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spatial feature gathering and
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Yao Zhang1,2 and Yun Wu1,2

1College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2University Key
Lab for Geomatics Technology and Optimize Resource Utilization in Fujian Province, Fujian
Agriculture and Forestry University, Fuzhou, Fujian, China
Introduction: Three-dimensional spectral distributions of forest stands can

provide spatial information on the physiological and biochemical status of

forests, which is vital for forest management. However, three-dimensional

spectral studies of forest stands are limited.

Methods: In this study, LiDAR andmultispectral data were collected fromMasson

pine stands in southern Fujian Province, China, and a method was proposed for

inverting forest spectra using point clouds as a unit. First, multispectral values

were mapped to a point cloud, and the isolated forest algorithm combined with

K-means clustering was applied to characterize fusion data. Second, five deep

learning algorithms were selected for semantic segmentation, and the overall

accuracy (oAcc) and mean intersection ratio (mIoU) were used to evaluate the

performance of various algorithms on the fusion data set. Third, the semantic

segmentation model was used to reconfigure the class 3D spectral distribution,

and the model inversion outcomes were evaluated by the peaks and valleys of

the curve of the predicted values and distribution gaps.

Results: The results show that the correlations between spectral attributes and

between spatial attributes were both greater than 0.98, while the correlation

between spectral and spatial attributes was 0.43. The most applicable method

was PointMLP, highest oAcc was 0.84, highest mIoU was 0.75, peak interval of

the prediction curve tended to be consistent with the true values, and maximum

difference between the predicted value and the true value of the point cloud

spectrum was 0.83.

Discussion: Experimental data suggested that combining spatial fusion and

semantic segmentation effectively inverts three-dimensional spectral

information for forest stands. The model could meet the accuracy

requirements of local spectral inversion, and the NIR values of stands in

different regions were correlated with the vertical height of the canopy and

the distance from the tree apex in the region. These findings improve our
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understanding of the precise three-dimensional spectral distribution of forests,

providing a basis for near-earth remote sensing of forests and the estimation of

forest stand health.
KEYWORDS

UAV-based remote sensing, spectrum-spatial fusion, three-dimensional spectral, deep
learning, masson pine forest
1 Introduction

Forests are an essential component of terrestrial ecosystems

(Gordon, 2008; Cao et al., 2022), and play a significant role in

carbon storage and oxygen release. They also conserve the

biodiversity of plants, animals, and microorganisms (Xue et al.,

2021), with trees serving as the foundation. Unmanned aerial

vehicles (UAVs) equipped with various sensors have obtained

multispectral information on forest stands. UAVs provide a

precise scientific reference for monitoring the physiological and

biochemical status of small-scale forest stands, which is vital for

regional forestry resource management.

Forest stand spectral information could be categorized as two-

dimensional (2D) or three-dimensional (3D). 2D spectral

information is collected through aerial survey operations by

multispectral cameras on UAVs, mainly reliant on a 2D raster to

illustrate the horizontal dimensional spectral distribution of forest

stands. Multispectral images could store reflectance data for forests,

such as the spectral values of the vegetation. This allows precise

calculations of the band along with texture characteristics of forest

(Li T. et al., 2022; Dong et al., 2019), making it easy to characterize

the planar structure that comprises the true forests feature

distribution (Gao et al., 2020; Kazi and Bannari, 2022). In

addition, multispectral information shows the plane configuration

of the authentic forest features, and is crucial in the inversion of

remote sensing parameters of small-scale woods (Xie et al., 2017;

Zhao et al., 2021; Zhou X, 2021; He et al., 2022). Nevertheless,

vegetation reflectance metrics are abundant in 2D spectral data

while the spatial dimensionality is still limited. Forests have been

studied only for their horizontal multispectral information

properties while they were 3D objects, which inescapably leads to

a blind spot in the sensing of the spectral composition of crucial

forest stand components such as the lower and middle canopy along

with understory vegetation, resulting in a challenge to describe the

3D spectral distribution of woody plants.

LiDAR sensors have a strong capacity to penetrate the forest

canopy (Dayal et al., 2022), UAV-mounted LiDAR sensors or

multispectral LiDAR have often been used to gather 3D spectral

information of forest stands (Li., Chen, 2021). The primary

advantage of UAV-mounted LiDAR sensors is their ability to

describe high-precision 3D structural information of forests in the

form of point clouds, which are unfortunately restricted by spectra

to the three primary colors (R, G, B). Some studies incorporated

geographical coordinates with the three primary colors for point
02
cloud classification and segmentation (Peichao et al., 2022),

however this strategy somehow failed to recognize vegetation

response in the near-infrared or red-edge bands. Meanwhile,

UAV-mounted multispectral LiDAR, typically represented by the

Canadian Optech Titan system (Van, 2015) (containing three

bands: 532, 1064, and 1550 nm), could demonstrate a

comparatively broader range of specular reflection bands. Some

researchers performed multispectral point cloud feature

classification based on the Titan system(Shi et al., 2021; Yang

et al., 2021; Luo et al., 2022). In terms of data quality, the point

cloud density obtained via this method (1-6/m2)(Ahmed et al.,

2019; Wang R. et al., 2022) was approximately one percent of the

LiDAR, consequently making it difficult to be applied to targeted

spectral detection of small-scale forest fractions.

UAV airborne LiDAR can acquire a vast quantity of precise

spatial structural information, while multispectral photogrammetry

can collect rich waveband records. Various studies have utilized the

benefits of the fusion of UAV image features and spatial features

from the LiDAR point cloud, in image pixels or voxel units, for the

inversion of the forest structure (Wu et al., 2022; Yan et al., 2023).

Several researchers (Caiyun et al., 2013; Wang X. et al., 2021) have

used single wood as a unit to obtain structural data. Since the feature

level rather than the point cloud level was utilized in these studies, it

failed to consider the information expression of the fusion point

cloud. Point clouds are 3D point sets that show sparse and irregular

distribution (Feng et al., 2023), reflecting the precise depth

information from the object surface points to the LiDAR (Zhao,

2022). The point cloud spectral data obtained by the airborne

LiDAR sensor were relatively small (R, G, B), and feature-level

fusion failed to apply the true 3D spatial distribution properties of

the LiDAR point cloud data. The texture of the item and its precise

reflectance in horizontal form can be defined through multispectral

photographs. A few studies have contemplated fused spectral details

as input features directly to point cloud data, which can effectively

consider the intricate geometric spatial structure features, then

achieve better feature segmentation (Wang L. et al., 2022; Jing,

2021; Xue, 2022). However, most research to date has focused on

fused point clouds with spectral details only for the exterior layer,

the spectral attributes of the middle and lower canopy remain

undemonstrated. LiDAR point cloud data products, present certain

challenges to the intelligent interpretation of point cloud data, as the

canopy is heavily veiled, the use of proper information mining

a lgor i thms wi l l improve ana lyses of complex point

cloud information.
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Point cloud deep learning (DL) algorithms continue to change

as computer technology advances, and it is common practice to

utilize semantic segmentation techniques based on point clouds (Lu

J et al., 2023). The PointNet network (Qi et al., 2017b) executed

modifications to data in consideration of the point cloud’s

disorganized and sparse structure, PointNet++ (Qi et al., 2017a),

a traditional MLP network, uses a hierarchical feature extraction

strategy. Vector local self-attention represented the Point

Transformer’s central idea (Zhao et al., 2020). A network solely

employing pure MLP architecture was known as Point MLP (Ma

et al., 2022), which refraining from the excessive computation costs

created by locally complex tasks. Likewise, the convolution

algorithm helped alleviate the computing load. In point cloud

segmentation tasks, PointCNN (Li et al., 2018) resolved the issue

of giving learned trait weights and arranging characteristics in a

predetermined potential order. Point Conv (Wu et al., 2018)

expanded dynamic filters into an innovative convolutional

execution. Engelmann et al. (2017) proposed a point cloud block

grouping process; however, this method and some subsequent

methods, such as RSNet (Huang et al., 2018), had difficulty

defining the learning context of each point. The above algorithms

are based directly on point clouds, with different methods for the

acquisition and learning of local feature information (Gu et

al.,2020). The efficiency of point cloud segmentation models had

become progressively exceptional as DL algorithm technology

evolved. Point cloud spectral information could be enlarged and

topped up with data fusion processing (Wang et al., 2020; Zouhair

et al., 2022), with spectral semantic feature learning and the point

cloud fusion dataset, spectral information for the true 3D point

cloud can be inverted by DL algorithms, achieving end-to-end

content reconstruction of the forest 3D point cloud spectrum.

The spectral information for vegetation can be used to estimate

important physiological and biochemical parameters (Zhou and

Cao, 2021). Remote sensing data are commonly used to acquire the

spectral characteristics of forests, including satellite remote sensing

and remote sensing images obtained by the UAV platform (Li L

et al, 2022). A series of recent studies have indicated that

multispectral satellite remote sensing is widely applicable to

forestry work. Feng et al. calculated the remote sensing optical

index based on Gaofen-6 and EU Sentinel-2A data to invert the

FMC (fuel moisture content) of subtropical forests in Guangdong,

China (Feng X. et al., 2022). Qiu et al. identified damage from pine

wood nematode disease based on Sentinel-2 and Landsat-8 remote

sensing satellite images, with an accuracy of up to 79.3% (Qiu and

Zong, 2023). However, satellite remote sensing acquisition is of low

resolution. By contrast, several studies suggest that the low

resolution of satellite remote sensing data could be solved by

using multispectral sensor in UAV, which is widely used for

small-scale forest parameter acquisition. Based on multispectral

UAV data, Zhao et al. constructed 11 plots for the exponential

inversion of forest and grass coverage, with an accuracy of up to

90% (Zhao et al., 2023). Lu et al. estimated the photosynthetic

parameters of Linalum japonicum based on multispectral UAV

remote sensing, with R2 values up to 0.788 (Lu X. et al., 2023).

However, such studies have a narrow focus on 2D datasets, and it is

difficult to obtain 3D spectral parameters for stands by satellite
Frontiers in Plant Science 03
remote sensing or UAV remote sensing. Methods to obtain 3D

spectral information on forests are lacking.

In this context, a strategy to assess the stand’s 3D spectral

distribution based on point cloud spectrum-spatial fusion with a

neural network algorithm was proposed in our study. The specific

objective of this study was to invert 3D near-infrared spectral values

for forest stands in point cloud units. After the fusion of

multispectral image values and point clouds, a semantic

segmentation method for point clouds based on feature addition

and deep learning models was introduced. Finally, an evaluation

experiment was conducted to evaluate the inversion accuracy. The

main objectives of our study are as follows.
1) We propose an end-to-end accurate pairing of multispectral

data and point cloud spatial data to generate a high-

dimensional stand point cloud dataset using the hidden

point removal and spatial orientation fusion methods.

2) We establish a coupled isolated forest algorithm along with

clustering algorithm and a pre-classifier to enhance the

features of the fusion dataset and then test semantic

segmentation accuracy and performance of point cloud

DL algorithms of different classes (PointNet, Pointnet ++,

PointMLP, Point Transformer, and Point Conv).

3) To evaluate the potential of merging DL methods with point

cloud fusion in the 3D spectral reconstruction of forest

stands and evaluate the spectrum inversion results using

spectral frequency distribution graphs.
This study provides a method for the remote sensing inversion

of the stereoscopic spectral distribution of stands to a certain extent,

with practical implications for monitoring variation in forest stands.
2 Materials and methods

2.1 The study area

Hetian Town (25°35’-25°46’ N,116°16’-116°30 ‘E), Changting

County, Longyan City, Fujian Province, China is the study area.

Hetian Town has a subtropical monsoon climate and is located

southwest of Fujian Province, it is low-lying, with numerous low

mountains and hills scattered throughout the territory, the stand’s

basic composition is Pinus massoniana, and the zonal vegetation is

subtropical evergreen broad-leaved forest (Li T et al., 2022).
2.2 Data acquisition

1) UAV Multispectral Remote Sensing Data Acquisition: This

study set three standard plots of Pinus Massoniana with a size of 20

m*20 m under the condition of the canopy density gradient. The

vegetation distribution of the sample plots is primarily Smunda and

Pinus Massoniana, the proportion of the total area of bare land

increases as canopy density decreases (Figure 1). To ensure that

highly precise standard ground coordinates were obtained, after
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locating the sample site with DJI UAV high-precision RTK in

August 2022, DJI Spirit 4 equipped with the Mica Sense Red Edge

multispectral lens was used to collect multispectral orthophotos of

the study area on sunny and windless days. DJI Spirit 4 has a

positioning system supporting high-precision GNSS and network

RTK, with 1 visible light lens and 5 multispectral lenses (blue, green,

red, red edge, near-infrared) integrated. The flight altitude was set to

80 m, the flight speed to 3 m/s, and the overlap between the flight

heading and the side direction was set to 80% during the acquisition

process, we obtained 341 orthoimages to acquire spectral

information, the multispectral aerial photographs were radio-

metrically corrected, cropped, and stitched using Photo Scan

software (http://www.agisoft.cn/) to obtain three parts of

orthophotos, each part including R, G, B, NIR, red-edge, and true

color, these images were resampled to 0.01 m resolution in ArcMAP

10.2 to ensure the accuracy of the subsequent data fusion.

2) UAV LiDAR Data Acquisition: At the same time, the DJI

M300 RTK with L1 laser lens was used to collect LiDAR point cloud

data in the same area with a laser spot size of 52 mm*491 mm and a

wavelength of 905 nm, the collection mode was waypoint hovering

mode during the data collection, the number of echoes was 3, the

flight altitude was 80 m, the flight speed was 3 m/s, the pulse
Frontiers in Plant Science 04
emission frequency was 160 kHz, the overlap rate between heading

and side direction was 80%, the point density exceeded 600/m2 and

the scanning angle was ±30°, further to geometric registration, the

obtained point cloud data were stored in LAS format, which include

3D coordinates, primary colors, intensity, scanning angle, return-

times, and other information. Noise in the point cloud obtained by

the airborne laser scanner would influence subsequent data

processing; to address this issue, we used Cloud Compare (http://

www.cloudcompare.org/) for noise removal. Then, CSF cloth

filtering (Wuming et al., 2016) was used to ensure that ground

points and above-ground points are separated from the de-noising

cloud for pre-classification. The cloud distribution at sample sites is

shown in Table 1.
2.3 Methods

Figure 2 provides an overview of the study’s methodological

approach. We applied a strategy for reconstructing 3D spectrum

data by combining point cloud and multispectral photographic

imagery with semantic segmentation of the point cloud. By

combining the advantages of 2D spectral information and the 3D
B2

C1

D1

A

C3

D3

B3B1

C2

D2

FIGURE 1

Schematic of the research area. (A) Administrative division of Hetian Town. Orthophotos of (B1) plot 1, (C1) plot 2, and (D1) plot 3, and LiDAR data
for (B2) plot 1, (C2) plot 2, and (D2) plot 3. Class distributions of (D1) plot 1, (D2) plot 2, and (D3) plot 3.
TABLE 1 Statistical table of various data of sample set.

Canopy
density

Number of points
Multispectral image
Resolution/(M2)

Number of points per class

tree land grass

Plot 1 0.20 267593 0.01 108857 75722 83014

Plot 2 0.35 290446 0.01 95444 97393 97609

Plot 3 0.60 272775 0.01 104402 83474 84899

Total \ 830814 \ 308703 256589 265522
fro
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spatial structure of the point cloud, semantic segmentation

technology was used to produce 3D spectral products of forests.

1) We first extracted the feature bands of UAV multispectral

image data, then based on airborne LiDAR point cloud data set,

Cloud Compare was used for noise removal and pre-segmentation.

We used Open3D for hidden point removal, constructed on

perspective and normal vectors. When the UAV multi-spectral

sensor collects data, the shooting Angle of the lens is approximately

vertical to the ground, and the spectral information of the surface of

the ground object is obtained in this way, however, the airborne

LiDAR point cloud of UAVs contains all the spatial structure

information of both the surface and lower surface objects.

Therefore, we can assume that the intersection of UAV multi-

spectral sensor and LiDAR is the surface of ground object, to couple

the multi-spectral data and LiDAR point cloud data, eliminating the

invalid point clouds outside the surface point clouds of ground

objects is necessary, only in this way can we construct the point

cloud data set of fusion spectrum. Then, the remained point cloud

was fused with the spectrum as the prior knowledge of the 3D

spectral point cloud, and point level fusion was achieved with

spatial orientation as a reference to obtain a point cloud

collection containing feature multispectral data.
Frontiers in Plant Science 05
2) We then combined isolated forest and K-means pre-

classification to create sub-classifiers for feature augmentation in

response to point cloud collection noise and internal feature

difference obscurity. Due to the differences in the acquisition

methods for multispectral data and point cloud data, after fusion,

the features of the point cloud data set were obscure and the data

amount was huge. The focus on isolated forests could eliminate

abnormal outliers in large data sets, and K-means clustering could

be used to scale the spectral law of point clouds to enhance 3D

spectral features.

3) We compared five types of DL algorithms to explore the

applicable limitations of point cloud feature data and determine the

optimal semantic segmentation architecture based on the dataset

after outlier removal and feature extension. The types of deep

learning algorithms included typical MLP methods, attention

mechanism methods, pure MLP methods, and convolution

methods. Different deep learning algorithms could extract

different local feature information from point clouds.

4) Finally, we verified the inversion results and developed a 3D

spectral inversion model. The spatial distributions of stand spectra

before and after inversion were visually evaluated, and the spectral

point cloud curves were the drawn for analyses. The original 3D
FIGURE 2

Overall work flowchart.
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point cloud data were used for point-level spectral inversion.

multispectral images in the same region were taken as validation

data, and the consistency of the data distribution frequency

characteristics in the real 3D perspective was compared to

evaluate the accuracy of the model.

The key components of the 3D spectral inversion model

included the point-level fusion of the point cloud and multi-

spectrum and deep learning semantic segmentation. Point-level

semantic fusion ensured the accuracy of prior knowledge in deep

learning, where point-level spectral inversion refers to spectral

inversion in terms of a 3D point cloud, based on which we can

obtain the spectral parameters of each point cloud instead of the 2D

image element spectral values, and expand the point cloud spectral

information to obtain the 3D forest spectral features.

2.3.1 Feature fusion methods of LiDAR
data and multispectral image

1) Hidden Point Removing Methods: The feature fusion work

was mainly based on the spatial orientation consistency of the object

being detected, approximating high-precision geographic alignment

and information mapping, the point cloud needed to be subjected to

hidden point removal (HPR)(Katz et al., 2007), a method that

removes the internal point cloud that was not visible from any of the

aerial survey simulation views of the UAV, using the open3D in

python 3.6 environments to complete the data processing, to assure

that the point convergence for the fusion task was located in the

multispectral camera’s shooting area, the forest exterior point cloud

was collected by extracting the feature point cloud. The HPR

algorithm works on the following principles: The HPR algorithm

was based on the following principles:

a) Mapping: given coordinate system P and C, where viewpoint

C is located at the origin, The point set P is drawn inside the

coordinate system, and pi is located on the path of monotonically

decreasing radioactivity from the origin C, Set a D-dimensional

sphere with C as the origin and R as the radius. Through (1),

spherical inversion is used to solve the image points reflected from

the mapping point set to the outside relative to the sphere’s interior.

bpi = f (pi) = pi + 2(R − pik k) pi
pik k (1)

where p̂i represents the set of mapping points and R represents

the radius.

b) Convex hull reconstruction: For the transformed point cloud

and spherical center point, the point existing on the convex hull of

the sphere is extracted as the proposed visible point.

2) Spectrum-spatial Data Fusion: The point cloud after the

removal of the hidden point was fused with the multispectral image,

the fusion was based on the spatial azimuth settlement of the aerial

photo and the 3D coordinates of the point cloud. With known

orientation elements inside and outside the aerial camera film, the

point cloud 3D coordinates were substituted into the co-linear

condition equation to calculate the pixel positions of the

corresponding 3D points on the image (Zhang et al., 2009), which

were then resampled to obtain the near-infrared (NIR) channel

grayscale values, in (2): (X, Y, Z) represents the point cloud 3D
Frontiers in Plant Science 06
coordinates, (XS, YS, ZS) are the three line elements representing the

outer orientation elements of the point cloud, (a1, b1, c1, a2, b2, c2, a3,

b3, c3) are the parameters of the rotation matrix calculated from the

three angular elements of the outer orientation elements. The spatial-

spectral matching was completed by locating the 3D coordinate points

to specific image element positions in the multispectral photograph,

resulting in a point cloud dataset containing (X, Y, Z, R, G, B, NIR) 7-

dimensional information, which was used as a priori input knowledge

for subsequent spatial-spectral internal information perception.

x = −f · a1(X−Xs)+b1(Y−Ys)+c1(Z−Zs)
a3(X−Xs)+b3(Y−Ys)+c3(Z−Zs)

y = −f · a2(X−Xs)+b2(Y−Ys)+c3(Z−Zs)
a3(X−Xs)+b3(Y−Ys)+c3(Z−Zs)

(2)
2.3.2 Feature enhancement based on fusion
dataset

After feature fusion, the point cloud dataset was still quite

massive and had a modest, unpredictable spectral distribution. To

enhance a potential model’s capacity to detect features, it was

essential to highlight the spectral distinctions between various

kinds of features in the dataset’s jumbled information dispersion

structure. In this study, firstly, the outlier detection method of the

isolated forest (Fei et al., 2008) was used to remove the outliers from

the seven-dimensional point cloud dataset to reduce the

redundancy of the subsequent model training data (Figure 3),

then, based on the removal of the outliers, the K-means algorithm

(Hartigan and Wong, 1979) combined with the elbow method was

used to determine the number of clusters to amplify the spectral

distribution features within the point cloud (Figure 4).

1)Isolated Forests Algorithm: Aiming at the outliers, noise, and

deviation data existing in the massive high-dimensional point cloud

data set in this study, the isolated forests algorithm was used to

remove the outliers. The isolated forests algorithm is an

unsupervised outlier detection method, which uses the number of

times required by random cutting isolated data sets to describe the

anomaly degree. Compared with traditional anomaly detection

methods, this algorithm does not need to normalize sample data

and has stronger generalization performance, can be well applied to

high-dimension data sets.

The main algorithm ideas of isolated forests are as follows:

a) Randomly sample the data to be detected, select specific

points as sub-samples to construct an isolated tree, and input the

samples into the forest.

b) Test each isolated tree, calculate the test data on the tree

along the corresponding conditional branch until it reaches the leaf

node, and record the path length h(x) in the process.

c) Calculate outliers of samples at leaf nodes, calculate outliers

though (3) and (4):

s(x,y ) = 2−
E(h(x))
c(y ) (3)

c(y ) =

2H(y − 1) − 2(y − 1)=y y > 2

1, y = 2

0, otherwise

8>><
>>: (4)
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d) Repeat the above steps to continuously divide the binary tree

into leaf nodes.

Where S represents the abnormal fraction, C represents the

average path length of the binary search tree, h(x) represents the

height of x in each tree, H represents the harmonic number, and C

is used to normalize the calculation results. The larger the calculated

path length C is, the smaller the abnormal fraction S is. If S is close

to 1, it is judged as an anomaly, if S is much less than 0.5, it is judged

as a non-anomaly.

2)K-means Clustering Algorithm: Due to the obscure spectral

distribution pattern inside the spectral-fused point cloud dataset

and the disturbance of the enormous sample size, the spectral-

spatial feature dispersion appears tough to integrate. Consequently,

the K-means method was selected for the primary classifier in our

work, which groups the spectral attributes within each dataset to

again strengthen feature distribution consolidation and facilitate

object recognition in subsequent models. The followings are the

basic clustering principle:
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a. Randomly initialize K clustering center points, calculate the

distance between each point in the data and K clustering

center points,

b. Assign each data point to the cluster center nearest to the

cluster center,

c. Recalculate clustering centers for each category,

d. Repeat steps 2 and 3. When the set number of iterations is

reached or the mean vector of the cluster class is no longer

changed, the model construction is completed and the

results of the clustering algorithm are output.
The Euclidean distance between the data object and the

clustering center in the spatial data is calculated though (5),

where X is the data object, Ci is the i-th clustering center, m is

the dimension of the data object, and Xj and Cij are the attribute

values of X and Ci, respectively.

d(X,Ci) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
om

j=1(Xj − Cij)
2

q
(5)
FIGURE 4

Schematic of the inversion model for multispectral values of the point cloud.
B

A

FIGURE 3

Schematic of multispectral image fusion to the point cloud, (A) angle determination, (B) hidden point removal and data fusion.
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The elbow strategy was used in this work to identify the last

number of clustering to guarantee that the degree of grouping

satisfies the requirement of feature statistical distribution of the

point cloud data set. By drawing the distribution diagram of the

sum of squares of error (SSE) and a number of clusters (K) and

finding the inflection point of the curve distribution, the optimal

number of clusters’ K value can be determined. SSE value represents

the square of the distance between the points of each cluster and

their centroid.

K=8 was discovered to be the optimum K value for feature

grouping in this dataset. After determining the clustering centers

and boundaries of the object classes, a pseudo label was assigned to

each point cloud internal feature spectral value in ascending order

from 1 to 8, each pseudo label represented a type of genuine

spectrum, completed the NIR dimensionality reduction, and was

then used for the following feature band mapping lookup. The

elbow method is formulated as (6), where Ci is the clustering center,

p is the sample point in Ci, and mi is the centroid of Ci:

SSE =ok
i=1op∈Ci

=p −mi=
2 (6)
2.3.3 Model construction
1) Datasets: On the premise of ensuring the correct fusion

results, the data enhancement processing of outlier removal and

feature re-clustering was carried out for the fusion point cloud data

set. Since the inner spatial patterns of the spatial-spectral

characteristics of the point clouds were not yet fairly obvious, our

study performed a variable correlation analysis on the enhanced

point cloud set and chose the Spearman correlation coefficient (7) to

depict the variable correlation within the differential set of points

and to investigate the impact that of various qualities of the point

clouds on the feature inversion effects.

r = 1 −
6on

i=1(xi − yi)
2

n(n2 − 1)
(7)

where n is the sample size, x is the independent variable, y is the

dependent variable, and r is the correlation coefficient, where values

closer to 1 indicate a higher correlation between variables.

The point clouds and spectra of three different types of surface

objects from sample sets were combined in this study. Three types of

typical ground objects (bare ground, herbs, and canopy) were taken

during the annotation process and manually annotated in Cloud

Compare in las format to explore the spectral distribution norms of

various ground items. Each point cloud’s properties were recorded as

(X, Y, Z, R, G, B, NIR), where (X, Y, Z) referred to the point cloud’s

initial coordinates, (R, G, B) referred to its true color data, and NIR

referred to its fusion pixel value. The aberrant point clouds were

removed using the isolated forest algorithm, the secondary

classification was completed based on the corresponding label

applied to each type of point cloud in line with the NIR distribution

in the clumping of category points in various locations as well as the

above K-means clustering algorithm. Since the distribution of the (X, Y,

Z) values had magnitude differences, the coordinates were normalized

to create a data set with a normal distribution by dividing by the

standard deviation after subtracting the mean value, and (R, G, B) were
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normalized to be between 0 and 1 to unify the magnitude, the point

cloud was then stored in the format: (x, y, z, r, g, b, label), (x, y, z) was

the point cloud coordinates after standardization, (r, g, b) was the true

color value after normalization, and label corresponded to the real

value of NIR dimension reduction for each point cloud. Finally, the

processed data set was then split into a training set, test set, and

verification set in an 8:1:1 ratio and delivered into the DL model.

2) Training Settings: The 3D point cloud segmentation task

groups the same class of points into a subset based on the semantic

information of a given point cloud, compared to 2D semantic

segmentation, 3D semantic segmentation can distinguish spatial

objects in greater detail, semantic segmentation methods based

directly on point clouds can perform the segmentation task

effectively without losing structural information (Bello et al.,

2020). In hopes of comprehending the internal knowledge of the

fused point cloud dataset, 5 distinct DL models, including PointNet,

PointNet++, PointMLP, Point Transformer, and Point Conv, were

employed in this study, all of the above methods directly used 3D

point cloud as input. To ensure consistency of comparison results,

the parameters of the 5 different models were all set to learning rate

= 0.05, batch size = 4, and epochs = 150. The specific operating

environment and configuration of this study are shown in Table 2.

The main libraries used by the five types of deep learning algorithms

include matplotlib, numpy, scikit-learn, and h5py, among others.

Two indexes in semantic segmentation were adopted as

accuracy evaluation indexes to objectively assess the accuracy of

point cloud semantic prediction: overall accuracy (oAcc) and mean

intersection ratio (mIoU). In this work, point cloud NIR prediction

was regarded as a part segmentation task, the NIR value functioned

as the corresponding label required for segmentation. The ratio of

positive case prediction to positive case prediction is known as

oAcc. The intersection and union ratio between true and

anticipated values in various categories. The formulae for the

evaluation indexes are as (8) and (9):

mIou =
1

k + 1o
k
i=0

pii

ok
j=0 pij +ok

j=0pji − pii
(8)

oAcc =oK
i=0

pii

oK
j=0pij

(9)

where i represents the real value, j represents the predicted value, pij
represents the prediction of i as j, and k is the total category.

By drawing the distribution diagram of the sum of squares of

error (SSE) and a number of clusters (K) and finding the inflection
TABLE 2 Environments and versions.

Name Parameters and versions

CPU Intel Xeon™ E5-2680 v4 @2.4 GHz

GPU NVIDIA GeForce RTX 2080Ti (11 GB)

RAM 16 GB

OS Windows 10 Professional

ENVS PyTocrh 1.10.0 + Python 3.7
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point of the curve distribution, the optimal number of clusters’ K

value can be determined. SSE value represents the square of the

distance between the points of each cluster and their centroid.
3 Results

3.1 Visual analysis of fusion results

The point cloud data and the spectral data of the same position

were matched using the hidden point removal method and the

spatial collinear equation. The aerial photography angle of the UAV

was taken to remove hidden points, and a single point cloud was

maintained in the Z-value channel within a specific unit for

multispectral assignment after the non-fusion point cloud was

eliminated according to this angle. Three sample trees from

sample 3 were selected at random to illustrate the distribution of

their NIR after fusion, as displayed in (Figure 5). Where the color is

red, the NIR value is higher, where the color is dark blue, the NIR

value is lower. Three trees’ NIR values were radially spread from the

center of the crown portion in the overlooking view, hitting a

maximum point before gradually decreasing as the radius increased.

Since the height difference between sample-woods 1 and 2 was

greater than that between sample-woods 3, the NIR value peaked in

the side view at the crown vertex, while the distribution difference of

NIR on the vertical section was more significant. The tree apex was
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set as the center of the circle, the tree crown was divided into 5 levels

with equal distances, and 12 sample trees were arbitrarily assigned

from the sample sets (Figure 6-1). The average elevation value and

average NIR distribution of point clouds in each level were recorded

as Zmean and NIRmean, and the scatter diagram of NIR value and

canopy grade distribution of single tree point clouds was drawn

(Figure 6–2). The Z value and NIR value of the six sample trees all

demonstrated a declining trend from the tree apex. The NIR value

and radius level R2 were the lowest and highest, at 0.66 and 0.98,

respectively. These results indicated that the spatial distribution of

NIR correlates positively with the height of a single tree and that it

gradually rose with an increase in the Z value of a single tree point

cloud, peaking at the apex of the tree. Typically, the NIR value at the

canopy section’s center tended to be greater than that at the edge.
3.2 Quantitative analysis of
parameters correlation

Our study analyzed the internal attribute correlation of point

cloud variables via an internal attribute correlation analysis on the

fused point cloud dataset that has been separated into geographical

types utilizing the Spearman coefficient to evaluate pairwise

correlations among variables. All attributes showed substantial

correlation at the significance level P<0.01, according to the inner

correlation analysis of 830,814 point cloud data (X, Y, Z, R, G, B,

NIR) from the three samples (Figure 7). The correlation
FIGURE 5

Schematic of the effect of space-spectrum fusion. (a1-a2) Top view and side view. True color of (b1) sample wood 1, (c1) sample wood 2, and (d1)
sample wood 3. NIR distribution overlooking (b2) sample wood 1, (c2) sample wood 2, and (d2) sample wood 3. NIR distribution for the side view of
(b3) sample wood 1, (c3) sample wood 2, and (d3) sample wood 3. (e) Actual distribution of sample wood 1-3.
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distribution of the sample set attributes revealed several

characteristics: the spatial variable set (X, Y, Z) had a strong self-

correlation inclination, with the bare class’s Z-Y in sample set 3

having the greatest correlation and the herb class’s Z–Y having the

least correlation (rspatial_min = 0.022, rspatial_max = 0.980). In

comparison to X and Y and Z and X, there was a stronger link
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between Z and Y. The correlation between the three primary colors

was weakest for the crown class in sample set 1 and finest for the

canopy class in sample set 3(roptical_min = 0.812, roptical_max = 0.988)

in the spectral variable set (R, G, B, NIR), which likewise displayed a

significant self-correlation trend. NIR and the three primary colors

had a less significant correlation than the three primary colors
B1 C1A1

B2 C2A2

B3 C3A3

FIGURE 7

Correlation analysis of point cloud features in samples. The canopy point cloud correlation of (a1) sample 1, (b1) sample 2, and (c1) sample 3. The
bare ground point cloud correlation of (a2) sample 1, (b2) sample 2, and (c2) sample 3. The herb point cloud correlation of (a3) sample 1, (b3) sample
2, and (c3) sample 3.
B C D

E F G H

I J K L

A

FIGURE 6

Scatter diagram of the spatial distribution of NIR values. (1) Classification of canopy point clouds, (2) scatter diagram of the spatial distribution of NIR
values of random individual trees: (A-L) sample trees 1–12.
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themselves. The R-NIR of the herb type in sample 3 had the smallest

connection, while the B-NIR of the canopy type in sample 3 had the

strongest link (rnir_min = 0.251, rnir_max = 0.699). The self-

correlation with the three primary colors ranged from 0.45 to

0.65. In terms of the correlation distribution of ground objects,

the spatial property of bare land had the strongest correlation, and

the highest was X to Z (rland_spatial = 0.980) in sample 3, followed by

the canopy, and the lowest was the herb. This could be due to the

bare ground allocation failing to display a staggered cloud of highs

and lows, in contrast to the herbaceous and canopy layers. As a

result, the differences were less pronounced on the vertical scale,

with Z values fluctuating gradually and cooperatively with X and Y

values. Compared with vegetation and canopy, bare soil had a

spectral attribute correlation higher than 0.9, and the gap in actual

reflectance between bare soil and the other two categories of surface

items was consistent with this result.
3.3 Quantitative analysis of
models accuracy

In this study, the test set and validation set data of point cloud

data fused with three different depression closures were tested on

top of five models, and the accuracy of the results is shown in

Tables 3–5. The data revealed that, in the experimental results of

sample 1, PointMLP performed well on all categories of ground

objects, with the canopy category establishing a maximum accuracy

of 0.84, and PointNet++ followed behind. The performance of

PointMLP was also the best in sample 2, and its precision for the

bare ground class was the most significant at 0.84. The performance

of PointNet++ ranked second. In sample 3, PointMLP stood out for
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data of bare ground and herbs. The bare ground had the optimum

precision in samples 2 and 3, in sample 1, while canopy had the

highest accuracy, and the three samples’ estimates of the effect of

herbs fell between bare soil and the canopy.

Considering the attribute differentiation of the correlation degree

of point cloud variables of different land classes, the optimal prediction

effect of the bare land class dataset might be because spectral variables

deepen the cognizable range of the DL model to a certain extent. The

herb set and canopy set had moderate spectral correlations, however,

since the information richness of the spatial features in the canopy set

was greater than that in the herb set, the canopy set had a marginally

stronger predictive ability than the herb set.

Figure 8 utilizes a point-line chart to evaluate the DL model’s

performance in sample sets with various canopy thicknesses. Sample

sets 1, 2, and 3 are denoted by the broken lines in gray, blue, and red,

and the actual canopy thicknesses corresponding to each sample set are

0.20, 0.35, and 0.60, respectively. As the canopy density of the sample

set grew, there was no significant apparent difference in the NIR

prediction outcomes for various point clouds. As evidenced in

(Figure 8), the three sample sets’ accuracy ranged around 0.45, with

0.65 to 0.85 being the greatest. It’s possible that, during the processing

of the data set, sampling was performed to minimize the gap

magnitude between the point clouds of various ground objects.

As a byproduct, the distribution of ground point clouds in samples

with different canopy densities was fairly uniform, and the number of

canopy points did not reduce as canopy density rose. As a result, while

canopy density increased, the amount of bare soil and herb points did

not. Based on the results of the model selection, PointMLP had the best

performance among the five model algorithms, followed by PointNet+

+, and the other three models performed intermediate, with precision

ranging between 0.40 and 0.70. This might be because massively
TABLE 3 Sample 1 performance evaluation of various algorithms.

Model
Tree Land Grass

mIoU oAcc mIoU oAcc mIoU oAcc

PointNet 0.68 0.78 0.54 0.63 0.47 0.62

PointNet++ 0.70 0.82 0.65 0.79 0.49 0.63

PointMLP 0.72 0.84 0.65 0.79 0.50 0.66

Point Transformer 0.76 0.79 0.64 0.70 0.58 0.68

Point Conv 0.68 0.79 0.60 0.75 0.48 0.64
fronti
TABLE 4 Sample 2 performance evaluation of various algorithms.

Model
Tree Land Grass

mIoU oAcc mIoU oAcc mIoU oAcc

PointNet 0.46 0.53 0.69 0.73 0.52 0.60

PointNet++ 0.52 0.67 0.71 0.83 0.54 0.69

PointMLP 0.55 0.70 0.75 0.84 0.59 0.72

Point Transformer 0.59 0.63 0.58 0.65 0.55 0.63

Point Conv 0.40 0.67 0.63 0.76 0.48 0.56
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complicated data sets restrict the ability to employ sophisticated and

thorough local geometric feature extraction techniques, including

convolution, graph, and attention mechanisms. The network

architecture adopted by PointMLP is residue feed-forward neural

MLP, and its local geometric affine module may adjust to

transforming local region point characteristics. Furthermore, the

model could integrate residual linkages to create depth features, which

is more appropriate for the overwhelming amount of information

contained in the fusion point cloud dataset used in this work.
3.4 Quantitative analysis of spectral
reconstruction results

Point clouds outside the sample 1 training set were selected for

the spectral reconstruction of all three types of ground objects. The

reconstruction effect was assessed and scrutinized in conjunction

with the frequency of the spectral values. The NIR values in the

areas from blue to red steadily increased in the NIR prediction

distribution diagram of the point cloud (Figure 9). Though the

overall distribution situation was essentially consistent with that

before inversion and the spatial distribution characteristics of the

three types of ground objects resembled each other after inversion,

there still exist several inadequacies in the details. The inversion

values lost more border details and the NIR values were exaggerated

at higher levels, but the genuine NIR values of grassland samples
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were expressed in more detail at the edges. The NIR distribution of

the bare soil samples before and after inversion was consistent with

the azimuth, but the information output at the boundary was also

slightly lacking, and the true value of NIR tended to be lost. The

overall distribution of canopy samples before and after inversion

was similar, but the local overestimation was more prominent, and

the NIR at the canopy boundary was higher.

Three different ground objects were used to draw the NIR

distribution frequency curve, the blue curve represents the inversion

result of the DL network, and the gray curve reflects the true value.

Figure 10 represents the canopy, bare soil, and grassland in

succession. The predicted value contained three peaks and was

scattered in the range 10.07 to 11.90, whereas the true value of the

canopy sample only had one peak (NIRmax = 10.62), and the two

peaks had converged, as seen by the maximum difference of 1.27

between the anticipated value and the actual value. The predicted

value for the bare ground sample set comprised three peaks (7.77-

8.80), however, the actual value had just one peak (NIRmax = 7.96),

between the true worth and the forecasted value, and the maximum

difference was 0.83, however, the two peaks’ redistributive spans

generally followed the curve’s general tendency. The grassland

samples had two peaks, with the real peaks at 12.03 and 13.46

and the estimated peaks at 12.22 and 13.85, and the maximum gap

between the predicted value and the real peak was 0.39. The median

values of the predicted values of the canopy and bare land were all

higher than the true values, as determined by a contrast of the
TABLE 5 Sample 3 performance evaluation of various algorithms.

Model
Tree Land Grass

mIoU oAcc mIoU oAcc mIoU oAcc

PointNet 0.59 0.65 0.57 0.62 0.45 0.64

PointNet++ 0.64 0.77 0.63 0.76 0.62 0.76

PointMLP 0.66 0.77 0.65 0.78 0.64 0.78

Point Transformer 0.46 0.63 0.42 0.67 0.68 0.73

Point Conv 0.46 0.55 0.52 0.66 0.46 0.63
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FIGURE 8

Comparison of deep learning models for three types of sample sets. (A) land, (B) grass, and (C) canopy.
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allocation between the estimated parameters and the real values of

the three samples (Figure 11), while there was little difference in the

grass class. The model’s predictive outcomes and the actual values

both manifested the traits of a normal distribution.

The prediction values replicated the initial sample distributed

across the deviant range of data points, indicating that identification
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recognition for all attributes in the point cloud dataset was well

performed by the model. The distribution curves of the three types of

samples showed local oscillation and deviation estimation, among

which overestimation accounted for a large portion, as well as

characteristics of feature imbalance and detail loss. Even so, the

NIR distribution frequency graphs of all sample types exhibited
B C
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FIGURE 9

Distribution of predicted and true values of NIR grassland, bare soil, and canopy for three types of sample set. RGB format of (A) grassland, (B) bare
soil, and (C) canopy. 3D distribution of true values of NIR of (D) grassland, (E) bare soil, and (F) canopy. 3D distribution of NIR predicted value of
(G) grassland, (H) bare soil, and (I) canopy. Platform of NIR real values of (J) grassland, (K) bare soil, and (L) canopy. Platform of NIR predicted values
of (M) grassland, (N) bare soil, and (O) canopy.
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positive consistency within the group. The model may meet the

requirements of global inversion because the global distribution of the

NIR forecast was essentially compatible with the true value.
4 Discussion

4.1 Spectral-spatial distribution of the
forest after the fusion of multispectral
images and point clouds

In our study, a stand’s multispectral values were assigned to a point

cloud based on spatial orientation, revealing a correlation between the

spectral distribution of stand and the spatial location on the point
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cloud. Prior research has demonstrated that multi-spectrum and

LiDAR point cloud-based spatial data fusion can significantly

increase the precision of ground-object segmentation and

classification (Kai et al., 2022). The fusion approach revealed a

substantial relationship between the NIR value of a stand and (RGB)

spectral attribute value (P< 0.01). Based on the specific spectral

distribution of individual trees at the point cloud scale, the 3D spatial

distribution features of the stand point cloud attributes possessed a

pronounced self-correlation, and the spectral distribution had some

spatial regularity. According to previous studies (Morsy et al., 2016; Eva

et al., 2021), the spectral distribution pattern of various tree species and

ground classes was anisotropic. The internal self-correlation (r = 0.988)

of the spectrum variables (R, G, B, and NIR) and spatial variables (X, Y,

and Z) were both considerably higher than the correlation between the
B CA

FIGURE 10

Comparison of distribution frequencies of predicted and true NIR values in three types of sample sets. (A) canopy, (B) bare land, and (C) grassland.
The blue curve represents the predicted value, the gray curve represents the true value, the red symbol represents the predicted peak value, the
yellow symbol represents the true peak value, and the diagonal line represents the relative coincidence of the wave crest.
FIGURE 11

Comparison of the true distribution of predicted values of three types of sample sets.
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two variable types (r = 0.433); in comparison with those of the canopy

and herb layer, the bare ground had a relatively high spatial correlation

and spectral correlation. The decay of radioactivity from the tree apex

to the tree crown, which has a significant relationship (R2max = 0.9842)

with the point cloud Z value, represents the NIR diffusion of the

canopy. There was no significant association between the two when the

canopy was sparse. When the canopy distribution was uniform, the

NIR value at the center of the canopy was generally higher than that at

the crown edge. Therefore, rather than neglecting the stand condition

for unified measurement, studies of the inversion of stand-related

metrics based on NIR values retrieved from 2D images should consider

the canopy density.
4.2 New method for stand
spectral inversion

In this study, a feature enhancement method was developed for

isolated forests combining K-means clustering with the DL algorithm.

The results of this study suggest that the fusion of a high-resolution

remote sensing image and a point cloud is ideal, and that this feature

augmentation strategy is capable of improving the degree to which

model details can be detected (Shang et al., 2023). To illustrate the

advantages of the method, DL model performance and forest spectral

inversion results were evaluated, as discussed below.

The point cloud DL method can separate components, classify

point clouds of various shapes, and learn the internal rules of a dataset

(Siddiqui and Hyunsik, 2022). Point convergence with complicated

attribute features is better suited for the model directly employing the

pure MLP network architecture (oAcccanopy = 84.40%, oAccland =

84.81%, oAccgrass =78.13%), consistent with previous results (Xue,

2022), and other segmentation techniques perform marginally

poorer. The MLP network framework can implement end-to-end

data processing and retrieve the intricate details of point convergence

for end-to-end semantic segmentation of fused point cloud datasets

containing high-dimensional information. We therefore chose the

PointMLP algorithm as our basic DL method in combination with

feature enhancement for stand spectral inversion.

The spectral distribution in forests is vital for monitoring, as

different ground objects have distinguishable spectral distribution

properties (Feng Q. et al., 2022). However, studies of the spectral

distribution of the canopy, bare ground, and grass are lacking. On

the basis of establishing feature-enhanced data sets, semantic

segmentation and prediction were performed on the opposite end

of three different types of ground object point clouds in this study

by integrating the point cloud-spectrum fusion algorithm with the

DL model with the general MLP architecture. The key findings of

the quantitative examination of inversion values show that the

difference between real values for the three types of sample sets and

predicted values were generally consistent (NIR-Differencemax =

1.27); the model displays accurate inversion outcomes as well as the

outstanding capacity to recognize global features. As shown in

Figure 10, the three different types of sample peak intervals on the

normal curve of the NIR frequency distribution before and after

inversion were generally uniform, demonstrating that the inversion

results are in line with the real NIR sample distribution. The NIR
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values of different land classes possess convergent distributions.

Ground object clustering inversion performances were better near

the center than at the boundary, and the dispersion traits of outliers

in the max sample set were also well preserved. Although the model

has an excellent degree of dependability and can accommodate

global inversion, there are some cases of locally uniformly inflated

results, and its resolution is inadequate.
4.3 Future improvements

Three aspects of forestry remote sensing work may benefit from

our research. First, the proposed forest point cloud and multispectral

fusion methods can provide technical support for image element and

point cloud fusion in subsequent studies. Second, when forest spectral

values showed a unique distribution, NIR values were generally higher

in the center of the canopy than at the edge of the canopy. These results

indicate that in the study of forest stand attributes based on 2D image

inversion, forest conditions should not be measured uniformly but

should consider the distribution of forest canopy densities. Third, forest

spectral detection is a basis for forest management (Bolin et al., 2022). It

is difficult to obtain true 3D spectral information for forests with

restricted spectral values, creating a key gap in knowledge; the 3D

spectral inversion technique proposed in this study breaks resolves this

issue to a certain extent and can provide an important reference for

relevant forest departments.

Nevertheless, there are two main sources of uncertainty in our

research. First, during the forest data collection process using the UAV

on-board multispectral camera or LIDAR sensors, coordinate

uncertainty in spatial point fusion can result from self-systematic

errors (Zha et al., 2023). Aimed at this problem, we used high-

precision GPS to locate the coordinates of the four points in the

sample plots to ensure the accuracy of the coordinates. Second, in the

fusion of 3D point cloud data with 2D multispectral data, there is an

impact of large amounts of redundant point cloud data beyond the

surface of land features; accordingly, we conducted hidden point

removal to minimize this issue.

Several unresolved issues remain. First, due to the inadequacy of

prior knowledge in the inversion process, only the method of

retrieving spectral values with the spatial structure of the point

cloud was tested, and the inner mechanism relating spatial and

spectral information remained unclear. Second, data sources were

dimensionally limited; we only obtained 2D multispectral data.

Further studies of multi-angle multispectral data may be helpful

(Wang R. et al., 2021; Yuan et al., 2021), indicating that more

information on the distribution of spectral values in the middle and

lower parts of canopy would be learned by the model. Moreover, the

spectral class was limited, fusion and inversion with hyperspectral

images will provide richer spectral information (Xu, 2023), thereby

extending the 3D spectral breadth of forests in terms of species.
5 Conclusion

This study set out to determine a method for inverting 3D spectra

of Pinus massoniana stands based on multispectral imagery and point
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cloud data; spectral information and 3D structure information for the

stand were collected. The most applicable method was PointMLP, the

highest oAcc was 0.84, the highest mIoUwas 0.75, the peak distribution

interval of the prediction curve tended to be consistent with the true

value, and the maximum difference between the predicted value and

the true value of the point cloud spectrumwas 0.83. These results reveal

that the point cloud spectrum-spatial fusion method with combined

hidden point removal can effectively replicate the 3D spectral

distribution of the stand, with broad implications for the prediction

of spectral attributes and precise global stand spectral inversion. In

addition, compared with the 3D spectral inversion of stands at the

present stage, this work based on the removal of redundant point cloud

points, reducing their impact on point cloud fusion work, represents

the first attempt to invert spectral values in point-to-point form. The

study contributes to the precise extraction of stand attribute

information from a point cloud and addresses the limitations of 2D

forest spectral information to a certain extent. A limitation of this study

is that the embeddability module based on the traits of datasets was not

considered, leveraging a complete deep-learning framework for model

comparison. Future research should investigate the spectral

distribution concepts related to forest ground features probed with

the aid of broader fusion datasets and account for complex situations,

such as phenology, pests, and illnesses.
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