening

NR
Srinivas and
Thomas, 2018

(Continued)
TABLE 1 Continued

Source
Inoculation
method

Viral
species

Reference

S 343, SL475, SL476

Artificial
screening by
viruliferous
whitefly

ToLCJoV
Thakur et al.,
2019

9852-123

Augmented
inoculation by
viruliferous
whitefly

PepYLCThV
Barchenger
et al., 2019

Sel-3, Sel-4, CHIVAR 1

Open field
screening,
artificial
screening by
viruliferous
whitefly and
graft inoculation

NR
Vijeth et al.,
2020

CHUH-4
Open field
screening

NR
Mondal et al.,
2013

Perintis (BaPep-5)
Graft inoculation
and natural
screening

PepYLCIV
and
PepYLCAV

Koeda et al.
(2021),

IHR4517, IHR4615, and
IHR4630

Artificial
screening by
viruliferous
whiteflies

ChiLCV-Rai
Yadav et al.,
2022

Violet Mulak, Arka
Lohit and Phule Jyothi

Open field
screening and
Artificial
screening

ChiLCV-Rai Sujisha (2023)
frontiersin.org

https://doi.org/10.3389/fpls.2023.1223982
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Nalla et al. 10.3389/fpls.2023.1223982
which was inoculated using augmented whitefly infestation,

reported by Barchenger et al. (2019), was also purple; however,

they were able to isolate viral DNA present in the leaves, indicating

host resistance to the virus, and not whitefly.

Biochemical compounds influence insect feeding behavior,

reproductive ability and host plant preference. These compounds

include direct defenses mediated by plant toxins and indirect

defenses, mediated by phenolic compounds, alkaloids, and

terpenoids (Mithofer and Maffei, 2017). Plant secondary

metabolites such as methyl-ketones and derivatives of

sesquiterpene carboxylic acid can have negative effects on insect

population development, as they can act as an attractant, repellent

or antibiotic substance (Eigenbrode et al., 1996; Chermenskaya

et al., 2009). Host resistance in chilli is positively correlated with

phenol levels and peroxidase and polyphenol oxidase activity

(Bhonwong et al., 2009; Jabeen et al., 2009; Mondal et al., 2013).

Polyphenol oxidases and thionins were shown to be involved in

maintaining the basal defense against fungi, bacteria, and viruses

(Taranto et al., 2017), and ChiLCV resistant lines had higher levels

of polyphenol oxidase and peroxidases activity than susceptible

lines (Rai et al., 2010; Kushwaha et al., 2015; Manisha et al., 2020).

The role of leaf characteristics such as the biochemical composition,

metabolites, nutritional value, and defense related enzyme activity

in whitefly resistance are not well studied. There is a need for an

improved understanding of biochemical changes that affect virus-

vector-host plant interactions. Genetic analysis of the genotypes/

cultivars can assist in identifying the candidate genes implicated in

resistance for being used in developing cultivars resistant against

whiteflies. Furthermore, monitoring whitefly behavior in reaction to

different biochemical compounds, such as feeding preference and

oviposition, might provide insights into resistance mechanisms and

aid in the development of effective management strategies.
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Resistance inheritance

Resistance breeding against biotic stresses remains a top priority

in modern breeding programs (Miedaner, 2016). The basic steps in

begomovirus resistance breeding include screening of germplasm,

identifying the resistant sources, and then movement of resistance

into adapted backgrounds (Thakur et al., 2018). The choice of the

breeding method required to move resistance into adapted material

is highly dependent on trait inheritance patterns (monogenic,

oligogenic, or polygenic) (Siddique et al., 2022). Furthermore,

inheritance patterns can provide a basis for experiments to

understand the genetic mechanisms of host resistance and the

development of molecular markers associated with resistance.

Deciphering the gene interactions among the loci for resistance/

susceptibility in the plant to the corresponding virulence/avirulence

in their pathogen is requisite in a resistance breeding program.

While plants often have NB-LRR protein-based immunity to

viruses, the antiviral mechanism mediated by RNA silencing is a

more common mechanism (Voinnet, 2001). Antiviral RNA

interference is the first layer of defense and the resistant genes

can be considered as the second layer of defense against viruses.

Virus resistance inheritance can be divided into two forms of

dominant and recessive resistance (Kang et al., 2005). More than

80% of plant viral resistance loci are monogenically inherited and

most of them have a recessive virus resistance locus (Truniger and

Aranda, 2009), with a high level of strain and species specificity.

Plant viruses use proteins, called host factors, for completion of

their life cycles (Nagy and Pogany, 2011). The recessive virus

resistance concept was derived from these host factors for viral

infection (Truniger and Aranda, 2009). Mutations or deletions in

the host factors can confer a durable virus resistance, called

recessive resistance (Truniger and Aranda, 2009). Dominant R

genes can be grouped into two classes, those encoding NB-LRRs

and non-NB-LRRs (Gururani et al., 2012). The major class of R

genes encode NB-LRR motifs with three domains that are

responsible for interaction with other R proteins genes, are

involved in indirect pathogens recognition (Collier and Moffett,

2009) and induction of resistance responses (Lukasik and Takken,

2009; Slootweg et al., 2010). Zarate et al. (2017) reported that host-

defense responses triggered by some begomoviruses also trigger the

salicylic acid pathway. Whitefly also plays a role in amending the

gene expression of defense pathways (salicylic acid and jasmonic

acid/ethylene pathways) (Jose Trinidad Ascencio-Ibanez et al.,

2008) There is a considerable body of literature regarding the

expression Capsicum annuum pathogenesis related (CaPR) genes

in chilli plants when infested with whitefly (Yang et al., 2010). It has

been reported there is upregulation of transcriptional expression of

CaPR1 gene for an SA- signalling pathway (Kim and Hwang, 2000),

CaPR4 gene for ET⁄ JA-responsive signalling pathway (Park et al.,

2001), CaPR10 gene for SA⁄ET⁄ JA-responsive signalling pathway

(Park et al., 2004), and Capsicum annuum protease inhibitor II

(CaPIN II) gene for JA-responsive signalling pathway (Shin et al.,

2001; Song et al., 2005) during whitefly infestation. Zhang et al.

(2012) demonstrated the Suppression of jasmonic acid mediated

proteins in tobacco by bC1encoded in the beta-satellite

of TYLCCNV.
TABLE 2 Sources of resistance in Capsicum spp. to whitefly, a vector of
Begomovirus.

Genotypes Resistance traits Reference

C. annuum cv. Tabaquero,
Amaxito

Antibiosis Latournerie
et al., 2015

California Wonder and Yolo
Wonder

Resistant due to Glabrous
leaves with thick cuticle

Firdaus, 2012

CA 9, CA28 and ACC 05 Strong antixenotic and
antibiotic

Jeevanandham
et al., 2018

IHR 4283, IHR 4329, IHR
4300, IHR 4321 and IHR 4338

Antibiosis Yadav et al.,
2020

IAC-1544, IAC-1545 and
IAC-1579

Antibiosis Pantoja et al.,
2018

Qianhong, zhongjiao, hangjiao,
zhonghuahong

Antixenosis Jiao et al.,
2018

CM331, Seranno and
California Wonder 300

Trichome density and
thick cuticle

Firdaus et al.,
2011

Blanco, Bolita, and Pico
Paloma

Antibiosis Ballina et al.,
2013

Aleppo Antixenosis Al-Aloosi
et al., 2020
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The difficulty of introgression of a trait from some accessions

(field-collected wild relatives) into commercial cultivars depends on

the genetic complexity of the trait. The inheritance pattern depends

upon the resistant source and also on the pathogen. Monogenic

recessive inheritance of leaf curl virus resistance has been widely

reported (Bal et al., 1995; Kumar et al., 2009; Rai et al., 2010;

Anandhi and Khader, 2011; Rai et al., 2014; Koeda et al., 2021;

Siddique et al., 2022). Inheritance of resistance in BG3821 appears

to be controlled by two genes with duplicate recessive epistatic

action (Garcia-Neria and Rivera-Bustamante, 2011garcia). In

contrast, Sran et al. (2023) and Thakur et al. (2019) proposed the

monogenic dominant resistance in a resistant source S-343 through

artificial whitefly inoculation screening. Sharma et al. (2015)

confirmed the 3:1 ratio segregation of the resistance gene in the

T1 generation of transgenic chilli (cv. Kasi Anmol) through PCR

analysis. The variation in gene inheritance patterns may be due to

multiple factors, including the species/strain of the virus, the

inoculation technique used, the rating system employed,

environmental factors, in addition to different sources of

resistance being used.

The durability of R genes depends upon the viral population

dynamics, changes in pathogenicity and frequency of virulent

isolates (Kang et al., 2005). Understanding the genetic basis of

leaf curl virus resistance in chilli is key to monitoring and managing

resistance (Preston and Mallory-Smith, 2001). Recessive resistance
Frontiers in Plant Science 12
may be more durable than dominant resistance in theory (Fraser,

1990). However, despite extensive studies showing recessive gene

action for resistance, breeding programs have not produced durable

resistant commercial varieties and those that have been produced

are quickly overcome. Moreover, few studies have focussed on the

characterization of virus resistance genes. Therefore, there is a great

need to study the mode of inheritance and gene action for other

sources of resistance followed by characterisation of the resistance

genes. The available reports on the inheritance of chilli leaf curl

virus resistance are summarized in Table 3.
Screening techniques:

An adequate and proficient protocol for germplasm screening is

required to be successful in breeding for resistance to ChiLCV

(Koeda et al., 2015). Natural field screening was often used in the

early 1960s to identify sources of resistance based on disease

occurrence and severity of chilli leaf curl virus disease (Aiswarya

et al., 2019). The use of “hot spots”, which are locations with high

disease pressure combined with strain or species characterization

using molecular tools are key for successful natural screening of leaf

curl virus. Field screening for pathogens is generally ineffective, as

many plants avoid infection, even under extreme inoculation

pressure (Vidavsky et al., 1998). Feeding of other sucking pests in
TABLE 3 Summary of the studies on the inheritance patterns of begomovirus resistance in Capsicum spp. including resistant source, generation(s)
evaluated, strain or species of the virus, and mode of inheritance identified.

Susceptible
parent

Resistant
parent

Population Genetics Reference Virus species

1. MS 341 S-343 F2 Single dominant gene Thakur et al., 2019 Tomato leaf curl Joydebpur virus (ToLCJV)

2. PBC535
BS 35

Bhut Jolokia F1, F2, BC1 Single recessive gene Rai et al., 2014 ChiLCV- VNS (Chilli leaf curl virus-
varanasi strian)

3. Phule Mukta DLSSel.10 F1, F2, BC1 Single recessive gene Maurya et al., 2019 ChiLCV (Chilli leaf curl virus), ToLCNDV
(Tomato leaf curl NewDelhi virus)

4. Phule Mukta WBC SEL 5 F1, F2, BC1 Single recessive gene Mathur et al., 2019 ChiLCV
(Chilli leaf curl virus)

5. PBC535 Bhut Jolokia F1, F2, BC1 Single recessive gene Kumar et al., 2009 ChiLCV
(Chilli leaf curl virus)

6. Bhut Jolokia PBC535 F1, F2, BC1 Major recessive genes
with some minor genes

Rai et al., 2010 ChiLCV-VNS
(Chilli leaf curl virus- varanasi strian)

7. Punjab lal LLS and
Hungarian Sweet
Yellow

F1, F2, BC1P1
BC1P2

Single recessive gene Bal et al., 1995 NR

8. NR Kashi Anmol T1 Single recessive gene Sharma et al., 2015 ChiLCV
(Chilli leaf curl virus)

9. NR BG3821 S1 Two genes with duplicate
recessive epistatic

Garcia-Neria and
Rivera-Bustamante,
2011

Pepper golden mosaic virus (PepGMV)

10 Jintianchaojiao Shishigongjiao F1, F2, BC1 Single dominant gene Chen et al., 2016 TYLCV (Tomato yellow leaf curl virus)

11 IIHR4517 and
IIHR4630

IHR3476
F1, F2, BC1P1,
BC1P2

Single dominant gene Yadav et al., 2022 ChiLCV-Rai
(Chilli leaf curl virus- Raipur strian)

12
BaPep-4 BaPep-5 F2

Single recessive gene Pohan et al., 2023 Pepper yellow leaf curl Aceh virus
(PepYLCAV)
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the field that resemble leaf curl symptoms can confound data

collection and accurate selection. Field screenings do not allow

for control over factors such as whitefly-vector pressure, the severity

of inoculation (which relates to the intensity of symptoms caused by

a virus in a plant), the amount of viral inoculum (referring to the

quantity or concentration of virus particles introduced during

infection), and the plant’s age at the time of inoculation

(Lapidopt, 2007). Furthermore, natural screening may lead to

unsynchronized infection, resulting in erroneous data. Resistance

displayed by certain lines cannot be inferred as real host resistance

since certain lines can escape whitefly, leading to false positive

selections so the breeding program will get congested with a large

number of susceptible lines. It is advisable to screen the germplasm

for multiple seasons to reduce false positives and ensure selected

lines are resistant (Vidavsky et al., 1998); however, multiple season

screening can also result in screening with multiple species of the

virus, given the high diversity of Begomovirus, further reducing

selection accuracy in field trails.

Whitefly transmission of plant viruses is a valuable means of

screening plants for resistance to viruses, as it uses the same type of

transmission that plants in the field (Polston and Capobianco,

2013), but with more control of the inoculum concentration and

timing and reduces escapes. For whitefly-medicated screening, a

period of inoculation feeding of the whiteflies to the target plant

should be adequate to ensure effective inoculation, but minimal

enough to reduce the direct damage caused by white flies. Non-

viruliferous whiteflies collection can be maintained on non-host

plants or cauliflower (Brassica oleracea var. botrytis L.) or brocolli

(Brassica oleracea var. italica Plenk) plants. Rocha et al. (2012)

maintained non-viruliferous whiteflies on collard green (Brassica

oleraceae var. acephala DC.) and soybean (Glycine max) plants, in a

greenhouse with insect-proof nets. To obtain precise results in

screening Rocha et al. (2011) identified the whitefly species

collected by using PCR-RFLP analysis and sequencing the mtCOI

gene. The whiteflies were allowed to feed on leaf curl virus infected

plants for about 24 hrs (acquisition access period). Test plants were

then infested with the viruliferous whiteflies (approximately 15-20

per plant) at the 2-4 true leaf stage for 48 hrs (inoculum access

period). As chilli is the non-preferred host for whiteflies, in free

choice assay we cannot ensure vector infection on all the plants and

in no choice essay, a single plant viruliferous whiteflies are

introduced on a single plant (enclosed in a small bottle cage).

Whitefly colony establishment and maintenance, to transmit chilli

leaf curl viruses to test entries for screening have been successfully

utilized (Kumar et al., 2011; Padhi et al., 2017; Srivastava et al., 2017;

Sharma et al., 2018; Srinivas and Thomas, 2018; Thakur et al., 2018;

Barchenger et al., 2019; Maurya et al., 2019; Manisha et al., 2020;

Yadav et al., 2020). Graft inoculation has been used to screen for

TYLCV-resistant plants with high transmission efficiency (Fargette

et al., 1996). A benefit of graft inoculation is that it enables a test

plant to be continually exposed to high levels of viral inoculum. It is

the safest method for the maintenance of leaf curl virus but not a

preferred option for screening as it is not a high throughput

screening, labor intensive, and time consuming.

Agro-infiltration mediated screening used under controlled

laboratory environments with small seedlings has been used to
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facilitate a precise resistance assessment in a short time and space.

The potential of using Agrobacterium as a vector to generate plants

with genes of interest has been acknowledged and duly exploited by

researchers to understand the functions of the identified gene(s)

(Gelvin, 2003). A leaf disc agroinoculation system was developed to

differentiate between susceptible and resistant tomato genotypes to

TYLCV infection (Czosnek et al., 1993). Sakata et al. (2008)

constructed partial tandem repeats of PepYLCIV DNA A and B,

cloned them into a binary pGreenII vector and successfully agro

inoculated Nicotiana benthamiana L. and C. annuum for screening.

Kumar et al. (2011) produced infectious clones comprising of

partial tandem repeats of the viral genome (1Æ9-mer) and the

betasatellite (1Æ7 -mer) into vector pCAMBIA-1300 and

agroinoculated to chilli and N. benthamiana. Plants inoculated

with viral clones alone, do not produce leaf curl symptoms, but

after inoculating along with beta satellite distinctive leaf curling and

stunting symptoms were detected, indicating the importance of

betasatellite. Shafiq et al. (2010) had observed leaf curl symptoms in

C. annuum. cv Loungi when inoculated with partial repeats of

PepLCLV along with the DNA B of ToLCNDV. Agroinoculation

screenings have been widely used or chilli leaf curl virus strain

(Shahid et al., 2019), tomato yellow leaf curl Kanchanaburi virus

strain (Koeda et al., 2020), and tomato yellow leaf curl virus

(Verlaan et al., 2011). The use of agroinoculation in breeding

programs has been questioned because it does not account for

any the natural resistance that might exist in some wild Solanum

accessions by bypassing the early steps of virus infection (Kheyr-

Pour et al., 1994). Koeda et al. (2017) reported agroinoculation

combined with subsequent grafting, provides a highly efficient

method for introducing pepper yellow leaf curl indonesia Virus

(PepYLCIV) into chilli plants. Chauhan et al. (2018) revealed that

ChiLCV can be transmitted by sap and out of the three methods

used (syringe, rubbing and immersion); syringe inoculation was

found the most efficient method for sap transmission. Chilli peppers

are highly recalcitrant in terms of in vitro regeneration and genetic

transformation. Though the utilization of Agrobacterium-mediated

transformation is prevalent in chilli peppers, its effectiveness

depends on successful shoot regeneration and the genotype (Lee

et al., 2004). Standardizing correct inoculation protocols permit a

rapid, reliable and reproducible selection of begomovirus

resistant accessions.
Symptom severity scoring

Symptom severity scales need to be established as a part of leaf

curl virus inoculation protocols. Susceptible controls included in the

screen should ideally become infected and show the highest

symptom severity. The variability in assay conditions and

symptom scoring scale will lead to contradictory results, where

different resistance levels were attributed to the same genetic

material. The scoring scale (0–5 point scale) was developed by

Joshi and Choudhary (1981) and Banerjee and Kalloo (1987) for

leaf curl virus screening in tomato. Being a slow-growing crop as

compared to tomato, the solicitation of the same scale is not

appropriate at the nursery stage. Chilli takes longer time for
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symptom appearance and a breeder will have to wait longer to study

disease related traits. Sharma et al. (2018) developed a disease

severity scale for screening at nursery stage (4-6 leaf stage) under

artificial conditions. Yadav et al., 2020 adopted 0-4 scale (immune,

highly resistant, resistant, moderately resistant and susceptible) for

screening. A scoring scale (0–6 point scale) developed and used by

the World Vegetable Center is now widely deployed across Asia and

Africa in a coordinated manner to ensure selection accuracy in

multiple location screening experiments (Table 4).
Identification of resistance gene loci and
molecular marker development

Given that sources of stable and durable resistance are rare, it is

not surprising that the identification of loci and associated molecular

markers contributing to leaf curl virus resistance in chilli are limited.

In a recent study, Siddique et al. (2022) employed genotyping-by-

sequencing-based QTL mapping to discover three QTLs, peplcv-1,

peplcv-7, and peplcv-12 on chromosomes P1, P7, and P12

respectively. The researchers additionally developed markers (Chr7-

LCV-7, Chr12-LCV-12) and confirmed their efficacy through

validation in an F2 population and across various commercial

varieties. Similarly, Koeda et al. (2021) discovered a codominant

CAPS marker, S05_14208507, located on chromosome 5, designed

for detecting pepper yellow leaf curl Indonesia virus (PepYLCIV).

Additionally, Thakur et al. (2020) identified two molecular markers

(CA516044 and PAU-LC-343-1) on chromosome 6, that were

associated with Tomato leaf curl Joydebpur virus resistance in

chilli. Compared to chilli, molecular markers have been extensively

developed in tomato based on QTLs controlling resistance to tomato

yellow leaf curl virus (TYLCV) (Kadirvel et al., 2013). Previous
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studies have emphasized the high genome synteny and collinearity

among crops in the family Solanaceae (Grube et al., 2000). Among

related host species, structural and functional conservation of R genes

have been previously reported (Grube et al., 2000). A high level of

synteny between the major Phytophthora capsici resistance locus of

chilli and potato has been documented (Sandbrik et al., 2000; Thabuis

et al., 2004) and integration of the RB gene from S. bulbocastanum

into chilli via Agrobacterium tumefaciens mediated transformation

conferred a high level of P. capsici resistance (Bagga et al., 2019).

Orthologous genes of C. annuum proteins involved in the pepper-

PepGMV recovery response were also found in tomato and potato,

which suggested the conservation of the defense response pathway in

different hosts (Zanardo et al., 2019). Genes conferring resistance to

tobacco mosaic virus (TMV, Tobamovirus), cucumber mosaic virus

(CMV, Cucumovirus), tomato spotted wilt virus (TSWV, Tospovirus)

and members of Potyvirus in tomato and potato have been found to

co-map in the homologous genomic region in chilli (Kim et al., 2017;

Venkatesh et al., 2018). However, using the Ty loci from tomato,

Manisha et al. (2017) was unable to identify genes in chilli that

conferred resistance to begomovirus. Similarly, Manisha et al. (2017)

performed Bulk Segregant Analysis (BSA) in F2 segregating

populations derived from PM × DLS-Sel-10 and Anugraha ×

WBC-Sel 5 with 86 orthologous markers in the various Ty regions

of tomato; however, none of the markers were linked to ChLCV

resistance genes/QTLs.

To understand the host defense mechanism, transcriptomic

profiling of an infected host can be an effective strategy. Gongora-

Castillo et al. (2012) used transcriptome sequencing to compare the

response on the transcriptome level in recovered and not recovered

chilli leaves that were infected by the bipartite pepper golden mosaic

virus (PepGMV). The authors found 309 differentially expressed

genes (168 up-regulated and 141 down-regulated) that were

associated with different cellular and physiological processes of

the recovery process of the host after infection. Similarly, a

comparative expression study between resistant and susceptible

chilli leaf curl virus infected plants, demonstrated a up to 5-fold

up-regulation of several NBS-LRR domain genes in resistant lines

(Kushwaha et al., 2015). Also in a recent study, the expression of

Ca-NBS-LRR genes was found to be higher in the ChiLCV resistant

genotype DLS-Sel-10 than the susceptible cultivar Phule Mukta

inoculated with (Manisha et al., 2020).

Polyphenol oxidase (PPO) has been found to assist in basal

defense against fungi, bacteria, and viruses (Poiatti et al., 2009) and

PPO transcript levels were elevated in the resistant chilli cultivar

Punjab Lal, suggesting PPO could play a role in initiation of basal

defence against ChiLCV infection (Kushwaha et al., 2015), or the

upregulation of this gene reflects a general stress response to virus

infection. Likewise, Kushwaha et al. (2019), investigated genes

downregulated upon virus infection in chilli variety Punjab Lal by

reverse suppression subtractive hybridization follow Based on an

interaction map approximately 35% of all downregulated expressed

sequence tags were homologous with genes that encode chloroplast

proteins and 16% of the genes were predicted to be involved in

biotic or abiotic stress response. However, no QTL studies tracking

LCD resistance in pepper mapping populations or germplasm

panels have been reported yet.
TABLE 4 Symptom scaling for leaf curl virus screening.

S.
No.

Symptom % crop
affected

Disease
reaction

1 Plants appear visibly free of any
symptoms

0 Symptomless

2 Mild vein thickening is observed on
new leaves, Canopy growth and plant
height are not affected, Mild inward
curling of young leaves is observed

0-10 Resistant

3 Symptoms of curling are observed on
young top shoots of every branch
Lower leaves show clear vein
thickening infected leaves appear to be
of smaller size

11-30 Moderately
tolerant

4 Leaf cupping and curling, typical vein
thickening symptoms. Plant height is
below normal, with branches having
short internodes

30-60% Moderately
susceptible

5 Cupping of the leaf, shortening of
internodes, vein thickening, and the
plant becomes severely stunted

60-90% Susceptible

6 Severe curling and cupping, stunted
with a bushy appearance

90-100% Highly
susceptible
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Identification of Begomovirus
resistant accessions

Given the difficulty and low-throughput of single isolate

inoculation and the preponderance of multiple begomovirus to

occur in a single field, the most common strategy employed by

researchers to identify resistant accessions or screen segregating

populations by growing the plants under open-field conditions at

disease hot-spots (Table 1). Open field screening is an inexpensive

and relatively easy technique, but it may lead to mixed infections

from diverse viral species and genera and mixed infection which

makes it difficult to correctly identify resistance sources (Kenyon

et al., 2014a; Jo et al., 2017). Even after several years of screening

efforts, no chilli accessions with broad resistance to diverse species

and strains of begomovirus has been identified, indicating that such

broad resistance may not exist, or it is at least extremely rare in the

available germplasm. Similar to the efforts to generate Ty resistant

materials in tomato, systematic research needs to be carried out to

identify strain specific resistance mechanisms in chilli. This will

require the regular monitoring of the pathogen population in the

hot spots for the disease and screening of accessions for the most

prominent and emerging strains of begomovirus using single

isolate inoculation techniques. As has been described above,

begomoviruses have high levels of genetic recombination and

mutation as well as have interactions with other species and

strains. Therefore, such a monitoring effort will require local,

regional and international cooperation on an annual or seasonal

basis. Once the predominant strains have been identified, single

isolate associations will need to be done across a large number of

accessions. There are numerous methods to conduct single-

isolate inoculation including grafting, agroinfiltration, ballistic

bombardment, augmented inoculation by viruliferous whitefly

(Barchenger et al., 2019) among others. However, the common

requirement of all these inoculation methods is the exclusion of the

variability introduced by the vector, typically through isolation of

the plants along with pest monitoring and appropriate pesticide

application, to eliminate the possibility of co- or mixed-infection.

Although no systematic studies have been done to evaluate the

effectiveness of the various inoculationmethods and associations with

disease incidence and severity in open field conditions, we prefer the

augmented inoculation by viruliferous whitefly method. This method

is relatively fast and less expensive as compared to the grafting

method, but does introduce the possibility of selection for lack of

vector preference based on plant morphology. Lack of preference by

the whitefly vector would be useful in breeding for durable resistance,

but it makes the identification of host-resistance genes difficult. The

agroinfiltration method eliminates the possibility of confounding

host resistance to the vector and the virus, but is more difficult,

expensive and requires the ability to develop artificial constructs of

the virus, which is not possible in many locations where begomovirus

is a serious problem. Due to the presence of strain-specific resistance,

gene pyramiding has been used as an effective approach to achieve

durable resistance with high accuracy in tomato. Many TYLCV
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resistance genes (Ty-1/Ty-3, Ty-2, Ty-4, ty-5, ty-6) have been

identified, well characterized and mapped in tomato.

Prabhandakavi et al. (2021) developed a tomato leaf curl virus

(ToLCV) resistant commercial tomato hybrid, ‘JKHT1’, through

pyramiding of Ty-1/Ty-3, Ty-2, ty-5, and ty-6 genes with help of

marker-assisted backcross breeding. Similarly, Hanson et al. (2016)

described the need to combine Ty2 and Ty3 to confer moderate levels

of resistance to tomato yellow leaf curl Taiwan virus (TYLTwV) and

tomato yellow leaf curl Thailand virus (TYLCThV). Strain specific

screening will allow the identification of resistant accessions, and after

development of segregating populations, the mapping of the putative

resistance genes and the design of associated molecular markers to tag

strain-specific resistance or partial resistance genes for breeding and

gene pyramiding. It is likely that the use of strain specific resistance

will not immediately result in the development of highly resistant

cultivars; however, by understanding the mechanisms of resistance

against single strains or moderate levels of resistance. Strain specific

resistance gene characterization and gene pyramiding can be

deployed for the development of durable host resistance against

begomovirus in chilli, but mapping the possibly low levels of

resistance may hinder resistance mapping and subsequent gene

pyramiding. In this situation, it may be necessary to identify

multiple sources of moderate levels of resistance and perform

breeding using recurrent selection using single strain screening.

The goal of a recurrent selection program is to increase the

proportion of a particular trait in a population, and would first

require a basic study on the relatedness of the sources of moderate

resistance in the program. Ideally, the donors of resistance should

be distantly related to increase the probability that various different

resistance genes are available for recurrent selection. After the first

screening, selections are made and hybridized in reciprocal, the

segregating populations are then screened again using the single

isolate approach. This process of inoculation, selection, and

hybridization is repeated until a number of lines with higher

levels of resistance are identified. Recurrent selection breeding

could be done for several different strains until resistance is found

for most of the predominant strains in a region. At that point,

mapping populations can be developed, QTLs identified, and

associated molecular markers validated, which would facilitate

gene pyramiding. Using single isolate screening techniques,

sources of resistance to PepGMV, PHV, PepYLCThV, and

tomato leaf curl Joydebpur virus (ToLCJoV) have been identified

(Garcia-Neria and Rivera-Bustamante, 2011; Barchenger et al.,

2019; Thakur et al., 2019), providing a basis to initiate this work,

but there remains much to do.

An alternative approach could be to generate a multi-parent

advanced generation intercross (MAGIC) population derived from

different parents that showed resistance to LCD at different disease hot

spots. Resultant inbred lines could be selected for resistance to multiple

viruses at disease hotspots. The advantage of the MAGIC population

approach is that only one round of screening at disease hot spots is

necessary to identify resistant materials and resistance genes can be

directly mapped in the MAGIC population without additional crosses.
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Molecular breeding approaches

Pathogen derived resistance
PDR has potential for identification of begomoviruses

resistance transforming a susceptible host by incorporating a

sequence of genome derived from the pathogen. For plant viruses,

the concept of PDR was first validated with the creation of tobacco

plants expressing the coat protein gene of tobacco mosaic virus

(TMV; Tobamovirus) and exhibiting resistance to infection by

TMV (Abel et al., 1986). Viral genes have been widely used in the

development of transgenic-resistant plants (pathogen-derived

resistance) and have been effective in different pathosystems

(Goldbach et al., 2003). Likely the most famous use of PDR is for

papaya ringspot virus (PRSV; Potyvirus) in papaya and widely

commercialized in the US (Gonsalves, 1998). Several studies

indicated that the antiviral strategies such as DNA methylation,

ubiquitination mediated defense and activation of gene silencing

machinery can be effective against begomoviruses (Marino et al.,

2012; Sahu et al., 2014). Applying the concept of PDR provides

unique opportunities for developing begomovirus resistant chilli

and implementing efficient and environmentally sound

management approaches to mitigate the impact of viral diseases.

The prospects of further advancing this innovative technology for

practical control of viral diseases are very promising; however,

consumer acceptance of GM crops in some of the largest producing

countries with the biggest ChiLCV problem is still limited. It is

possible that begomovirus resistant chilli using PDR could be

developed and released in certain countries such as Bangladesh

and China, where higher levels of consumer acceptance of GM

crops exist.

Gene editing
Gene editing can be achieved through site specific mutagenesis

using zinc finger nucleases (ZFNs), transcription activator-like

effector nucleases (TALENs), and clustered regularly interspaced

short palindromic repeats/Cas9 (CRISPR/Cas9). CRISPR/Cas9 has

evolved as an effective and user-friendly tool for precise and

predictable targeted mutations, mostly small deletions. Inducing

begomovirus resistance in chilli through mutagenesis of host factors

in the plant is theoretically an option, but it would require

knowledge about which genes to target in which manner.

Without this knowledge, for making plants resistant to LCD,

CRISPR/Cas9 only can be targeted to viral DNA. Roy et al.

(2019) designed nine-duplex and two-triplex CRISPR-Cas9

constructs to target the chilli leaf curl virus (ChiLCV) genome

after virus infection in tobacco. They observed three of the designed

constructs (gRNA5 + 4, gRNA5 + 2 and gRNA1 + 2) were effective

in reducing the ChiLCV viral titer and symptom severity. Similarly,

resistance to tomato yellow leaf curl virus (TYLCV) and bean yellow

dwarf virus (BeYDV, Mastrevirus) in tobacco was enhanced by

knock-out of the coat protein gene of geminiviruses through the

application of CRISPR-Cas9-mediated mutagenesis (Baltes et al.,

2015; Ghorbani et al., 2020). However, the use of CRISPR/Cas9 to

target viral ORFs may result in new viral variants, which could lead

to various levels of viral escape events, increasing the risk that
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instead of controlling the virus, it generates new mutant viruses that

could spread to other plants. However, using a multiplexed guide

RNA (gRNA)-dependent CRISPR-Cas9 method that targets the

viral genome at multiple sites simultaneously, reduces the risk of

generating mutants and can successfully eliminate ChiLCV from

infected plants (Roy et al., 2019). Unlike genetic modification via

Agrobacterium, plants originating from the use of CRISPR-Cas9

mediated gene editing that do not contain any foreign DNA are not

considered GM crops in countries with a product-based GMO law,

like in the US, Argentina or Japan. However, to be effective against

virus infection, CRISPR/Cas9 needs to be present and active in the

plants, which means that such plants carry foreign DNA and

therefore are considered to be GMO organisms according to the

Cartagena protocol on biosafety. Furthermore, like for GMO

production, for most CRISPR/Cas9 applications, a stable

regeneration system is required. As reviewed by Barchenger et al.

(2018), transformation in chilli is highly genotype-specific and

different protocols are required with different accessions.
Gene silencing
RNA interference (RNAi) is a biological process in which RNA

molecules inhibit gene expression or translation, by neutralizing

targeted mRNA molecules. The exploitation of RNAi using various

viral genes (REP, CP, V2, etc.) may help in controlling the disease.

Sharma et al. (2015) generated transgenic chilli, cultivar Kasi

Anmol, and tobacco (Nicotiana benthamiana) plants which had

resistance to the begomoviruses using RNAi mediated gene

silencing using two different hairpin RNAi TR1 (TR1-15 and

TR1-8) and TR4 (TR4-1and TR4-2) constructs. RNAi method

was used in tomatoes to develop resistance against multiple

begomoviruses (Chen et al., 2016) and CLCuD in cotton (Sattar

et al., 2013). Sharma and Prasad (2020) engineered transgenic

plants by expressing artificial microRNAs (amiRNAs) that

provide defense against the AC1 gene of tomato leaf curl New

Delhi virus (ToLCNDV). In chilli, resistance to the Kor strain of

cucumber mosaic virus (CMV-Kor, Cucumovirus) and pepper mild

mottle virus (PMMoV; Tobamovirus) has been developed using

sense gene induced posttranscriptional gene silencing (S-PTGS)

and co-expression of the coat proteins (CPs) of CMV-Kor and

tomato mosaic virus (ToMV; Tobamovirus) (Shin et al., 2002).

siRNA mediated resistance was reported in tobacco against tomato

yellow leaf curl virus-Oman (TYLCVOM) (Ammara et al., 2015),

pepper golden mosaic virus (PepGMV) (Medina-Hernández et al.,

2013), chilli leaf curl virus (ChiLCV), tomato leaf curl New Delhi

virus (ToLCNDV), and chilli leaf curl Vellanad virus (ChiLCVeV)

(Sharma et al., 2015) and in tomato against tomato yellow leaf curl

virus (TYLCV) (Fuentes et al., 2016). CchGLP is a gene that encodes

Germin-like proteins (GLPs), which play a crucial role in plant

defense against viral infections. This gene was discovered in

Capsicum chinense (Jacq.) accession BG-3821, which exhibits

resistance to geminivirus infection. Through the Virus-induced

gene silencing technique, the CchGLP gene was suppressed in

BG-3821, resulting in susceptibility to geminivirus in BG-3821

(Mejıá-Teniente et al., 2015). Additionally, when CchGLP was

introduced into geminivirus-susceptible Nicotiana tabacum
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xanthi nc plants via transgenic approach, it led to the amelioration

of symptoms in transgeni plants in comparison to non-transgenic

(Guevara-Olvera et al., 2012).

Gene silencing by artificial microRNAs (amiRNA) facilitated

gene regulation at the post- transcriptional or translational level

(Bartel, 2004). They regulate gene expression by degradation or

translation repression of target mRNAs (Meyers and Axtell, 2019).

This approach has been adapted for precise silencing of viral

genomes in plants. Sharma and Prasad (2020) developed an

artificial microRNA (amiRNA) based system against ATP binding

domain of AC1 using endogenous precursor, miR319a, which

provided defense against ToLCNDV in tomato. Overexpression of

amiRNA to various virus genes can result in tolerance against viral

infection (Petchthai et al., 2018). The amiRNA approach has been

deployed to develop resistance against cotton leaf curl burewala

virus (CLCuD) in cotton and jatropha leaf curl gujarat virus

(JLCuGV) in tobacco (Swetha et al., 2018; More et al., 2021).

Recently, Mishra et al. (2020b) predicted potential mir-miRNAs

through in silico analysis, and found some with high sequence

similarity to the V1 coat protein and C1 (Rep) genes of ChiLCV,

which could be used in the future as a target in amiRNA in chilli.

These studies help in understanding the viral gene expression and

regulation by host miRNAs that could pave a way into design

strategies for defense against ChiLCV infection.

Spray-induced gene silencing (SIGS) is a non-transformative

strategy for plant protection involving the spraying of double

stranded RNA (dsRNA) or small interfering RNA (siRNA), which

target pathogen genes on plant tissues (Worrall et al., 2019). The

dsRNA targeting a pathogen gene is sprayed onto the plant’s surfaces.

The pathogen directly takes the dsRNAs up and induces the pathogen

RNAi machinery, or the host plant takes dsRNAs up first and induces

the plant RNAi machinery, and then dsRNAs or siRNAs are

transferred into pathogenic cells and induce the pathogen’s RNAi

machinery. Thus, this approach silences pathogen’s genes without

introducing heritable modifications into the plant genome (Koch

et al., 2016; Wang and Jin, 2017). Liu et al. (2020) have combined

artificial microRNA (amiRNA)-mediated silencing technology and clay

nanosheet mediated delivery by spraying for TYLCV infection in

tomato plants. Three plant expression vectors expressing pre-

amiRNAs were constructed, and recombinant plasmid DNAs

(pDNAs) were loaded onto layered double hydroxide (LDH) clay

nanosheets. The LDH nanosheets coated with pDNAs were sprayed

onto plants infected by TYLCV, and both the disease severity and

TYLCV viral concentration in sprayed plants was significantly

decreased. These findings show that LDH nanosheets loaded with

amiRNAs expression pDNAs can be a promising method for

begomovirus control. How far this experimental approach is cost

effective and can be applied by smallholder farmers needs still to

be demonstrated.
Mutagenesis

Mutagenesis has been previously applied to create variation for

traits that are not present in the existing germplasm, as well as for

studies of functional genomics in many crops. Mutation breeding is
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most effective when the loss of function of a gene result in a

desirable phenotype. There are several types of mutagens that

have been applied for this purpose, including chemical mutagens

to induce specific types of base substitutions at a high frequency for

functional genomics and the application of reverse genetics studies

(Stephenson et al., 2010; Okabe et al., 2011). Radiation that induces

a broad range of mutations such as point mutations, large insertions

and deletions, chromosomal aberrations, and rearrangement,

resulting in a higher probability of loss-of-function mutations,

while maintaining overall lower mutation rates, compared to

chemical mutagens (Shirasawa et al., 2016). In chilli, multiple

studies have used mutant populations obtained by EMS

mutagenesis (Bosland, 2002; Hwang et al., 2014; Siddique et al.,

2020) and gamma radiation (Jo et al., 2016).

Mutagenesis has resulted in the identification of target specific

genes and help to identify resistance genes and their function (Abe

et al., 2012; Steuernagel et al., 2016). Normal recessive Potyvirus

resistance in chilli is conferred by mutations in the eukaryotic

translation initiation factor genes eIF4E or eIFiso4E, which impede

interaction of these genes with the viral VPg protein (Sanfacon,

2015). Recessive resistance to chilli veinal mottle virus (ChiVMV;

Potyvirus) is achieved through a double mutation of eIF4E (pvr1)

and eIFiso4E (pvr6) translation factors (Hwang et al., 2009). In

2019, KeyGene scientists reported a loss of susceptibility gene to

begomovirus in a sweet pepper line. The minor mutation was

reported to be in a DTP gene that has high sequence similarity to

Pelota (Pelo), which is encoded by the ty5 locus in tomato. These

findings have recently been validated by Koeda et al. (2021), who

found a recessive resistance gene (pepy-1) in the resistant line

Perintis that encoded the Pelota protein. More recently, Manzila

and Priyatno (2020) identified 15 pepper yellow leaf curl virus

(PepYLCV)-resistant mutant lines in the M3 generation of ‘Gelora’

by EMS-induced mutation. While there is strong evidence

supporting the use of mutagenesis, especially EMS, for the

identification of resistance to begomovirus, the use of gamma

radiation has not been widely used. Gamma radiation results in

overall lower mutation rates, while still resulting in a broad range of

mutation, making it a promising tool that warrants further study. In

mungbean, begomovirus resistant lines with good agronomic traits

were developed by radiation breeding (Ali et al., 1997). Unlike

several of the other strategies discussed here, plants developed using

mutagens are not restricted for use in the ways that many highly

targeted genetic transformation technologies are, increasing the

usefulness of this strategy to develop resistant varieties.
Pangenomics

Access to high quality reference genomes plays an important role in

research and genomics assisted breeding. Understanding how specific

genes and variants contribute to quantitative traits such as broad

spectrum resistance to begomoviruses is necessary. Short-read

sequencing has certainly accelerated the discovery of genetic variants,

especially SNPs and indels (Nimmakayala et al., 2016; Siddique et al.,

2019). However, it is known that structural variations, such as large

insertions or deletions, duplications, and chromosomal rearrangements
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affect traits of agricultural importance (Lye and Purugganan, 2019).We

also find that standard short read genotyping-by-sequencing (GBS)

results in a higher than expected level of heterozygosity. We recently

conductedGBS in an F11RIL population and found that approximately

35% of the markers were heterozygous, which is 700 times higher than

expected (>0.05%) (Unpublished data). The high level of heterozygosity

limits the SNP-calling accuracy and ultimately reduces the effectiveness

of QTL mapping. Based on the thorough bioinformatic analysis, we

hypothesize that the high level of heterozygosity was not due to read

quality, transposable elements (repeat sequences), or heterochromatin

(low recombination), but due to missing data in the reference genome.

Qin et al. (2014) suggested that transpositions played a role in the

domestication of Capsicum, but this area of research has not been

further explored. To overcome the challenges associated with repetitive

sequences, Ou et al. (2018) established a first Pepper Pan-Genome

analysis, based on 10x coverage short-read re-sequencing data of 383

domesticated Capsicum accessions projected against the Zunla-1

reference genome limiting the study in the power to detect reliably

structural variation (SV), especially large SV. Recently, Shirasawa et al.,

2023 employed optical and genetic mapping to create a chromosome-

scale genome assembly for the ‘Takanotsume’ chili line, revealing

nucleotide sequence variations, chromosomal structural

rearrangements, and transposon-insertion polymorphisms through

comparative genomics within the Capsicum species. Similarly, Lee

et al., 2022 condcuted a pan-genome analysis and reported significant

large structural variants (SVs) in the pepper genome, including

presence-absence variants (PAVs), inversions, and copy-number

variants (CNVs). Notably, this analysis highlighted the presence of

PAVs associated with valuable traits such as potyvirus resistance along

with other traits in chilli peppers, offering potential insights for genetic

analysis and genome-assisted breeding strategies to enhance pepper

improvement. In tomato, Alonge et al., 2020 developed a pan-genome

using long read nanopore sequencing and found that structural

variation affected hundreds of genes with subtle to significant effects,

resulting in changes in gene dosage and expression levels for

quantitative traits such as fruit flavor, size, and production and

important harvesting traits. Prominent examples for the impact of

SV on (epigenetic) gene regulation in crop production were given in oil

palm (Ong-Abdullah et al., 2015) and tomato (Rodrıǵuez-Leal et al.,

2017) underpinning the importance in agriculture for the detailed

understanding of genic but also intergenic SV in cultivated and wild

germplasm (Eshed and Lippman, 2019). The role of SV underlying

important quantitative traits in chilli is underexplored. Chilli provides

an interesting model to study structural variation due to the high

proportion of repetitive sequences and associated large genome, hence

there is an urgent need of establishing the required genomic resources

to better understand resistance to begomovirus as well as many

other traits.
Conclusions

In conclusion, chilli leaf curl virus disease and the associated

begomoviruses continue to pose a significant threat to chilli

production worldwide. Developing sustainable and effective control

measures to mitigate yield losses due to LCD is crucial. In principle,
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there are two pathways towards leaf curl virus-resistant chilli breeding

cultivars that are resistant to the whitefly vector and developing varieties

that resist begomovirus. In the long term, combining both approaches

toward resistance is the preferred strategy. Several whitefly-resistant

chilli lines have been identified, which rely on morphological and

chemical defenses. Although resistance against specific Begomovirus

strains is available, breeding for broad resistance against multiple viral

strains remains a challenge. Moreover, the inability to diagnose

begomovirus infection at an early stage is a barrier to illness

management. The way forward: 1) strengthening resistance against the

vector, 2) identifying germplasm resources with resistance against

various begomovirus strains, and subsequent pyramiding of the

resistance through recurrent selection and through MAGIC

populations could be an effective strategy. The use of integrated pest

management techniques that incorporate genetic resistance, cultural

practices, and chemical control should be incentivized for the long-term

management of the leaf curl virus. Finally, more research is required to

comprehend the intricate interactions between the whitefly vector,

begomovirus, chilli plants, and the environment. Advances in

molecular biology, genomics, transcriptomics, and bioinformatics can

provide new insights into the mechanisms of host-pathogen-vector

interactions and hasten the development of effective and long-term

management strategies for chilli begomovirus diseases like chilli leaf curl

virus disease. To address the challenges of begomoviruses and ensure

sustainable chilli production in the future, researchers, breeders, farmers,

and policymakers must work together.
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