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Introduction: Smart management in crop cultivation is increasingly supported by

application of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting

microorganisms (PGPM), which sustain soil fertility and plant performance. The

aim of this study was the evaluation of the effects of consortia composed of

(Claroideoglomus claroideum BEG96, Claroideoglomus etunicatum BEG92,

Funneliformis geosporum BEG199, Funneliformis mosseae BEG 95, and

Rhizophagus irregularis BEG140) and PGPM (Azospirillum brasilense – AZ, or

Saccharothrix sp. – S) on onion cultivated in growing media with a composition

corresponding to a degraded soil.

Methods: Three types of substrate formulations were used, with peat:sand ratios

of 50:50, 70:30, 100:0 (v:v). The analysis of substrate parameters crucial for its

fertility (pH, salinity, sorption complex capacity, and elements’ content) and

characteristics reflecting onion seedlings’ performance (fresh weight, stress

biomarkers, and elements’ content) was performed.

Results: AMF colonized onion roots in all treatments, showing increasing

potential to form intercellular structures in the substrates rich in organic

matter. Additionally, co-inoculation with PGPM microorganisms accelerated

arbuscular mycorrhiza establishment. Increased antioxidant activity and

glutathione peroxidase (GPOX) activity of onion roots sampled from the

formulations composed of peat and sand in the ratio of 100:0, inoculated with

AMF+S, and positive correlation between GPOX, fresh weight and antioxidant

activity of onion roots reflected the successful induction of plant acclimatization

response. Total phenols content was the highest in roots and leaves of onion

grown in substrates with 70:30 peat:sand ratio, and, in the case of roots, it was

correlated with AMF colonization parameters but not with antioxidant activity.
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Discussion: AMF and PGPM efficiency in supporting onion growth should be

linked to the increased onion root system capacity in mineral salts absorption,

resulting in more efficient aboveground biomass production. AMF and PGPM

consortia were effective in releasingminerals to soluble fraction in substrates rich

in organic matter, making elements available for uptake by onion root system,

though this phenomenon depended on the PGPM species. Microorganism

consortia enhanced onion seedlings’ performance also in substrates with lower

content of organic carbon through plant biofertilization and phytostimulation
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1 Introduction

Microbial interactions in the rhizosphere are intensified by

released plant root exudates, which are the main food source for

microorganisms, increasing their population density and activity

(Raaijmakers et al., 2009; Gavilanes et al., 2021). Plants benefit from

root-associated microorganisms through various activities

(phytohormones, nutrient supplementation, and pathogen

suppression), ultimately increasing growth, health, and yield, thus

decreasing the dependence on harmful chemicals and their after-

effects (Raaijmakers et al., 2009; Syed and Tollamadugu, 2019). The

potential of microbial symbioses is currently considered a valuable

contribution to precision agriculture (Ma, 2019). Such inoculation

can increase crop yield by enhancing nutrient uptake and pathogen

biocontrol (Parnell et al., 2016; Nacoon et al., 2021). Significant

changes in the indigenous microflora of soil by introducing single

cultures of exogenous microorganisms appear to be complex, and

the efforts have not always been successful (Onishchuk et al., 2017;

Iturralde et al., 2019). Therefore, the physiological and ecological

compatibility of beneficial and effective microorganisms is an

important factor that increases the probability of shifting and

controlling the “microbiological equilibrium” of the rhizosphere

to encourage the growth, yield, and health of crops (Bidondo

et al., 2016).

Onion (Allium cepa L.) is an economically important crop that

is characterized by high environmental and cultivation demands.

Onion seedlings grow relatively slowly and develop shallow weakly

branched roots without root hairs, which shows a low efficiency in

uptaking soil water and nutrients; thus, they are vulnerable to their

deficiency since the beginning of the crop cycle (Sekara et al., 2017;

Golubkina et al., 2020). Therefore, it is difficult to supply onion

seedlings with sufficient amounts of soil nutrients to ensure

optimum growth, especially in the early growth stages (Serra and

Currah, 2002). According to Lee and Lee (2014) the optimum

ranges of soil parameters should be as follows: pH 6.0–6.5; organic

matter 25–35 mg kg−1; P 129–168 mg kg−1; exchangeable K, Ca, and

Mg, 0.39–0.50, 5.8–6.7, and 2.1–2.7 cmolc kg
−1, respectively. The

rate of nutrient uptake depends on the growth stage, as the

requirement for N is high during seedling production and
02
subsequent vegetative growth (Mosse et al., 1981; Drost and

Koenig, 2002). Simultaneously, high levels of N may cause

leaching, denitrification, and increased susceptibility to pests and

diseases (Sekara et al., 2017). Arbuscular mycorrhizal fungi (AMF)

and plant growth-promoting microorganisms (PGPM) can be

successful inoculants when applied at the beginning of the onion

vegetation stage to balance the seedling nutritional status (Deressa

and Schenk, 2008; Colo et al., 2014). However, the potential benefits

justify the investigation of the mechanisms of interactions between

AMF, PGPM, and onion plants (Lone et al., 2015; Rozpadek et al.,

2016). The research undertaken so far covers the selection of the

most effective microorganisms to establish successful symbiose/

mutualism in particular environmental conditions and farming

systems (Bolandnazar, 2009; Galván et al., 2009; Albrechtová

et al., 2012; Caruso et al., 2018), and the implications of these

ecological relationships on onion plant performance, especially with

respect to bulb yield and quality (Mollavali et al., 2015; Shinde and

Shinde, 2016; Fredotovic and Puizina, 2019; Petrovic et al., 2020).

Among the AMF associated with onion roots in different

environments and cultivation systems, Claroideoglomus spp.,

Funneliformis spp., and Rhizophagus spp. are the most

widespread (Charron et al., 2001; Bolandnazar et al., 2007;

Bolandnazar, 2009; Galván et al., 2009; Mohamed et al., 2014;

Mollavali et al., 2015). Concerning the plant growth promoting

bacteria, the effects of inoculation with Azotobacter sp.,

Sphingobacterium sp., and Burkholderia sp. were investigated in

onion (Tinna et al., 2020). Hong et al. (2019) demonstrated

endophytic infection of cyst-like cells after onion inoculation with

Azospirillum brasilense. Nevertheless, knowledge regarding the

relationship between onions and Azospirillum spp. is limited.

Less attention has been paid to AMF and PGPM co-inoculation

during the initial stages of onion ontogeny, particularly during

transplant production in controlled conditions, where all types of

substrates can be used, shaping distinct conditions for the

establishment of ecological relationships in the rhizosphere (Joe

et al., 2012; Colo et al., 2014; Mohamed et al., 2014; Ma, 2019).

However, such experiments provide clear insight in soil–plant–

microorganisms system and allow the identification of the most

beneficial AMF and PGPM consortia for onions in the juvenile
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growth stage. Moreover, the established symbiosis can be continued

under field conditions bringing multiple advantages during the

overall growing cycle, including increased plant nutrient uptake,

imparted biotic and abiotic stress tolerance, and better bulb quality

characteristics (Tinna et al., 2020).

The aim of this study was to evaluate the effect of onion

inoculation with AMF + A. brasilense or Saccharothrix sp.

consortia on onion seedling development in relation to the

substrate formulation. The influence of AMF and PGPM consortia

on the growing medium was assessed with respect to the parameters

crucial for fertility (pH, salinity, sorption complex capacity, and C, N,

P, K,Mg, Na, and Ca concentrations) and onion seedling biochemical

characteristics reflecting plant performance (fresh weight, stress

biomarkers, and concentration of K, P, Mg, Na, and Ca).
2 Materials and methods

2.1 Material and experimental protocol

The onion (Allium cepa L.) cultivar ‘Stalagmit’ F1 (Moravoseed,

Ltd, CZ) was used for this research. The experiment consisted of

seven treatments, each with three replicates (eight plants per

replicate). The experimental treatments included three non-

inoculated substrate formulations (control) and four substrate

formulations inoculated with consortia of arbuscular mycorrhizal

fungi (AMF) and plant growth-promoting microorganisms

(PGPM). The treatments and abbreviations used in this study are

listed in Table 1.

Sowing peat (Klasmann, DE) and sand (local sources) were

used. Calcium carbonate in remarkable amounts was used to

maintain a pH of approximately 6.5. The remaining substrate

parameters are shown in Supplementary Table 1. Before sowing,

the substrates were autoclaved at 120°C for 60 min, and then

inoculated with AMF and PGPM, namely A. brasilense (Tarrand

et al., 1978) (CCM 3862) (Czech Collection of Microorganisms,

Masaryk University, Brno, Czech Republic), or Saccharothrix sp.

(ST2020) (AMF + S). Saccharothrix species and strain details are

currently confidential because of the patent pending. AMF mix was

composed of Claroideoglomus claroideum BEG96, Claroideoglomus

etunicatum BEG92, Funneliformis geosporum BEG199,
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Funneliformis mosseae BEG 95, and Rhizophagus irregularis

BEG140 (Symbiom Ltd., Lansǩroun, Czech Republic). The AMF

mix contained 145 spores per gram, and it was applied at a dose of

0.015 g per cm3 of substrate. Inoculation with PGPM was

performed on onion seeds soaked for 30 min in A. brasilense and

Saccharothrix sp. (ST2020) suspensions, respectively. A. brasilense

culture were grown for one week on LuriaAgar media at 24°C

(HiMedia Laboratories, Mumbai, India) and ST2020 was grown in a

yeast-malt extract liquid medium (ISP2) from the International

Streptomyces Project (Shirling and Gottlieb, 1966) at 28°C with

agitation at 90 rpm for 10 days. Next, both cultures were

homogenized using sterile ceramic beads and the concentration of

both suspensions was adjusted to 108 CFU/ml in sterile

physiological saline (Joe et al., 2012). The substrate parameters

selected at the beginning of the experiment are listed in

Supplementary Table 1.
2.2 Cultivation conditions

The seeds were sterilized for 10min in 0.5% sodium hypochlorite,

washed with sterile distilled water, and sown in Teku V9 containers

(square, 9 × 9 cm; height, 8 cm; volume, 512 cm3) on 2 April 2020.

Seedlings were grown in a phytochamber Fytoscope 4400 (PSI, Czech

Republic) at a temperature of 20/18°C (day/night), relative air

humidity 80%, light intensity 120 μmol m−2 s−1 at the germination

stage; 18/16°C, 70%, 200 μmol m−2 s−1, respectively, at the beginning

of the cotyledon stage, and 21/18°C, 75%, and 200 μmol m−2 s−1,

respectively, after the first leaf stage, with 16 h of daylight. Seedlings

were irrigated with a measured volume of tap water. Urea was used

for fertilization (5 May, liquid 0.2% solution, 20 cm3 per pot in

irrigation doses), later the fertilizer YaraTera Kristalon 20 + 5 + 10 + 2

(N, P, K, Mg) Azur was applied each week until 18 June as a 0.1%

liquid solution at a dose of 20 cm3 per pot.
2.3 Substrate sampling and analyses

At the end of the experiment (26 June 2020), samples of

homogenized substrate (150 g per treatment) were collected, air-

dried, and basic parameters were determined, including pH (H2O

and KCl) using the potentiometric method, salinity with the

conductometric method, and the sorption complex capacity using

Kappen’s method. Total N and organic C were determined via

elemental analysis using a Vario Max Cube apparatus (Elementar

Analysensysteme GmbH, Langenselbold, Germany). The available

forms of macroelements (K, P, Mg, Na, and Ca) after extraction

with acetic acid were determined by inductively coupled plasma

atomic emission spectrometry using a Perkin Elmer Optima 7600

spectrometer (PerkinElmer, US).
2.4 Plant material sampling

Onion plants were collected on 26 June 2020, all leaves were cut

with scissors, and roots were completely extracted from the
TABLE 1 Treatments and their abbreviations used in this study.

Abbreviation Peat:sand
(v:v) ratio

Inoculation

C 50 50:50 –

AMF + AZ 50 50:50 arbuscular mycorrhizal fungi mix (AMF)
+ Azospirillum brasilense (AZ)

C 70 70:30 –

AMF + AZ 70 70:30 AMF + AZ

C 100 100:0 –

AMF + AZ 100 100:0 AMF + AZ

AMF +S – 100 100:0 AMF + Saccharothrix sp. ST2020 (S)
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substrate and washed with distilled H2O. Samples were stored

immediately after harvest in a deep freezer (TSE240VGP, Thermo

Fisher Scientific, USA) at temperature −80°C until analysis.
2.5 Fresh weight

Total leaf and root fresh weights (FWs) per plant were measured

using a Sartorius A120S balance (Sartorius AG, Germany).
2.6 Staining and microscopy

For colonization analysis, four randomly selected 10 mm long

root section per replicate were sampled, fixed in a formaldehyde:

ethanol:acetic acid 10%:50%:5% v/v solution (FAA) and stored in

the dark at 4°C before staining for microscopy (Schmidt et al.,

2008). The roots were then rinsed in distilled H2O, cleared in 2%

KOH for 1 h at 50°C, and washed in distilled H2O (4 × 3 min).

Roots were stained in a tube with a mixture consisting of WGA AF

594 conjugate (Invitrogen, USA) (50 mg ml−1), concanavalin A AF

647 (Invitrogen, USA) (50 mg ml−1), and acid fuchsine (3%) at a

ratio of 1:1:1 for 4–5 h at room temperature, rinsed in 1×PBS (4 ×

3 min), and incubated for 12 h in 1×PBS to remove all excess stain.

Before mounting on the slide, a few drops of Hoechst stain were

added to the slides with the roots (Vierheilig et al., 2005).

Mycorrhizal colonization was quantification by evaluating four

root segments per replication for mycelia, vesicles, arbuscules, and

spore presence. Ten observations were made at each root segment,

and the calculation of colonization was based on the ratio of

segments with AMF structures to roots without fungal structures

(Alarcón and Cuenca, 2005).

Confocal microscopy was completed using the LSM 800 (Carl

Zeiss, Germany) microscope at 590/617 nm excitation/emission for

WGA AF 594, 650/668 nm for concanavalin A AF 647, and 350/461

nm for Hoechst stain. The lens used was a ×20/0.8 NA. Images were

processed using the Zen Blue software (Carl Zeiss, Germany).
2.7 Analyses of stress biomarkers

The antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl

(DPPH radical) was measured in onion root and leaf samples. For

the extraction, 2.5 g of homogenized onion roots or leaves per

repetition was weighed, ground with 10 ml 80% methanol, and

centrifuged (3,492×g, 10 min, 4°C). The mixture containing 0.1 cm3

supernatant and 4.9 cm3 0.1 mM DPPH in 80% methanol was

incubated in darkness at 20–22°C after 15 min, the absorbance was

measured at l = 517 nm using a UV–VIS Helios Beta

spectrophotometer (Thermo Fisher Scientific, Inc., US). Antioxidant

activity was calculated using the following formula: DPPH (%) = ((A0

− A1)/A0) × 100, where A0 is the absorbance of the reference solution

and A1 is the absorbance of the test solution (Molyneux, 2004).

Total phenol content was determined using the modified Folin–

Ciocalteu colorimetric method (Djeridane et al., 2006). For the

extraction, a 2.5 g sample of plant material was ground, mixed with
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10 cm3 of 80% methanol, and centrifuged (3,492×g, 15 min, 4°C).

The glass tubes were filled with 0.1 cm3 of the supernatant and 2

cm3 of sodium carbonate, left for 5 min, and then 0.1 cm3 of Folin–

Ciocalteu’s reagent mixed with deionized water (1:1 v/v) was added.

After 45 min, phenols were determined by the colorimetric method

at 750 nm using a UV–VIS spectrophotometer against a reference

solution. The total phenol value was expressed as gallic acid

equivalents (mg GAE) per gram of FW.

Glutathione peroxidase activity (GPOX) was measured

according to Lück (1962). Plant samples (2.5 g) were ground in

an ice bath with 20 cm3 of a 0.05 M potassium phosphate buffer and

centrifuged (3,492×g, 15 min, 4°C). The reaction mixture contained

diluted supernatant, 0.05 M potassium phosphate buffer, p-

phenylenediamine, and hydrogen peroxide. The absorbance at

485 nm was recorded at 60 s intervals for 2 min using a UV–VIS

spectrophotometer. GPOX activity is expressed as units (U) per g

FW per min.
2.8 Element concentration in plant tissues

To determine the element concentrations in onion roots and

shoots, 0.5 g dry weight (DW) of plant material samples were

mineralized in a mixture of HNO3 and H2O2 at 1:3 (v:v), then 2 cm3

HNO3 per 100 cm3 distilled water was added. The samples were

concentrated 5-fold, and then the concentrations of elements (K, P,

Mg, Na, and Ca) were determined by atomic emission spectroscopy

(ICP) with an Optima 7600 spectrophotometer (Perkin Elmer, US)

using the method described by Pasławski and Migaszewski (2006).
2.9 Statistical analysis

The substrate and plant samples were analyzed for every

treatment in three technical replicates, each consisting of eight

plants. The data were tested for normality of distribution according

to the Shapiro–Wilk method and homogeneity of variances using

the Levene test. The ANOVA was applied to test significance levels

at p ≤0.05 (*), p ≤0.01 (**), or p ≤0.001 (***) and non-significant

(ns), followed by Tukey’s honest significant difference (HSD) test to

separate means into homogenous groups. The results were also

examined using Pearson’s correlation coefficient (r) between the

analyzed parameters. Principal component analysis (PCA) and

cluster analysis (CA) were performed to precisely demonstrate

and analyze the data and their relationships. Correlations and

PCA were used as supplementary statistical methods that enabled

and expanded the analysis of the presented data and made

additional relationships visible between the experimental

treatments and variables. The results using raw data are presented

for PCA because no substantial differences appeared between the

raw and standardized data. Modeling was performed with “general

regression models (GRM)”, a stepwise regression procedure with

backward elimination was performed to remove the least significant

variables. Multiple regression screening, based on the investigated

variables, was performed to determine the most accurate

compatibility. Coefficients of determination (R2) and standard
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errors of estimation (SEe) were calculated to assess the accuracy of

the models. All analyses were performed using Statistica 13.3 (Dell,

Inc., USA).

We used multiple linear regression analysis to develop models

that describe how the y-variable (FW of leaves, roots, and leaves +

roots of onion seedlings) is related to several explanatory variables

xn (substrate and plant parameters). After stepwise regression

analysis with backward elimination of all investigated parameters

variables, did not allow to formulate clear model, so variables

affecting simultaneously the FW were screened and two models

were developed. The first model for onion FW focused on whole-

seedling FW and had the following form: FW of roots + leaves =

1.120 ∗ Mg in substrate − 0.004 ∗ Na in the substrate. The input

data were the mean content of elements in the substrate and

mycorrhizal parameters. The coefficient of determination is high

(R2 = 0.968). This means that the regression line approximates the

real data points quite well and that the model can explain

approximately 97% of the onion seedling DW variation with

p ≤0.05.

The second model was revealed for onion root FW, with input

data including only the colonization rate, arbuscule abundance, and

vesicle abundance:

Roots FW = 1:18 + 0:102 ∗ colonization rate

− 0:0917 ∗ arbuscule abundance

− 0:046 ∗ vesicles abundance

The coefficient of determination is high (R2 = 0.944). with

p ≤0.05. According to multiple regression models, the total onion

seedling FW can be predicted based on the Mg and Na content in
Frontiers in Plant Science 05
the substrate, whereas root FW can be predicted based on the

analyzed AMF parameters.
3 Results

3.1 Fresh weight of onion as affected by
AMF and PGPM application to investigated
growing media

The fresh weight (FW) of onion leaves and roots at harvest was

10.94 g and 8.54 g on average, respectively, and exhibited significant

dependence on the experimental treatments and plant tissues

(Figure 1; Supplementary Table 2). The lowest root FW value was

recorded in the AMF + AZ 50 treatment (0.72 g) and the decrease in

root FW was 43.3% compared to the control C 50 treatment

(1.26 g). The roots of onions sampled from all treatments

inoculated with PGPM (AMF + AZ 70, AMF + AZ 100, and

AMF + S 100) developed similar root FW as the non-inoculated

control with corresponding peat:sand formulations (C 70 and C

100). The FW of onion seedling leaves grown on all substrates

inoculated with AMF and PGPM (AMF + AZ 50, AMF + AZ 70,

AMF + AZ 100, and AMF + S 100) were significantly higher than in

the corresponding controls, where similar peat:sand ratios were

used (C 50, C 70, and C 100, respectively). The differences in FW

accounted for 18.0% for the AMF + AZ 50 treatment, 22.0% for

AMF + AZ 70, 19.7% for AMF + Z 100, and 20.6% for AMF + S 100.

Analysis of the total onion seedling FW (leaf + root) revealed that

the highest values were recorded for AMF + AZ 100 and AMF + S

100 treatments, 3.40 and 3.57 g, respectively). Onion root FW was
FIGURE 1

Mean values (± SE) of the fresh weight of onion leaves (left) and roots (right). Bars marked with different letters represent different values at p ≤0.05,
according to Tukey’s test. C 50, peat:sand ratio 50:50 (v:v) without inoculation; AMF + AZ 50, peat:sand ratio 50:50 (v:v) inoculated with arbuscular
mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ); C 70, peat:sand ratio 70:30 (v:v) without inoculation; AMF + AZ 70, peat:sand ratio 70:30 (v:
v) inoculated with AMF and AZ; C 100, peat:sand ratio 100:0 (v:v) without inoculation; AMF + AZ 100, peat:sand ratio 100:0 (v:v) inoculated with AMF
and AZ; AMF + S 100 peat:sand ratio 100:0 (v:v) inoculated with AMF and ST2020 (S).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1222557
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Pokluda et al. 10.3389/fpls.2023.1222557
negatively correlated with Ca and Mg content in the leaves

(Supplementary Table 3). Leaf FW was positively correlated with

Ca and Mg content in roots, but negatively correlated with Na

content in roots. Moreover, leaf FW was positively affected by Ca,

Mg, Na, K, and P content in the substrate, AMF colonization rate,

arbuscule, and vesicle abundance in the roots.
3.2 Root colonization of onion as affected
by AMF and PGPM application to
investigated growing media

The data in Figure 2 show a high level of root colonization rate

in the AMF + AZ 100 and AMF + S 100 treatments (88.3 and 90.0%,

respectively). Results of observations performed with confocal

microscopy showed successful root colonization of AMF in all

inoculated treatments (Figure 3). No colonization was observed in

the control treatment.

The arbuscules were present in all treatments inoculated with

AMF, with the highest value observed in AMF + AZ 100 and AMF +

S 100 treatment (73%) (Figure 2). Vesicles were observed in onion

roots sampled from all inoculated substrate formulations in similar

amounts 53%–60% (Figure 2). Described parameters indicated the

intensive process of mutual symbiosis resulting in the parallel

development of AMF, namely colonization rate, arbuscule

abundance, and vesicles abundance. This process was additionally

confirmed by PCA analysis, showing a close distance between the

eigenvectors relevant to colonization rate, arbuscule, and vesicle

abundance. Mycorrhization parameters of onion roots

(colonization rate, arbuscule abundance, and vesicle abundance)

were positively correlated with K content in the substrate.

Mycorrhization parameters were positively correlated with
Frontiers in Plant Science 06
antioxidant activity and total phenols in root tissues but negatively

correlated with root FW (Supplementary Table 3). Concerning leaf

tissues, mycorrhization parameters were positively correlated with

leaf FW and Ca, Mg, Na, and P.
3.3 Analyses of stress biomarkers of onion
as affected by AMF and PGPM application
to investigated growing media

In general, the experimental treatments significantly affected the

antioxidant activity of onion seedlings, although no general

tendencies were observed. The antioxidant activity, measured as

DPPH scavenging activity, was higher in onion seedling roots

sampled from the treatments inoculated with AMF and PGPM,

namely AMF + AZ 50 (11.2%), AMF + AZ 100 (18.0%), and AMF +

S 100 (19.8%), compared to the corresponding controls (C 50 and C

100) at a significance level of 0.05. For onion leaves, the antioxidant

activity of plant samples collected from the AMF + AZ 70, AMF +

AZ 100 treatments was lower (6.6% and 17.5%, respectively, at a

significance level of 0.05) than that of the corresponding controls (C

70 and C 100) (Figure 4A; Supplementary Table 2). The antioxidant

activity of onion root extracts was positively correlated with K

content in the substrate, AMF colonization rate, arbuscule and

vesicle abundance, and root K, Ca, Mg, and GPOX activity

(Supplementary Table 3). The antioxidant activity of onion leaf

extracts was not affected by soil characteristics or AMF symbiosis,

but it was positively correlated with K, Mg, and P content in roots,

as well as with GPOX activity in root tissues.

The total phenol content was 35.7% higher in onion seedling

leaves than in roots based on the main effect analysis (Figure 4B;

Supplementary Table 2). Onion roots sampled from plants
FIGURE 2

Mean values ( ± SE) of the colonization rate (left), arbuscule abundance (center), and vesicle abundance (right). Bars marked with different letters
represent different values at p ≤0.05, according to Tukey’s test. Abbreviations are explained in Figure 1 and Table 1.
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inoculated with AMF + AZ 70 accumulated the highest number of

phenolic compounds (9.56 g), 26.5% higher than the corresponding

uninoculated control (C 70). In onion leaves, the highest number of

total phenols was determined in AMF + AZ 50 and AMF + AZ 70

treatments (12.19 and 12.58 r, respectively), but only in the case of

AMF + AZ 50, the mentioned compounds were accumulated at

21.5% higher extent than in plant leaves of corresponding control

(C 50). Total phenols of onion root extracts were positively

correlated with Ca content in roots, as well as K and Na contents

in leaves (Supplementary Table 3). A negative correlation was noted

between the total phenol content and all elements analyzed in

the substrate.

The onion seedling roots showed three-fold higher glutathione

peroxidase (GPOX) activity than the leaves, concerning the main

effects (Figure 4C; Supplementary Table 2). The highest GPOX

activity was noted in root samples from the AMF + S 100 treatment

(3,470 μmol tetraguaiacol min−1 g−1). The GPOX activity in roots
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sampled from inoculated AMF + AZ 50 and AMF + AZ 70

treatments was lower (by 5% and 8%, respectively) than that in

samples from the corresponding non-inoculated controls (C 50 and

C 70). The lowest GPOX activity was noted in onion leaf tissues

sampled from treatments with addition of inoculants, namely AMF

+ AZ 50 and AMF + S 100 (833.3 and 833.8 μmol tetraguaiacol

min−1 g−1, respectively) as well as from non-inoculated C 100

treatment (825.0 μmol tetraguaiacol min−1 g−1). The GPOX

activity in onion leaves of AMF + AZ 70 and AMF + AZ 100

treatments was higher (by 22.0% and 26.3%, respectively) than that

recorded in plant samples from the corresponding controls (C 70

and C 100). The GPOX activity of onion root extracts was positively

correlated with Mg and negatively correlated with Na content in the

roots (Supplementary Table 3). No positive correlations were

observed between GPOX activity in onion leaf tissues and other

soil or plant characteristics. The correlations between the

investigated stress biomarkers and the other onion seedling root
FIGURE 3

(A) Arbuscules (in orange color) developed within the tissue of onion root. Treatment 50 AMF + AZ. Bar = 50 µm. (B) Details of arbusculum in
particular root cells (orange structure), treated with 100 AMF + AZ. Bar = 20 µm. (C) Grid of mycorrhizal mycelia surrounding the onion roots treated
with 50 AMF + AZ. Bar = 50 µm. (D) Colonies of Azospirillum brasilense in the root-hair area. Treatment with 100 AMF + AZ. Scale bar = 20 µm.
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and leaf characteristics are illustrated in Figures 5C, D by the

magnitude of the angles between the relevant eigenvectors.
3.4 Element’s concentration in onion
tissues as affected by AMF and PGPM
application to investigated growing media

The mineral content of onion seedlings was significantly

affected by substrate composition and microbial inoculation. K
Frontiers in Plant Science 08
and Ca accumulated in higher amounts in onion seedling leaves

than in roots. In contrast, Mg, Na, and P contents were higher in the

onion seedling roots than in the leaves (Table 2).

The calcium content in the onion leaves and roots ranged from

5,624 to 16,648 mg kg−1 DW (Table 2; Supplementary Table 4).

Under the conditions of the peat content in the substrate at the level

of 50%, the Ca content in the roots was 5,624 mg kg−1 DW, while

when cultivated on pure peat, this value increased to 7,649 mg kg−1

DW. In onion roots cultivated in substrates with inoculation

(AMF + AZ 70 and AMF + AZ 100), a significant increase in Ca
B

C

A

FIGURE 4

Mean values ( ± SE) of antioxidant activity (A), total phenols (B), and glutathione peroxidase (GPOX) activity (C) in the leaves (left) and roots (right) of
onion seedlings. Bars marked with different letters are significantly different at p ≤0.05, according to Tukey’s test. Abbreviations are explained in
Figure 1 and Table 1.
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content was observed in comparison to the corresponding controls

(C 70 and C 100). Concerning the Ca content in onion leaves, a

significant increase was found in plant material collected from the

AMF-S 100 treatment compared to the C 100 treatment.

The Mg content in the tested plants ranged from 2,498 to 7,785

mg kg−1 DW (Table 2; Supplementary Table 4). A significant

increase in the concentration of Mg in the onion root tissues by

25%, and in the leaf tissues by 15% was observed as a result of

inoculation. The roots collected from the inoculated AMF + AZ 70

and AMF + S 100 treatments contained the highest amount of Mg,

but these values were not significantly different from those of the

corresponding controls (C 70 and C 100). In the case of onion

leaves, inoculation significantly increased Mg content in the AMF +

AZ 100 and AMF + S 100 treatments compared to that in the

corresponding control (C 100).
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In general, approximately 30% more sodium was observed in

plants inoculated with substrates than in the corresponding control

without mycorrhiza. The level of Na determined in onion roots of

the inoculated AMF + AZ 100 and AMF + S 100 treatments was

significantly lower than that in the plant material from the

corresponding control (C 100). In the case of Na content in

onion seedling leaves, no significant differences were noted for

the treatments.

There was no difference in the K content of the biomass of

plants grown on substrates with and without mycorrhiza. There was

also no effect of increasing the proportion of peat in the substrate on

the shaping of K content, which ranged from 13,626 to 32,175 mg

kg−1 DW. Onion roots sampled from the AMF + AZ 70 treatment

contained lower amounts of K than the corresponding control (C

70). Similarly, onion leaves of AMF + AZ 70 accumulated less K
B

C D

A

FIGURE 5

Biplot of PCA of the feature space built using data on the biochemical characteristics of the substrate after cultivation (A), root colonization (B),
onion roots (C), and leaves (D). Circles represent observations in the principal component space, whereas vectors indicate the contributions of each
feature to the first (x axis) and second (y axis) PCs. EC, cation exchange capacity; EC, electrical conductivity; VA, vesicle abundance; AA, arbuscule
abundance; CR, colonization rate; GPOX, glutathione peroxidase activity.
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than those of the corresponding control (C 70); however, in the case

of AMF + AZ 100, the dependence was reversed. In the case of K

content in onion seedling leaves, no significant differences were

noted between the treatments.

The phosphorus content in plant roots ranged from 2,721 to

4,796 mg kg−1 DW, whereas that in leaves ranged from 2,360 to

3,405 mg kg−1 DW. It was found that the P content was

approximately 10% higher inplants collected from substrates

subjected to inoculation. P accumulation in onion roots sampled

from the inoculated AMF + AZ 50 treatment was lower than that in

the samples from the corresponding control (C 50). No significant

differences were recorded for the treatments concerning P content

in the onion seedling leaves.

The analysis of correlation coefficients indicated a positive

relationship between Ca content in the growing medium and P

content in the leaves (Supplementary Table 3). Ca content in onion

roots was positively correlated with Mg, Na, K, and P in the growing

medium and with Mg, K, and P content in leaves.
3.5 Substrate properties after finishing of
the growing cycle

The sum of alkaline and acid cations in the sorption complex

resulted from the share of the organic fraction in the substrate

formulations, and was the highest in the C 100, AMF + AZ 100, and

AMF + S 100 treatments, with an organic carbon content of

approximately 50%. Total nitrogen was determined in the range
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of 4.5%–5.0%, and electrical conductivity (EC) 1.38–2.15 mS

(Table 3). Organic C was positively correlated with the sum of

alkaline and acid cations in the sorption complex and with each of

the invest igated cations (N, Ca, Mg, Na, K, and P)

(Supplementary Table 5).

The contents of Ca, Mg, Na, K, and P forms available to plants

in the growing medium analyzed after cultivation were the highest

in the formulations composed of peat:sand at a ratio of 100:0 (v:v),

namely C 100, AMF + AZ 100, and AMF + S 100 (Table 3).

Potassium content in the substrates after plant cultivation ranged

from 21 to 147 mg kg−1 DW. Moreover, substrates composed of

peat:sand in the ratio of 100:0 (v:v), with the addition of beneficial

microorganisms (AMF + AZ 100 and AMF + S 100), contained the

highest level of K after cultivation. In the case of treatments

composed of peat:sand at a ratio of 70:30 (v:v), higher contents of

Ca (9.6%), Mg (30.4%), Na (15.1%), and K (53.2%) were determined

in growing media inoculated with PGPM (AMF + AZ 70),

compared to the non-inoculated control (C 70), whereas P

content was similar in the corresponding inoculated and non-

inoculated treatments.

A statistically significant correlation was observed between the

contents of all examined elements in their available forms in the

media. The most common was a negative correlation between

the pH measured in KCl and the sum of cations in the sorption

complex, as well as the content of Ca, Mg, Na, K, and P forms

available to plants (Table 4). These dependencies are illustrated in

Figure 5A by the wide angles between the eigenvectors relevant to

pHKCl and other soil characteristics.
TABLE 2 Effects of soil microbial inoculants on mineral content in onion seedling roots and leaves (mg kg−1 DW) (mean values ± SD).

Treatment Ca Mg Na K P

Roots

C 50* 5,624 ± 301 b ** 3,462 ± 20 d 36,255 ± 224 ab 13,640 ± 14 d 4,354 ± 23 ab

AMF + AZ 50 6,530 ± 97 b 5,352 ± 61 c 37,240 ± 561 ab 14,319 ± 10 cd 3,142 ± 18 b

C 70 6,642 ± 417 b 7,162 ± 283 ab 29,522 ± 351 cd 17,571 ± 312 a 4,475 ± 198 a

AMF + AZ 70 10,927 ± 121 ab 7,785 ± 777 a 28,832 ± 1,968 cd 15,046 ± 417 bc 4,537 ± 259 a

C 100 7,649 ± 206 b 6,636 ± 46 abc 38,285 ± 297 a 15,811 ± 244 b 4,285 ± 54 ab

AMF + AZ 100 16,648 ± 560 a 6,190 ± 818 bc 31,671 ± 4,806 bc 14,954 ± 509 bc 3,759 ± 1038 ab

AMF + S 100 9,981 ± 337 b 7,487 ± 695 ab 25,450 ± 1,823 d 15,923 ± 688 b 4,278 ± 444 ab

Leaves

C 50 11,356 ± 99 c 3,082 ± 2 b 12,956 ± 214 a 29,185 ± 395 b 2,439 ± 78 c

AMF + AZ 50 14,675 ± 1,444 a 3,996 ± 279 a 13,074 ± 49 a 26,718 ± 738 c 2,843 ± 205 b

C 70 11,355 ± 905 c 3,088 ± 217 b 9,319 ± 210 b 28,941 ± 6 b 2,566 ± 16 bc

AMF + AZ 70 13,448 ± 408 ab 3,687 ± 52 a 12,409 ± 342 a 30,398 ± 320 ab 2,571 ± 93 bc

C 100 8,045 ± 348 d 2,498 ± 32 c 9,714 ± 107 b 29,226 ± 954 b 2,838 ± 189 b

AMF + AZ 100 12,624 ± 217 bc 4,000 ± 50 a 13,518 ± 654 a 31,780 ± 395 a 3,345 ± 60 a

AMF + S 100 13,656 ± 305 ab 3,718 ± 69 a 12,722 ± 440 a 29,674 ± 597 b 2,908 ± 100 b
*Abbreviations are explained in Figure 1 and Table 1.
**Values in each column followed by different letters are significantly different at p ≤0.05, according to Tukey’s test.
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3.6 PCA and cluster analyses

The PCA biplot (Figure 5) shows the contributions of each

determined parameter to the first and second PCs separately for soil

characteristics, AMF colonization, and onion seedling root and leaf

parameters. The data revealed that PC 1 and PC 2 for substrate

characteristics accounted for 93.06% of the total variance within the

data set, and pHKCl spread below 0 for PC 1, while the remaining

factors contributed positively to this component (Figure 5A). All

AMF colonization parameters contributed negatively to PC 1

(99.80% of total variance) (Figure 5B). PCA analysis of onion

root characteristics showed that all variables, except Na and total

phenols, had positive input to PC 1 (84.65% of total variance), while

total phenols, antioxidant activity, Ca, and Mg content had positive

output to PC 2 (26.81% of total variance) (Figure 5C). In the case of

onion leaf characteristics, antioxidant activity and total phenols had
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a positive input to PC 1, although its share of total variance was only

38.54%. FW, P, and K contents brought positive load to PC

2 (Figure 5D).

In the dendrogram presented in Figure 6, the y-axis shows the

distances between the treatments whereas the x-axis represents the

analyzed treatments. Based on the cluster analysis (CA) method

applied, two main clusters were distinguished based on the substrate

characteristics (Figure 6A): the first cluster was formed by

substrates with a peat:sand ratio of 50:50 and 70:30 (v:v), and the

second was formed with a substrate composed of a peat:sand ratio

of 100 (v:v). The CA was obtained from the experimental design.

CA analysis of root colonization parameters also distinguished two

main clusters: the first was composed of non-inoculated treatments

(C 50, C 70, and C 100), and the second was inoculated substrate

formulations, with the closest distance between the AMF + AZ 70

and AMF + S 100 treatments (Figure 6B). The root characteristics of
TABLE 4 Effects of soil microbial inoculants on soluble minerals (mg kg−1 DW) in the substrate after onion seedling cultivation (mean ± SD).

Treatment Ca Mg Na K P

C 50* 2360 ± 121.1 de** 262.2 ± 2.49 e 211.8 ± 9.46 e 21.65 ± 0.531 f 9.35 ± 0.396 e

AMF + AZ50 2219 ± 34.1 de 252.4 ± 2.50 e 219.9 ± 2.48 e 35.30 ± 1.968 e 11.27 ± 0.284 e

C 70 2187 ± 61.4 e 301.6 ± 1.14 d 267.6 ± 2.08 de 33.95 ± 1.535 e 14.87 ± 0.504 d

AMF + AZ70 2397 ± 70.3 d 393.4 ± 4.37 c 307.9 ± 7.56 d 52.01 ± 1.529 d 16.53 ± 1.342 d

C 100 3213 ± 59.4 a 991.0 ± 7.53 a 1500.4 ± 45.50 a 86.21 ± 1.639 c 72.89 ± 1.949 a

AMF + AZ100 2807 ± 47.7 b 976.1 ± 18.02 a 1350.9 ± 38.09 b 150.66 ± 1.529 b 59.31 ± 2.028 b

AMF + S 100 2620 ± 25.4 c 745.8 ± 10.82 b 863.9 ± 8.08 c 101.13 ± 1.724 a 45.99 ± 1.153 c
*Abbreviations are explained in Figure 1 and Table 1.
**Values in each column followed by different letters are significantly different at p ≤0.05 according to Tukey’s test.
TABLE 3 Effects of soil microbial inoculants on substrate physical and chemical characteristics after onion seedling cultivation (mean ± SD).

Treatment C 50* C 70 C 100 AMF + AZ
50

AMF + AZ
70

AMF + AZ
100

AMF + S
100

Sum in the sorption complex
(mMol Na+ kg−1)

alkaline
cations (S)

430 ± 24
c**

566 ± 31 b 1,287 ± 56
a

420 ± 42 c 551 ± 57 b 1,198 ± 66 a 1,212 ± 47 c

acid cations
(H)

42 ± 3 c 61 ± 5 b 154 ± 14 a 55 ± 7 bc 54 ± 4 bc 148 ± 9 a 135 ± 16 a

S + H (mMol kg−1)
472 ± 38 c 627 ± 52 b 1,441 ± 76

a
475 ± 54 c 605 ± 38 b 1,346 ± 69 a 1,347 ± 96 a

Cation exchange capacity with alkaline cations (%)
88.5 ± 9.5 a 89.5 ± 7.4 a 92.4 ± 6.7

a
83.4 ± 7.2 a 87.1 ± 5.9 a 91.4 ± 6.6 a 88.5 ± 4.7 a

Organic carbon (%)
2.55 ± 0.25
c

7.25 ± 0.32
b

48.16 ±
3.63 a

3.02 ± 0.41 c 7.85 ± 0.52 b 50.25 ± 2.32 a 51.14 ± 6.1
a

Total nitrogen (%)
0.305 ±
0.0251 c

0.610 ±
0.0712 b

4.542 ±
0.315 a

0.312 ±
0.034 c

0.635 ±
0.070 b

4.789 ± 0.366
a

4.991 ±
0.509 a

EC (mS)
0.45 ±
0.031 d

1.51 ± 0.092
b

1.38 ±
0.142 b

0.89 ± 0.102
c

1.58 ± 0.135
b

1.67 ± 0.184 b 2.15 ± 0.182
a

pH

H2O
7.33 ± 0.52
a

7.18 ± 0.61
a

6.15 ± 0.46
b

7.12 ± 0.42 a 6.89 ± 0.74 a 6.35 ± 0.59 b 6.37 ± 0.76
b

KCl
7.11 ± 0.29
a

6.75 ± 0.37
b

5.90 ± 0.32
c

6.88 ± 0.41
ab

6.71 ± 0.23 a 6.21 ± 0.41 c 6.24 ± 0.63
c

f

*Abbreviations are explained in Figure 1.
**Values in each column followed by different letters are significantly different at p ≤0.05 according to Tukey’s test.
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the CA also form two main clusters. The first included the C 50, C

100, and AMF + AZ 50 formulations, and the second included the

remaining treatments. CA covering leaf characteristics resulted in

grouping of the investigated substrate formulations into clusters

separating C 50 and C 70 from the other treatments, while the

closest relationship was recorded for AMF + AZ 70 and AMF + S

100 treatments. In general, the fact that certain objects belong to

clusters demonstrates their considerable similarity within the group

in question.
4 Discussion

4.1 Fresh weight of onion as affected by
AMF and PGPM application to investigated
growing media

In the present experiment, the roots of onions from all

treatments inoculated with AMF and PGPM had FW similar to

that of the uninoculated control treatments in every peat:sand

combination. However, the leaf FW of onion seedlings grown on

all inoculated substrates was significantly higher than that in the

corresponding controls. Albrechtová et al. (2012) confirmed the

synergism between AMF and saprotrophic fungi, resulting in a two-

fold increase in the onion yield in the presence of organic matter.

The mechanism behind the positive effect of inoculation on onion

FW can be the synergistic action of AMF, which induces an

accumulation of secondary metabolites, vitamins, and minerals

(Baslam et al., 2013), and bacteria, such as N-fixing A. brasilense,

which significantly enhances the length of root hairs and seedling

weight by increasing the availability of minerals (Ribaudo et al.,

2006). Crops inoculated with Azospirillum spp. experience changes

in root morphology via siderophore production which regulates

plant growth as well as vitamins such as thiamine and riboflavin

(Sahoo et al., 2014a; Sahoo et al., 2014b). The application of PGPM

in vegetables caused a yield increase of above ground crops by 8%–
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21%, and underground plant parts by approximately 25%–50%, as

well as improved nutrient use efficiency by 12%–36% of N, 18%–

29% of P, and 9%–15% of K (Rai et al., 2016). The present study

confirmed that leaf FW was positively affected by substrate mineral

composition, AMF colonization rate, and arbuscule abundance in

onion roots. Onion seedling FW was linked to better efficiency but

not development of the root system, resulting in higher

aboveground biomass production after AMF + PGPM

inoculation. Moreover, total seedling biomass can be predicted

with the proposed regression equations, including Mg and Na

content in the substrate, and root fresh weight can be predicted

using regression equations, including AMF parameters

(colonization rate, arbuscule abundance, and vesicle abundance).
4.2 Root colonization of onion as affected
by AMF and PGPM application to
investigated growing media

The results of observations performed with confocal

microscopy showed successful root colonization of AMF in onion

seedlings in all treatments. However, the colonization rate,

arbuscule abundance, and vesicle abundance were the highest in

substrate formulations based on the peat medium. Paranavithana

et al. (2020) confirmed that AMF colonization of rice roots is more

effective in soils rich in organic carbon. The described parameters

indicated the intensive process of mutual symbiosis resulting in the

parallel development by AMF mentioned morphological structures,

i.e., arbuscules, that the primary sites of nutrient interchange

between roots and fungi (Akiyama and Hayashi, 2006).

Additionally, the bacterial strains used in the inocula formulation

could accelerate mycorrhiza establishment and development

because of their ability to decompose chitin and chitosan, the two

main constituents of AMF spore walls, thus supporting spore

germination in the onion rhizosphere (Battini et al., 2016).

Although Saccharothrix spp. produce dithiolopyrolone derivatives
B

C D

A

FIGURE 6

Dendrogram (Euclidean distance, Ward’s method) showing the extent of distance between experimental treatments based on biochemical
characteristics of soil after cultivation (A), root colonization (B), onion root (C), and leaf characteristics (D). Abbreviations are explained in Figure 1
and Table 1.
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with antifungal activity (Merrouche et al., 2017), including PGPM

in the formulation used in the present study, the presence of

antagonism with AMF was not confirmed. In contrast, such

consortium application resulted in improved activity of the

enzyme, which is related to lignin formation. Cluster analysis

revealed a close distance between AMF + AZ 70 and AMF + S

100 treatments with respect to onion root and leaf characteristics;

therefore, AMF and Saccharothrix sp. The consortium was efficient

in substrates rich in organic C, while AMF and Azotobacter sp.

could be applied to substrates with lower organic C content.

According to a study by Zhou et al. (2020), AMF increase plant

carbon sequestration. The combination of AMF and Saccharothrix

sp. was more effective in organic carbon sequestration and substrate

colonization, although other substrate characteristics discussed in

the previous subchapter should also be considered. For example, the

highest soluble K content in the substrate of AMF + S 100

treatments was analyzed after the experiment. Moreover, the very

high antioxidant activity and GPOX activity in onion roots sampled

from the AMF + S 100 treatment indicated the successful induction

of plant acclimatization, probably linked to Saccharothrix sp. and

AMF interaction. In a previous study, Merrouche et al. (2017)

reported the antagonism of Saccharothrix against fungi (e.g.,

Fusarium spp.) and bacteria. Based on present results, it can be

concluded that Saccharothrix versus AMF interactions can evolve

from parasitism under less optimal conditions to synergism under

optimal conditions, in which competition for mineral resources is

low or absent.
4.3 Stress biomarkers of onion as affected
by AMF and PGPM application to
investigated growing media

Onion seedlings grown in substrates reflecting degraded soil are

under abiotic stress, including nutrient imbalances, low water-

holding capacity, high concentrations of toxic heavy metals, such

as Mn, Fe, and Al, high salinity, and pH fluctuations (Enkhtuya

et al., 2000; Lehman et al., 2015). These factors modify the growth,

function, and mineral absorption of the root system. AMF and

PGPM can improve soil parameters and even compensate for

chemical fertilizers, especially in onions, which are described as a

highly mycorrhizal-dependent crop (Bidondo et al., 2016). The

present study showed a new aspect of this relationship because

onion seedling roots grown in substrates inoculated with AMF + AZ

50, AMF + AZ 100, and AMF + S 100 showed higher antioxidant

activity than the corresponding controls. The latter indicates the

acceleration of anti-stress processes leading to the synthesis of

reactive oxygen species scavengers in onion roots. However, in

onion leaves of the AMF + AZ 100, and AMF + S 100 treatments,

antioxidant activity was significantly lower in leaves than in roots.

Antioxidant potency is a measure of the ability of the plants to

reverse the toxicity induced by stress factors (Veskoukis et al.,

2019). In light of the present results, reinforcing the antioxidant

defense of tissues was sufficiently efficient in onion roots in the AMF

+ AZ 100, and AMF + S 100 treatments, which did not need to be

initiated to a similar degree in the onion leaves. AMF and PGPM
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seem to be moderators of these processes, acting in the rhizosphere

by providing mineral nutrients and expressing a variety of enzymes

that contribute to the control of cellular ROS levels, as reported by

Pozo and Azcón-Aguilar (2007). AMF enhances the concentration

of phenolic compounds in the roots (Lokhandwala et al., 2014). In

the present study, onion roots sampled from the AMF + AZ 70

treatment accumulated the highest amount of phenol compounds.

In onion leaves, the highest number of total phenols was found in

AMF + AZ 50 and AMF + AZ 70. Phenolic compounds can

scavenge reactive oxygen, which is why the phenolic profile is

commonly correlated with the antioxidant activity of plant tissues

(Veskoukis et al., 2019). In the present study, total phenols of onion

root extracts were positively correlated with AMF (colonization

rate, arbuscule, and vesicle abundance), but negatively correlated

with antioxidant activity. This phenomenon can be explained by the

activity of AMF and PGPM to transform phenols into simple

compounds, which are ecologically active in soils through

stabilization of free enzymes, modification of the transport and

bioavailability of nutrients, and enhancement of element

mineralization and humus formation (Raaijmakers et al., 2009).

Additionally, the antioxidant activity of onions is linked to

sulfur derivates other than polyphenols (Fredotovic and Puizina,

2019). Moreover, phenols accelerate nutrient uptake by roots by

chelating metallic ions and enhancing active absorption sites and

soil porosity (Seneviratne and Jayasinghearachchi, 2003). Indeed,

the present data revealed a positive correlation between total

phenols in onion roots and Ca content in roots, as between K

and Na content in leaves. This phenomenon can be explained using

polyphenol compounds by AMF as substrates to modify

biochemical conditions in the rhizosphere environment (Stewart

and Stewart, 2008; Raaijmakers et al., 2009; Fredotovic and

Puizina, 2019).

GPOX catalyzes lignin formation and establishes a structural

barrier by producing reactive oxygen and nitrogen species

(Marjamaa et al., 2009). In the present study, the highest GPOX

activity was recorded in root samples from the AMF + S 100

treatment, and the elevated GPOX activity under AMF colonization

indicates alleviated oxidative stress and therefore a higher

resistance, as was reported by Domokos et al. (2018) for

Artemisia annua inoculated with R. irregularis. Islam et al. (2015)

stated that PGPM activated plant antioxidant defense by regulating

the activity of GPOX, as a crucial antioxidant enzyme. The next

issue is that the GPOX activity in roots sampled from inoculated

treatment AMF + AZ 70 was higher as compared to values

determined in samples from corresponding controls. AMF and

Saccharothrix sp. consortium were more effective in organic carbon

sequestration of peat media and, in turn, colonization. Moreover,

the high antioxidant activity and GPOX activity in onion roots

sampled from the AMF + S 100 treatment indicated the successful

induction of plant response to stress factors, probably linked to

Saccharothrix sp. and AMF interaction. In addition, the co-

inoculation of onion seedlings with AMF and A. brasilense could

cause increased GPOX activity in treatments with a lower amount

of organic carbon, reflecting abiotic stress. These results are

consistent with those previously reported in other plant species,

inoculated separately with AMF (Domokos et al., 2018), A.
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brasilense (Checchio et al., 2021), or Saccharothrix spp. (Enebe and

Babalola, 2019), but no similar effect has been demonstrated for

inoculation with AMF and PGPM consortia.
4.4 Element’s concentration in onion
Tissues as affected by AMF and PGPM
application to investigated growing media

Elemental content in plant products is one of the most important

quality parameters (Szela ̨g-Sikora et al., 2016). The chemical

composition of plants determines their nutritional value as well as

their suitability for processing or long-term storage (Niemiec et al.,

2015). Under the conditions of intensive horticulture, a deficiency of

macroelements is very common, which results in a reduction in the

yield of plants and deterioration in the usable quality of the crop.

Deficiency of macroelements in plants occurs even under conditions

of high substrate content (Sikora et al., 2020). The level of

bioaccumulation of elements in plants depends not only on their

amount in the biotope, but also on their properties (Niemiec et al.,

2020a). Increasing the degree of absorption of micronutrients is a

strategic aspect of the development of agricultural sciences and

production practices (Niemiec et al., 2020b; Seymen et al., 2021).

The observed macronutrient contents in the onions of all objects were

at the optimal level (Wang et al., 2020; Romo-Péreza et al., 2021);

however, samples were taken for analysis in the early stages of

development. In the case of macronutrients such as calcium or

phosphorus, deficiencies are often visible in the later stages of

vegetative development or even in the stage of generative

development. An increase in the accumulation of macronutrients

in young plants reduces the risk of deficiency at harvest maturity

(Bana et al., 2022). Research has demonstrated that co-inoculants of

AMF and PGPM enhance the nutrient-use efficiency of fertilizers and

reduce chemical fertilizer application rates (Bhardwaj et al., 2014). In

general, AMF and PGPM directly affect mineral absorption by the

host plant by improving plant growth through nutrient acquisition by

the fungus, or indirectly by modifying nutrient mobilization from

organic substrates, by enhancing fertilizer use efficiency, or by

beneficial association with other microorganisms (Vishwakarma

et al., 2017). The analysis of available forms of nutrients in the

substrate, their uptake by onion roots, and their translocation to

shoots was performed in the framework of the present experiment.

The onions collected from the substrate with a peat:sand ratio of

100:0, co-inoculated with AMF + AZ, and AMF + S contained the

highest levels of Ca and Mg (but lower Na) in leaves. Azospirillum-

inoculated plants have been reported to cause acidification of the root

surroundings, which increases macronutrient and micronutrient

uptake (Dobbelaere and Okon, 2007). El-Batanomy (2009) revealed

that a mixture of microbial cultures showed the highest nitrogenase

activity and mycorrhizal infection in onion roots. The total essential

nutrient content in onion dry shoots increased in mixed inocula of

Azospirillum lipoferum, A. chrococcoum, Bacillus circulans, B.

polymyxa, Rhizobium sp., and AMF compared to that in the

fertilized control. Moreover, Adesemoye et al. (2009) determined

another possible mechanism of PRPM and AMF cooperation;

namely, the former can act as a vehicle to spread non-mycorrhizal
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microorganisms throughout the rhizosphere. Bettoni et al. (2014)

demonstrated the increase of P level on onion seedlings inoculated

with Glomus intraradices and organic matter amendment. In the

present study, Ca content in onion roots was positively correlated

with other elements in the substrate, as well as AMF colonization

parameters, antioxidant activity, total phenols in roots, FW of leaves,

and K, Mg, and P content in leaves. Moreover, Ca, Mg, K, P, and Na

contents in onion leaves were positively correlated with AMF

colonization parameters. Surprisingly, relatively few increases in P

uptake into the seedlings were observed, which was one of the

strongest effects of AMF inoculation. Growing medium

composition had a more significant effect on P availability and

uptake than AMF-related accumulation of this element by onion

seedlings. Mentioned interdependence was reflected in highest

soluble P content after cultivation cycle in substrates based on peat

(100%) with and without AMF inoculation. This effect is due to

competition between the decomposition products of organic matter

and P for soil sorption sites, resulting in increased soil solution P

concentrations (Guppy et al., 2005). Additionally, the differences

between AMF-inoculated and uninoculated plants can be considered

the costs paid by plants for AMF-root associations. According to Al-

Karakis (2002), AMF inoculation of garlic plants was highest when

soil P was lowest, and decreased with increasing P application.

Moreover, AMF selectively uptake or make available essential

cations to plants, which act as osmotic equivalents for toxic Na

ions (Hammer et a l . , 2011) . Moreover , Na ions are

compartmentalized in cell vacuoles and mycorrhizal fungal hyphae

to avoid translocation to the shoots (Estrada et al., 2013). The

interactions between AMF and PGPM concerning mineral salt

uptake and synergism can be managed, but one must be aware that

synergetic interactions between these microbes could also

be manifested.
4.5 Substrate characteristics

Onions are among the most sensitive crops to soil conditions,

especially salinity, which affects plant growth particularly at the

seedling stage (Onishchuk et al., 2017). The physiological and

chemical properties of the substrate, including its biomass and

chemical composition influence plant growth in a multidirectional

manner (Niemiec et al., 2020a). In the present study, the available

forms of Ca, Mg, Na, K, and P in the substrate analyzed after

cultivation were highest in the formulations composed of peat:sand

at a ratio of 100:0 (v:v). Uzinger et al. (2020) demonstrated that the

combination of compost and plant growth promoting bacteria

resulted in higher P and K availability. In the present study,

AMF + PGPM was effective in releasing minerals into the soluble

fraction in substrates rich in organic matter, although this capacity

was dependent on the consortium of microorganisms used. AMF +

AZ 100 and AMF + S 100 application resulted in the highest level of

K after cultivation, whereas AMF + AZ 70 inoculants increased the

soluble forms of Ca, Mg, Na, and K compared to the non-inoculated

control. The P content was similar among the treatments

mentioned above. A significant and positive correlation between

the soluble elements in substrates and organic carbon, while a
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negative correlation with pHKCl, confirmed the crucial significance

of organic matter and reaction for element availability to plants.

This phenomenon has been noted by numerous researchers (Guaya

et al., 2020; Niemiec et al., 2020b; Lei et al., 2021). Additionally, in

the present study, the mineral soluble forms were not reduced in

formulations with higher EC values, particularly in the inoculated

treatments. Balliu et al. (2015) stated that uptake of elements was

enhanced in inoculated tomato seedlings even under moderate salt

stress. Despite the large differences in the organic fraction content of

the substrates and the capacity of the sorption complex, slight

differences in substrate pH occurred after the experiment. In

general, a wide spectrum of soil properties converge to create

synergistic effects, leading to the reshaping of microbiome/

plant interactions.
5 Conclusions

Alliaceae crops encounter various challenges, and limiting

conditions can result in serious economic losses at every growth

stage. Research on plant growth-promoting microbes (PGPM) as a

potential component of mainstream agriculture is important and

essential. Inoculation with AMF and PGPM consortia resulted in

significant improvement in onion seedling performance, i.e., higher

aboveground biomass production and better stress adaptation in

cultivation in substrates with lower organic carbon content. Our

results demonstrated that AMF and Saccharothrix sp. were effective

in substrates containing 70%–100% peat, while AMF and

Azotobacter sp. can be recommended to inoculate substrates with

50% organic C to enhance onion seedling performance. Differences

between AMF- and PGPM-inoculated plants concerning fresh

weight, stress biomarkers, and element concentration were

considered the costs paid by plants due to AMF–root associations

linked with growing medium-related availability of nutrients. The

present findings have revealed a significant aspect of soil/plant

management, i.e., that organic/beneficial microbe synergy might be

the future key for effective nutrient management and sustainable

production. Although we demonstrated the benefits of AMF and

PGPM inoculation on onion seedlings, the maintenance of

symbiosis after transplanting can be the goal of subsequent

investigations, as field conditions create new challenges to plant–

microorganism interactions.
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Galván, G. A., Parádi, I., Burger, K., Baar, J., Kuyper, T. W., Scholten, O. E., et al.
(2009). Molecular diversity of arbuscular mycorrhizal fungi in onion roots from
organic and conventional farming systems in the Netherlands. Mycorrhiza 19, 317–
328. doi: 10.1007/s00572-009-0237-2
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